organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl 3-oxo-2,3-di­hydro-1,2-benzo­thia­zole-2-carboxyl­ate

aInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China, bHainan University Materials and Chemical Engineering, Haikou 570228, People's Republic of China, cHainan Provincial Fine Chemical Engineering Center, Hainan University, Haikou 570228, People's Republic of China, and dCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571100, People's Republic of China
*Correspondence e-mail: yangjxmail@sohu.com, linqianggroup@163.com

(Received 21 June 2011; accepted 16 July 2011; online 2 August 2011)

The title compound, C11H11NO3S, was synthesized by the reaction of benzo[d]isothia­zol-3(2H)-one with propyl carbono­chloridate in toluene. The benzoisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) Å for the N atom. Weak inter­molecular C—H⋯O hydrogen bonding occurs in the crystal structure.

Related literature

For background to the synthesis of benzoisothiazolone derivatives, see: Davis (1972[Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43-98.]); Elgazwy & Abdel-Sattar (2003[Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445-7463.]). For their biological activity, see: Taubert et al. (2002[Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79-81.]). For related structures, see: Xu et al. (2005[Xu, L.-Z., Si, G.-D., Li, Z.-F., Yang, S.-H. & Li, K. (2005). Acta Cryst. E61, o1329-o1330.], 2006[Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496-o497.]); Cavalca et al. (1969[Cavalca, L., Gasparri, G. F., Mangia, A. & Pelizzi, G. (1969). Acta Cryst. B25, 2349-2354.], 1970[Cavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629-638.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3S

  • Mr = 237.27

  • Monoclinic, P 21 /c

  • a = 16.235 (7) Å

  • b = 5.123 (2) Å

  • c = 12.791 (6) Å

  • β = 90.720 (7)°

  • V = 1063.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 153 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.904, Tmax = 0.943

  • 8491 measured reflections

  • 2766 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.00

  • 2766 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.60 3.437 (3) 148
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2-benzisothiazol-3(2H)-ones are a class of compounds with a wide spectrum of biological activities (Davis, 1972), Elgazwy & Abdel-Sattar, 2003). 1, 2-Benzisothiazolone derivatives have been reported to possess high antibacterial and antifungal activity (Taubert et al., 2002). In view of the importance of the 1,2-benzisothiazol-3(2H)-ones, the title compound, (I), was synthesized and characterized by X-ray diffraction.

The molecular structure of the title compound is shown in Fig. 1. In the molecule, the benzisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) A ° for the N atom, and the C8—O2—C9—C10 torsion angle is 85.16 (18)°. Weak intermolecular C—H···O hydrogen bonding occurs in the crystal structure (Table 1, Fig. 22))..

Related literature top

For background to the sythesis of benzisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For their biological activity, see: Taubert et al. (2002). For related structures, see: Xu et al. (2005, 2006); Cavalca et al. (1969, 1970).

Experimental top

A toluol solution (20 ml) containing benzo[d]isothiazol-3(2H)-one (1.51 g, 0.01 mol) was added dropwise to a solution of propyl carbonochloridate (1.22 g, 0.01 mol) in toluol (20 ml) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h to afford the title compound (1.55 g, yield 65.5%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from cyclohexane at room temperature.

Refinement top

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom-H distances = 0.95 Å for aryl, 0.99 for methylene, 0.98 Å for the methyl. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Title molecule showing the 30% probability displacement ellipsoids and the atomnumbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) molecular chain.
Propyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate top
Crystal data top
C11H11NO3SF(000) = 496
Mr = 237.27Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.235 (7) ÅCell parameters from 3253 reflections
b = 5.123 (2) Åθ = 3.0–29.1°
c = 12.791 (6) ŵ = 0.29 mm1
β = 90.720 (7)°T = 153 K
V = 1063.7 (8) Å3Block, pink
Z = 40.35 × 0.25 × 0.20 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2766 independent reflections
Radiation source: Rotating Anode2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 3.2°
phi and ω scansh = 2022
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 66
Tmin = 0.904, Tmax = 0.943l = 1617
8491 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.316P]
where P = (Fo2 + 2Fc2)/3
2766 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H11NO3SV = 1063.7 (8) Å3
Mr = 237.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.235 (7) ŵ = 0.29 mm1
b = 5.123 (2) ÅT = 153 K
c = 12.791 (6) Å0.35 × 0.25 × 0.20 mm
β = 90.720 (7)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2766 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2224 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.943Rint = 0.031
8491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
2766 reflectionsΔρmin = 0.25 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25453 (2)0.70918 (8)0.71855 (3)0.02263 (12)
O10.16642 (7)0.7439 (2)0.43840 (8)0.0285 (3)
O20.28813 (7)1.0985 (2)0.46620 (9)0.0289 (3)
O30.34796 (8)1.1023 (3)0.62778 (10)0.0339 (3)
N10.24529 (8)0.8149 (3)0.59025 (10)0.0210 (3)
C10.17595 (9)0.4842 (3)0.69666 (11)0.0195 (3)
C20.14578 (10)0.3037 (3)0.76888 (12)0.0227 (3)
H20.16710.29660.83830.027*
C30.08395 (10)0.1360 (3)0.73593 (13)0.0256 (3)
H30.06280.01160.78370.031*
C40.05157 (10)0.1449 (3)0.63348 (13)0.0258 (3)
H40.00880.02850.61300.031*
C50.08200 (9)0.3230 (3)0.56251 (12)0.0226 (3)
H50.06080.32920.49300.027*
C60.14445 (9)0.4939 (3)0.59480 (11)0.0189 (3)
C70.18296 (9)0.6918 (3)0.52901 (12)0.0203 (3)
C80.29898 (9)1.0187 (3)0.56431 (12)0.0231 (3)
C90.34321 (10)1.3087 (3)0.43295 (15)0.0304 (4)
H9A0.35331.42900.49230.036*
H9B0.31631.40930.37600.036*
C100.42408 (10)1.2039 (4)0.39541 (14)0.0295 (4)
H10A0.41391.07370.33950.035*
H10B0.45321.11510.45390.035*
C110.47784 (11)1.4220 (4)0.35365 (15)0.0357 (4)
H11A0.45201.49640.29070.043*
H11B0.53221.35200.33640.043*
H11C0.48401.55830.40700.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (2)0.0248 (2)0.01593 (19)0.00360 (15)0.00484 (14)0.00027 (15)
O10.0359 (7)0.0350 (7)0.0145 (5)0.0040 (5)0.0035 (5)0.0026 (5)
O20.0261 (6)0.0344 (7)0.0262 (6)0.0044 (5)0.0009 (5)0.0112 (5)
O30.0381 (7)0.0357 (7)0.0279 (6)0.0132 (6)0.0037 (5)0.0001 (5)
N10.0242 (6)0.0236 (7)0.0151 (6)0.0010 (5)0.0010 (5)0.0009 (5)
C10.0213 (7)0.0193 (7)0.0178 (7)0.0021 (5)0.0014 (5)0.0029 (6)
C20.0276 (8)0.0237 (8)0.0166 (7)0.0024 (6)0.0013 (6)0.0017 (6)
C30.0299 (8)0.0225 (8)0.0245 (8)0.0000 (6)0.0042 (6)0.0010 (6)
C40.0248 (8)0.0254 (8)0.0270 (8)0.0027 (6)0.0001 (6)0.0052 (7)
C50.0232 (7)0.0258 (8)0.0188 (7)0.0026 (6)0.0025 (6)0.0051 (6)
C60.0218 (7)0.0199 (7)0.0150 (7)0.0044 (6)0.0006 (5)0.0030 (6)
C70.0226 (7)0.0227 (8)0.0156 (7)0.0024 (6)0.0006 (6)0.0030 (6)
C80.0242 (8)0.0221 (8)0.0228 (8)0.0023 (6)0.0018 (6)0.0005 (6)
C90.0274 (8)0.0260 (9)0.0378 (10)0.0003 (7)0.0037 (7)0.0136 (7)
C100.0300 (9)0.0278 (9)0.0308 (9)0.0015 (7)0.0049 (7)0.0023 (7)
C110.0334 (9)0.0434 (11)0.0305 (9)0.0095 (8)0.0042 (7)0.0008 (8)
Geometric parameters (Å, º) top
S1—N11.7328 (15)C4—C51.383 (2)
S1—C11.7393 (17)C4—H40.9500
O1—C71.2162 (19)C5—C61.398 (2)
O2—C81.329 (2)C5—H50.9500
O2—C91.466 (2)C6—C71.463 (2)
O3—C81.208 (2)C9—C101.503 (2)
N1—C81.403 (2)C9—H9A0.9900
N1—C71.4195 (19)C9—H9B0.9900
C1—C61.395 (2)C10—C111.519 (3)
C1—C21.400 (2)C10—H10A0.9900
C2—C31.383 (2)C10—H10B0.9900
C2—H20.9500C11—H11A0.9800
C3—C41.407 (2)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
N1—S1—C190.00 (7)O1—C7—C6127.56 (14)
C8—O2—C9115.18 (13)N1—C7—C6107.29 (12)
C8—N1—C7129.86 (13)O3—C8—O2127.15 (15)
C8—N1—S1114.20 (10)O3—C8—N1120.72 (15)
C7—N1—S1115.87 (11)O2—C8—N1112.13 (13)
C6—C1—C2120.86 (14)O2—C9—C10111.65 (14)
C6—C1—S1112.73 (12)O2—C9—H9A109.3
C2—C1—S1126.40 (12)C10—C9—H9A109.3
C3—C2—C1117.89 (14)O2—C9—H9B109.3
C3—C2—H2121.1C10—C9—H9B109.3
C1—C2—H2121.1H9A—C9—H9B108.0
C2—C3—C4121.68 (15)C9—C10—C11110.97 (16)
C2—C3—H3119.2C9—C10—H10A109.4
C4—C3—H3119.2C11—C10—H10A109.4
C5—C4—C3120.04 (15)C9—C10—H10B109.4
C5—C4—H4120.0C11—C10—H10B109.4
C3—C4—H4120.0H10A—C10—H10B108.0
C4—C5—C6118.88 (15)C10—C11—H11A109.5
C4—C5—H5120.6C10—C11—H11B109.5
C6—C5—H5120.6H11A—C11—H11B109.5
C1—C6—C5120.65 (14)C10—C11—H11C109.5
C1—C6—C7114.07 (13)H11A—C11—H11C109.5
C5—C6—C7125.28 (14)H11B—C11—H11C109.5
O1—C7—N1125.15 (15)
C1—S1—N1—C8178.88 (12)S1—N1—C7—O1178.47 (13)
C1—S1—N1—C71.45 (12)C8—N1—C7—C6179.01 (14)
N1—S1—C1—C60.32 (12)S1—N1—C7—C62.07 (16)
N1—S1—C1—C2178.34 (14)C1—C6—C7—O1178.77 (16)
C6—C1—C2—C30.0 (2)C5—C6—C7—O11.8 (3)
S1—C1—C2—C3178.55 (12)C1—C6—C7—N11.79 (18)
C1—C2—C3—C40.3 (2)C5—C6—C7—N1177.67 (14)
C2—C3—C4—C50.6 (2)C9—O2—C8—O30.9 (2)
C3—C4—C5—C60.6 (2)C9—O2—C8—N1179.00 (13)
C2—C1—C6—C50.1 (2)C7—N1—C8—O3178.88 (15)
S1—C1—C6—C5178.67 (12)S1—N1—C8—O31.9 (2)
C2—C1—C6—C7179.57 (14)C7—N1—C8—O21.2 (2)
S1—C1—C6—C70.82 (17)S1—N1—C8—O2178.19 (10)
C4—C5—C6—C10.4 (2)C8—O2—C9—C1085.16 (18)
C4—C5—C6—C7179.80 (14)O2—C9—C10—C11175.72 (15)
C8—N1—C7—O11.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.603.437 (3)148
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11NO3S
Mr237.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)16.235 (7), 5.123 (2), 12.791 (6)
β (°) 90.720 (7)
V3)1063.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.904, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
8491, 2766, 2224
Rint0.031
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.00
No. of reflections2766
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.603.437 (3)148
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of Hainan University 211 Project.

References

First citationCavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital. 100, 629–638.  CAS Google Scholar
First citationCavalca, L., Gasparri, G. F., Mangia, A. & Pelizzi, G. (1969). Acta Cryst. B25, 2349–2354.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDavis, M. (1972). Adv. Heterocycl. Chem. 14, 43–98.  CrossRef CAS Google Scholar
First citationElgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L.-Z., Si, G.-D., Li, Z.-F., Yang, S.-H. & Li, K. (2005). Acta Cryst. E61, o1329–o1330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds