organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2507-o2508

2-Amino-4-methyl-6-oxo-3,6-di­hydro­pyrimidin-1-ium perchlorate–2-amino-6-methyl­pyrimidin-4(1H)-one–water (1/1/1)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bChemistry Department and Centro di Strutturistica Diffrattometrica, University of Ferrara, Via L. Borsari 46, I-44121 Ferrara, Italy, and cYoungstown State University, Department of Chemistry, One University Plaza, Youngstown, Ohio 44555-3663, USA
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 9 August 2011; accepted 20 August 2011; online 27 August 2011)

In the title compound, C5H8N3O+·ClO4·C5H7N3O·H2O, each perchlorate anion is paired with a protonated cationic 2-amino-6-methyl­pyrimidin-4(1H)-one and another non-protonated entity of the same organic pyrimidinone. The crystal structure is stabilized by N—H⋯Oorg, N—H⋯Owater, N—H⋯OClO4, O—H⋯OClO4, N—H⋯N and C—H⋯OClO4 hydrogen bonds between the anions, organic entities and water mol­ecules. Inter­molecular ππ stacking inter­actions between neighbouring organic rings are observed with a face-to-face distance of 3.776 (2) Å, and O—H⋯O hydrogen bonds link the perchlorate anions and the water mol­ecules into chains along the b-axis direction. The perchlorate anion and the inter­stitial water mol­ecule are disordered over two mutually incompatible positions with a common occupancy ratio of 0.678 (16):0.322 (16).

Related literature

For general background to perchlorate salts with organic cations, see: Czarnecki et al. (1994[Czarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955-4960.]); Czupinski et al. (2002[Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497-8512.], 2006[Czupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307-3324.]). For enamine-imino resonance, see: Oueslati et al. (2007[Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49-58.]). For ππ stacking inter­actions, see: Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3O+·ClO4·C5H7N3O·H2O

  • Mr = 368.75

  • Monoclinic, P 21 /c

  • a = 10.3669 (3) Å

  • b = 10.4342 (3) Å

  • c = 15.0780 (5) Å

  • β = 92.751 (2)°

  • V = 1629.11 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.12 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • 7792 measured reflections

  • 4739 independent reflections

  • 2765 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.184

  • S = 1.02

  • 4739 reflections

  • 279 parameters

  • 64 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1WA—H2WA⋯O2 0.82 (2) 2.26 (6) 3.07 (4) 169 (16)
C5—H5B⋯O3′ 0.96 2.55 3.509 (6) 173
N5—H5⋯O1WB 0.86 1.95 2.797 (8) 166
O1WB—H2WB⋯O4′ 0.82 (2) 2.30 (4) 3.071 (14) 159 (6)
N1—H1⋯N4i 0.86 1.98 2.839 (2) 174
N3—H3B⋯O6i 0.86 1.93 2.787 (2) 178
N6—H6A⋯O5i 0.86 2.05 2.895 (2) 168
N2—H2⋯O6ii 0.86 1.84 2.6560 (18) 158
N3—H3A⋯O5ii 0.86 2.24 3.0363 (18) 154
N6—H6B⋯O1iii 0.86 2.35 3.095 (17) 145
C3—H3⋯O1iv 0.93 2.56 3.466 (17) 166
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: Kappa CCD server software (Nonius, 1997[Nonius (1997). KappaCCD Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al.,1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.], 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Perchlorate salts containing organic cations have been studied extensively in recent years owing to some of their interesting properties such as e.g. ferroelectric and dielectric behaviour (Czarnecki et al., 1994; Czupinski et al., 2002; Czupinski et al., 2006). Here, we report the synthesis and the crystal structure of one such compound, (C5H8N3O)(C5H7N3O)ClO4.H2O.

The crystal structure of the title compound (Fig.1) contains one perchlorate anion, one water molecule, and two 2-amino-6-methylpyrimidin-4(1H)-one molecules. One of these molecules is protonated at the nitrogen atom of the six membered ring, thus formally changing the molecule into a 2-amino-4-methyl-6-oxo-3,6-dihydropyrimidin-1-ium cation. The atomic arrangement of (C5H8N3O)(C5H7N3O)ClO4.H2O can be divided into an organic and an inorganic part. The inorganic section is composed of chains of [ClO4]- tetrahedra and water molecules that extend along the b axis direction, held together by Owater—H···O(ClO4) hydrogen bonds. Two such chains cross the unit cell at z = (2n +1)/4 and x = 0.5 (Fig. 2, Table 1). The organic groups are located between these chains and connect to them through N—H···Owater, N—H···O(ClO4) and C—H···O(ClO4) hydrogen bonds to form a three dimensional infinite network (Fig. 3, Table 1). Of the hydrogen bonds, one is bifurcted: O1WA—H2WA···(O2, O4) (Fig. 2, Table 1). The organic entities are associated with each other via N—H···Oorg and N—H···N hydrogen bonds (Fig. 3, Table 1). Intermolecular π-π stacking interactions between neighbouring organic rings are observed with a face-to-face distance of 3.776 (2) Å, less than 3.8 Å, the maximum regarded as relevant for π-π interactions (Janiak, 2000).

The C—N bond distances of the NH2 groups, N3—C1 and N6—C6, are 1.311 (2) and 1.327 (2) Å, respectively, which is short for a C—N single bond, but still not quite as contracted as one would expect for a fully established C=N double bond. These bond length features are consistent with an imino resonance form as it is commonly found for C—N single bonds involving sp2 hybridized C and N atoms (Oueslati et al., 2007). The distance values of C2—O5 [1.233 (2) Å] and C7—O6 [1.260 (2) Å] clearly indicate two C=O double bonds. This confirms that the first step of the formation of the title compound consists in the tautomerization of the starting material 2-amino-4-hydroxy-6-methylpyrimidine into 2-amino-6-methylpyrimidin-4(1H)-one.

Related literature top

For general background to perchlorate salts with organic cations, see: Czarnecki et al. (1994); Czupinski et al. (2002, 2006). For enamine-imino resonance, see: Oueslati et al. (2007). For ππ stacking interactions, see: Janiak (2000).

Experimental top

An aqueous solution of Cu(ClO4)2 (1 mmol, 0.263 g) was added dropwise to a solution of 2-amino-4-hydroxy-6-methylpyrimidine (1 mmol, 0.125 g) in ethanol. The resultant mixture was evaporated at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 56%).

Refinement top

Reflections (1 1 0), (1 0 0), (-1 0 2), (0 0 2), (0 1 1), (-1 1 1) and (-1 1 2) were obscured by the beamstop and were omitted from the refinement. The oxygen atoms of the perchlorate ion were refined as disordered over two mutually exclusive sets of positions with a refined occupancy ratio of 0.678 (16) to 0.322 (16) for the two orientations. Associated with the perchlorate disorder is disorder of a water molecule, which is distributed over two positions in the same ratio as the anions. All Cl—O bond distances and O···O distances within each disordered moiety were restrained to be eadch the same within a standard deviation of 0.02 Å. C—H and N—H hydrogen atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å and N—H distances of 0.86 Å. The the water hydrogen atom postitions were refined with O—H distance restraints of 0.82 (2) Å and H···H distance restraints within each water molecule of 1.35 (2) Å. Uiso(H) values of all H atoms were constrained to 1.2 (amine, C—H) or 1.5 (CH3, O—H) times Ueq of the respective parent atom.

Computing details top

Data collection: Kappa CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al.,1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1983, 1995), WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids, arbitrary spheres for the H atoms, and the atom numbering scheme.
[Figure 2] Fig. 2. Packing of the title compound viewed down the b axis, showing the hydrogen bonding scheme between the water molecules, perchlorate anions and organic entities. Disorder of perchlorate anions and of water molecules is omitted for clarity.
[Figure 3] Fig. 3. Crystal packing arrangement showing the hydrogen bonding scheme between the organic entities. Hydrogen bonds are denoted by dotted lines. Disorder of perchlorate anions and of water molecules is omitted for clarity.
2-Amino-4-methyl-6-oxo-3,6-dihydropyrimidin-1-ium perchlorate– 2-amino-6-methylpyrimidin-4(1H)-one–water (1/1/1) top
Crystal data top
C5H8N3O+·ClO4·C5H7N3O·H2OF(000) = 768
Mr = 368.75Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7792 reflections
a = 10.3669 (3) Åθ = 2.0–30.0°
b = 10.4342 (3) ŵ = 0.28 mm1
c = 15.0780 (5) ÅT = 295 K
β = 92.751 (2)°Prismatic, colourless
V = 1629.11 (9) Å30.30 × 0.15 × 0.12 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
2765 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.1°, θmin = 3.9°
ϕ scans and ω scansh = 1414
7792 measured reflectionsk = 1314
4739 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1048P)2 + 0.0794P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4739 reflectionsΔρmax = 0.38 e Å3
279 parametersΔρmin = 0.47 e Å3
64 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (6)
Crystal data top
C5H8N3O+·ClO4·C5H7N3O·H2OV = 1629.11 (9) Å3
Mr = 368.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3669 (3) ŵ = 0.28 mm1
b = 10.4342 (3) ÅT = 295 K
c = 15.0780 (5) Å0.30 × 0.15 × 0.12 mm
β = 92.751 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
2765 reflections with I > 2σ(I)
7792 measured reflectionsRint = 0.027
4739 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05964 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
4739 reflectionsΔρmin = 0.47 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.98648 (14)0.24064 (14)0.41381 (8)0.0481 (4)
N10.98287 (15)0.26652 (14)0.56248 (9)0.0370 (4)
H11.03150.33290.55890.044*
N20.87048 (15)0.12750 (14)0.64911 (9)0.0386 (4)
H20.84950.10220.70070.046*
N30.98691 (18)0.29455 (16)0.71393 (10)0.0489 (4)
H3A0.96350.27170.76560.059*
H3B1.03630.36000.70860.059*
C10.94722 (17)0.22960 (16)0.64336 (11)0.0357 (4)
C20.94490 (18)0.20263 (17)0.48438 (11)0.0384 (4)
C30.85884 (19)0.09806 (19)0.49410 (12)0.0452 (5)
H30.82630.05450.44410.054*
C40.82387 (18)0.06148 (17)0.57560 (12)0.0407 (4)
C50.7351 (2)0.0476 (2)0.59327 (15)0.0579 (6)
H5A0.71490.09290.53900.087*
H5B0.65690.01510.61650.087*
H5C0.77630.10480.63570.087*
Cl10.32526 (6)0.13475 (6)0.68097 (4)0.0630 (2)
O10.2053 (11)0.0786 (17)0.6977 (12)0.098 (5)0.322 (16)
O20.308 (2)0.2428 (18)0.6303 (18)0.206 (11)0.322 (16)
O30.3952 (12)0.0439 (15)0.6352 (11)0.109 (4)0.322 (16)
O40.3901 (18)0.161 (3)0.7605 (10)0.163 (9)0.322 (16)
O1'0.2309 (8)0.0465 (8)0.7085 (4)0.100 (2)0.678 (16)
O2'0.2776 (6)0.2018 (6)0.6061 (3)0.0944 (18)0.678 (16)
O3'0.4372 (9)0.0699 (10)0.6589 (6)0.133 (3)0.678 (16)
O4'0.3540 (11)0.2203 (8)0.7502 (5)0.125 (3)0.678 (16)
O1WA0.559 (2)0.3844 (18)0.6839 (13)0.097 (5)0.322 (16)
H1WA0.543 (12)0.457 (6)0.702 (10)0.146*0.322 (16)
H2WA0.493 (7)0.342 (10)0.676 (11)0.146*0.322 (16)
O1WB0.6081 (9)0.3409 (9)0.6947 (5)0.089 (2)0.678 (16)
H1WB0.620 (6)0.387 (5)0.739 (3)0.134*0.678 (16)
H2WB0.549 (5)0.292 (5)0.703 (4)0.134*0.678 (16)
O60.85711 (15)0.49047 (14)0.30449 (8)0.0523 (4)
N40.84030 (15)0.52739 (15)0.45051 (9)0.0389 (4)
N50.68242 (16)0.41812 (16)0.52703 (11)0.0481 (4)
H50.64830.40260.57680.058*
N60.82368 (19)0.55766 (18)0.59950 (11)0.0582 (5)
H6A0.88800.60970.59940.070*
H6B0.78660.54200.64820.070*
C60.78157 (18)0.50162 (17)0.52456 (12)0.0410 (4)
C70.79858 (19)0.46791 (18)0.37411 (12)0.0417 (4)
C80.6914 (2)0.3822 (2)0.37529 (14)0.0538 (5)
H80.66050.34340.32300.065*
C90.6351 (2)0.3576 (2)0.45156 (14)0.0508 (5)
C100.5254 (3)0.2665 (3)0.46219 (18)0.0743 (7)
H10A0.49620.23440.40500.111*
H10B0.45580.31030.48900.111*
H10C0.55380.19630.49940.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0660 (9)0.0544 (8)0.0244 (6)0.0120 (7)0.0079 (6)0.0008 (5)
N10.0466 (9)0.0390 (8)0.0257 (7)0.0069 (6)0.0037 (6)0.0001 (6)
N20.0459 (9)0.0422 (8)0.0281 (7)0.0032 (6)0.0066 (6)0.0057 (6)
N30.0691 (11)0.0525 (9)0.0256 (7)0.0143 (8)0.0069 (7)0.0002 (7)
C10.0412 (10)0.0392 (9)0.0269 (8)0.0025 (7)0.0041 (7)0.0035 (7)
C20.0454 (10)0.0436 (9)0.0264 (8)0.0001 (8)0.0039 (7)0.0011 (7)
C30.0527 (12)0.0493 (10)0.0335 (9)0.0091 (9)0.0005 (8)0.0039 (8)
C40.0415 (10)0.0420 (9)0.0388 (9)0.0020 (8)0.0030 (8)0.0032 (8)
C50.0631 (14)0.0588 (13)0.0523 (12)0.0214 (11)0.0065 (10)0.0013 (10)
Cl10.0656 (4)0.0782 (4)0.0458 (3)0.0041 (3)0.0098 (3)0.0022 (3)
O10.053 (5)0.129 (10)0.116 (11)0.008 (5)0.037 (5)0.013 (7)
O20.25 (2)0.100 (10)0.28 (2)0.081 (11)0.129 (16)0.109 (12)
O30.064 (6)0.143 (8)0.120 (8)0.019 (5)0.000 (5)0.057 (7)
O40.125 (11)0.28 (3)0.081 (7)0.063 (14)0.040 (7)0.040 (12)
O1'0.147 (6)0.103 (4)0.050 (2)0.066 (4)0.023 (3)0.003 (2)
O2'0.111 (3)0.114 (4)0.058 (2)0.019 (3)0.005 (2)0.025 (2)
O3'0.090 (5)0.173 (7)0.137 (6)0.060 (5)0.026 (4)0.024 (4)
O4'0.145 (6)0.139 (5)0.091 (4)0.052 (4)0.010 (3)0.053 (3)
O1WA0.117 (12)0.095 (10)0.083 (9)0.046 (8)0.044 (9)0.025 (7)
O1WB0.108 (5)0.096 (5)0.063 (2)0.035 (3)0.008 (3)0.013 (3)
O60.0736 (10)0.0537 (8)0.0303 (7)0.0154 (7)0.0105 (7)0.0060 (6)
N40.0467 (9)0.0413 (8)0.0292 (7)0.0049 (7)0.0057 (6)0.0030 (6)
N50.0461 (9)0.0579 (10)0.0412 (8)0.0084 (8)0.0100 (7)0.0035 (7)
N60.0717 (12)0.0730 (12)0.0312 (8)0.0255 (10)0.0160 (8)0.0090 (8)
C60.0465 (10)0.0425 (9)0.0346 (9)0.0010 (8)0.0076 (8)0.0003 (7)
C70.0500 (11)0.0432 (10)0.0321 (8)0.0030 (8)0.0029 (8)0.0029 (7)
C80.0576 (13)0.0617 (12)0.0415 (10)0.0159 (10)0.0029 (9)0.0029 (9)
C90.0449 (11)0.0559 (11)0.0513 (11)0.0096 (9)0.0010 (9)0.0020 (10)
C100.0633 (16)0.0858 (18)0.0738 (16)0.0298 (13)0.0041 (13)0.0066 (14)
Geometric parameters (Å, º) top
O5—C21.233 (2)Cl1—O11.408 (10)
N1—C11.347 (2)Cl1—O1'1.419 (5)
N1—C21.393 (2)O1WA—H1WA0.82 (2)
N1—H10.8600O1WA—H2WA0.82 (2)
N2—C11.335 (2)O1WB—H1WB0.831 (19)
N2—C41.373 (2)O1WB—H2WB0.82 (2)
N2—H20.8600O6—C71.260 (2)
N3—C11.311 (2)N4—C61.325 (2)
N3—H3A0.8600N4—C71.361 (2)
N3—H3B0.8600N5—C61.349 (2)
C2—C31.421 (3)N5—C91.371 (3)
C3—C41.353 (2)N5—H50.8600
C3—H30.9300N6—C61.327 (2)
C4—C51.496 (3)N6—H6A0.8600
C5—H5A0.9600N6—H6B0.8600
C5—H5B0.9600C7—C81.427 (3)
C5—H5C0.9600C8—C91.339 (3)
Cl1—O21.369 (10)C8—H80.9300
Cl1—O41.373 (10)C9—C101.497 (3)
Cl1—O4'1.395 (5)C10—H10A0.9600
Cl1—O31.396 (10)C10—H10B0.9600
Cl1—O3'1.397 (6)C10—H10C0.9600
Cl1—O2'1.398 (4)
C1—N1—C2123.33 (15)O2—Cl1—O1110.4 (9)
C1—N1—H1118.3O4—Cl1—O1109.0 (9)
C2—N1—H1118.3O3—Cl1—O1106.8 (8)
C1—N2—C4122.40 (14)O4'—Cl1—O1'108.8 (4)
C1—N2—H2118.8O3'—Cl1—O1'110.3 (4)
C4—N2—H2118.8O2'—Cl1—O1'109.8 (4)
C1—N3—H3A120.0H1WA—O1WA—H2WA111 (4)
C1—N3—H3B120.0H1WB—O1WB—H2WB109 (3)
H3A—N3—H3B120.0C6—N4—C7118.73 (15)
N3—C1—N2121.65 (15)C6—N5—C9121.13 (16)
N3—C1—N1119.85 (16)C6—N5—H5119.4
N2—C1—N1118.50 (15)C9—N5—H5119.4
O5—C2—N1118.64 (16)C6—N6—H6A120.0
O5—C2—C3125.68 (16)C6—N6—H6B120.0
N1—C2—C3115.68 (15)H6A—N6—H6B120.0
C4—C3—C2120.48 (17)N4—C6—N6118.84 (17)
C4—C3—H3119.8N4—C6—N5122.41 (16)
C2—C3—H3119.8N6—C6—N5118.74 (16)
C3—C4—N2119.50 (16)O6—C7—N4118.29 (16)
C3—C4—C5124.79 (18)O6—C7—C8122.28 (17)
N2—C4—C5115.70 (16)N4—C7—C8119.43 (16)
C4—C5—H5A109.5C9—C8—C7120.16 (19)
C4—C5—H5B109.5C9—C8—H8119.9
H5A—C5—H5B109.5C7—C8—H8119.9
C4—C5—H5C109.5C8—C9—N5118.10 (18)
H5A—C5—H5C109.5C8—C9—C10125.3 (2)
H5B—C5—H5C109.5N5—C9—C10116.56 (19)
O2—Cl1—O4111.9 (9)C9—C10—H10A109.5
O2—Cl1—O3109.9 (9)C9—C10—H10B109.5
O4—Cl1—O3108.7 (8)H10A—C10—H10B109.5
O4'—Cl1—O3'109.8 (5)C9—C10—H10C109.5
O4'—Cl1—O2'109.8 (4)H10A—C10—H10C109.5
O3'—Cl1—O2'108.4 (4)H10B—C10—H10C109.5
C4—N2—C1—N3177.34 (17)C7—N4—C6—N6178.73 (18)
C4—N2—C1—N11.9 (3)C7—N4—C6—N50.4 (3)
C2—N1—C1—N3179.95 (17)C9—N5—C6—N41.6 (3)
C2—N1—C1—N20.8 (3)C9—N5—C6—N6179.98 (19)
C1—N1—C2—O5177.23 (18)C6—N4—C7—O6178.20 (18)
C1—N1—C2—C33.4 (3)C6—N4—C7—C81.5 (3)
O5—C2—C3—C4177.18 (19)O6—C7—C8—C9177.6 (2)
N1—C2—C3—C43.4 (3)N4—C7—C8—C92.1 (3)
C2—C3—C4—N21.1 (3)C7—C8—C9—N50.9 (3)
C2—C3—C4—C5179.47 (19)C7—C8—C9—C10177.8 (2)
C1—N2—C4—C31.8 (3)C6—N5—C9—C81.0 (3)
C1—N2—C4—C5177.75 (17)C6—N5—C9—C10179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1WA—H2WA···O20.82 (2)2.26 (6)3.07 (4)169 (16)
C5—H5B···O30.962.553.509 (6)173
N5—H5···O1WB0.861.952.797 (8)166
O1WB—H2WB···O40.82 (2)2.30 (4)3.071 (14)159 (6)
N1—H1···N4i0.861.982.839 (2)174
N3—H3B···O6i0.861.932.787 (2)178
N6—H6A···O5i0.862.052.895 (2)168
N2—H2···O6ii0.861.842.6560 (18)158
N3—H3A···O5ii0.862.243.0363 (18)154
N6—H6B···O1iii0.862.353.095 (17)145
C3—H3···O1iv0.932.563.466 (17)166
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H8N3O+·ClO4·C5H7N3O·H2O
Mr368.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.3669 (3), 10.4342 (3), 15.0780 (5)
β (°) 92.751 (2)
V3)1629.11 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.15 × 0.12
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7792, 4739, 2765
Rint0.027
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.184, 1.02
No. of reflections4739
No. of parameters279
No. of restraints64
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.47

Computer programs: Kappa CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al.,1999), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1983, 1995), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1WA—H2WA···O20.82 (2)2.26 (6)3.07 (4)169 (16)
C5—H5B···O3'0.962.553.509 (6)173.0
N5—H5···O1WB0.861.952.797 (8)166.0
O1WB—H2WB···O4'0.82 (2)2.30 (4)3.071 (14)159 (6)
N1—H1···N4i0.861.982.839 (2)173.7
N3—H3B···O6i0.861.932.787 (2)178.4
N6—H6A···O5i0.862.052.895 (2)167.8
N2—H2···O6ii0.861.842.6560 (18)158.4
N3—H3A···O5ii0.862.243.0363 (18)153.9
N6—H6B···O1iii0.862.353.095 (17)144.6
C3—H3···O1iv0.932.563.466 (17)166.1
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCzarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955–4960.  CrossRef CAS Web of Science Google Scholar
First citationCzupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497–8512.  Web of Science CSD CrossRef CAS Google Scholar
First citationCzupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307–3324.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS Web of Science Google Scholar
First citationOueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2507-o2508
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds