organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2313-o2314

tert-Butyl N-[3-hy­dr­oxy-1-phenyl-4-(pyrimidin-2-ylsulfan­yl)butan-2-yl]carbamate monohydrate

aInstituto de Tecnologia em Fármacos - Farmanguinhos, FioCruz –, Fundação Oswaldo Cruz, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bUniversidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Outeiro de São João Batista, s/no, Centro, Niterói, 24020-141 Rio de Janeiro, Brazil, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 August 2011; accepted 6 August 2011; online 11 August 2011)

In the title hydrate, C19H25N3O3S·H2O, the configuration at each chiral centre in the organic mol­ecule is S, with the hy­droxy and carbamate substituents being anti [O—C—C—N torsion angle = −179.3 (3)°]. The thio­pyrimidyl and carbamate residues lie to one side of the pseudo-mirror plane defined by the C5S backbone of the mol­ecule; this plane approximately bis­ects the benzene ring at the 1- and 4-C atoms. The dihedral angle formed between the terminal rings is 5.06 (18)°. In the crystal, supra­molecular tubes aligned along the b axis are found: these are sustained by a combination of O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For background to the use of hy­droxy­ethyl­amine derivatives in medicinal chemistry, see: Brik & Wong (2003[Brik, A. & Wong, C.-H. (2003). Org. Biomol. Chem. 1, 5-14.]); Ghosh et al. (2001[Ghosh, A. K., Bilcer, G. & Schiltz, G. (2001). Synthesis, pp. 2203-2229.]); Marcin et al. (2011[Marcin, L. R., Higgins, M. A., Zusi, F. C., Zhang, Y., Dee, M. F., Parker, M. F., Muckelbauer, J. K., Camac, D. M., Morin, P. E., Ramamurthy, V., Tebben, A. J., Lentz, K. A., Grace, J. E., Marcinkeviciene, J. A., Kopcho, L. M., Burton, C. R., Barten, D. M., Toyn, J. H., Meredith, J. E., Albright, C. F., Bronson, J. J., Macor, J. E. & Thompson, L. A. (2011). Bioorg. Med. Chem. Lett. 21, 537-541.]); Trudel et al. (2008[Trudel, N., Garg, R., Messier, N., Sundar, S., Ouellette, M. & Tremblay, M. J. (2008). J. Infect. Dis. 198, 1292-1299.]); Cunico et al. (2009a[Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009a). Eur. J. Med. Chem. 44, 1363-1368.],b[Cunico, W., Gomes, C. R. B., Facchinetti, V., Moreth, M., Penido, C., Henriques, M. G. M. O., Varotti, F. P., Krettli, L. G., Krettli, A. U., da Silva, F. S., Caffarena, E. R. & de Magalhães, C. S. (2009b). Eur. J. Med. Chem. 44, 3816-3820.],c[Cunico, W., Gomes, C. R. B., Harrison, W. T. A., Moreth, M., Wardell, J. L. & Wardell, S. M. S. C. (2009c). Z. Kristallogr. 224, 461-470.], 2011[Cunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974-978.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25N3O3S·H2O

  • Mr = 393.50

  • Monoclinic, C 2

  • a = 19.4238 (7) Å

  • b = 5.1275 (2) Å

  • c = 22.4815 (8) Å

  • β = 114.319 (2)°

  • V = 2040.38 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.30 × 0.02 × 0.02 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 1.000

  • 11781 measured reflections

  • 4032 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.112

  • S = 1.04

  • 4032 reflections

  • 259 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1442 Friedel pairs

  • Flack parameter: 0.11 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O1wi 0.83 (2) 2.00 (2) 2.813 (4) 168 (4)
O1w—H1w⋯N1ii 0.85 (2) 2.12 (2) 2.958 (4) 174 (4)
O1w—H2w⋯O1 0.84 (3) 2.06 (3) 2.893 (4) 170 (4)
N3—H3n⋯O2i 0.86 (2) 2.13 (2) 2.910 (3) 152 (3)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, y-1, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds having a hydroxyethylamine core play important roles in the medicinal chemistry field. They inhibit aspartyl protease enzymes and are widely used as anti-HIV agents (Brik & Wong, 2003; Ghosh et al., 2001), as inhibitors of BACE-1 to combat Alzheimer's disease (Marcin, et al., 2011) and have also been considered in the treatment of leishmania/HIV-1 co-infections (Trudel et al., 2008). Cunico and co-workers have reported on the in vitro activity of hydroxyethylamine derivatives as anti-malarial agents (Cunico et al., 2009a, 2009b, 2009c, 2011) and in this article we report the structure of the title molecule, isolated from ethanol solution as a monohydrate, (I).

The structure analysis of (I) confirms the stereochemistry at each of the C1 and C7 atoms to be S, Fig. 1, as anticipated from the synthesis. The O1 and N3 substituents on C1 and C7, respectively, have an anti disposition [the O1—C1—C7—N3 torsion angle = -179.3 (3) °]. With reference to the C5S backbone of the molecule, i.e. comprising the C1/C2/C7/C13/C14/S1 atoms, the benzene ring occupies a position that is approximately bisected by the pseudo mirror plane through these atoms [the C7—C13—C14···C17 torsion angle = -17.1 (5) °] whereas the thiopyrimidyl group lies to one side of the plane [the C3—S1—C2—C1 torsion angle = 89.9 (2) °]. The terminal rings of the C5S backbone are almost parallel forming a dihedral angle of 5.06 (18) °. The carbamate residue lies to the same side of the C5S plane as does the thiopyrimidyl group with the t-BuO atoms being directed away from the rest of the molecule.

In the crystal, the water molecules serve to link translationally related hydroxy groups by forming both donor and acceptor interactions, and at the same time the water molecule forms a donor interaction to one of the pyrimidyl-N atoms, Table 1. The resultant supramolecular assembly, a tube, is further stabilized by amine-H···O(carbonyl) interactions. Side-on and end-on views of the supramolecular tube are shown in Figs 2 and 3, respectively. The tubes are aligned along the b direction as seen in Fig. 4.

Related literature top

For background to the use of hydroxyethylamine derivatives in medicinal chemistry, see: Brik & Wong (2003); Ghosh et al. (2001); Marcin et al. (2011); Trudel et al. (2008); Cunico et al. (2009a,b,c, 2011).

Experimental top

A solution of (2S,3S)-boc-phenylalanine epoxide (1.6 mmol) (Cunico et al., 2009a), mercaptopyrimidine (1.5 mmol) and triethylamine (1.6 mmol) in methanol (10 ml) was stirred at room temperature for 2 h, rotary evaporated and HCl (5%) added to the residue. The mixture was extracted with CH2Cl2 and the combined organic extracts were washed with brine, dried over anhydrous Na2SO4 and evaporated, giving the title molecule in 95% yield. The crude product was purified by crystallization in methanol/water (7:3) to yield colourless needles of (I); M.pt.: 371–373 K.. EI—MS (m/z) (%): 398.2 (M++Na, 52%). 1H NMR [400.00 MHz, DMSO-d6] δ: 8.59 (d, 2H, J = 4.8 Hz, H3' and H5'); 7.18 (t, 1H, J = 4.7 Hz, H4'); 7.19–7.13 (m, 5H, Ph); 6.70 (d, 1H, J = 8.7 Hz, NH); 5.33 (d, 1H, J = 6.0 Hz, OH); 3.66–3.58 (m, 2H, H3 and H2); 3.52 (dd, 1H, 1J = 13.6 Hz, 2J = 3.2 Hz, H1b); 3.08 (dd, 1H, 1J = 13.6, 2J = 8.0 Hz, H1a); 3.03 (dd, 1H, 1J = 13.5, 2J = 2.6 Hz, H4b); 2.56 (dd, 1H, 1J = 13.7, 2 J = 10.0 Hz, H4a); 1.26 (s, 9H, Boc) p.p.m.. 13C NMR [100.0 MHz, DMSO-d6] δ: 171.4; 157.6; 155.3; 139.5; 129.1; 127.9; 125.7; 117.0; 77.5; 72.1; 56.3; 35.8; 35.0; 28.2 p.p.m.. IR (cm-1; KBr): νmax: 3358 (OH); 3030 (NH); 1686 (CO); 640 (C—S). The crystals used in the structure determination were grown from moist EtOH solution explaining the presence of water in the title structure, (I).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A side-on view of the supramolecular tube in (I) sustained by O—H···O, O—H···N (orange dashed lines) and N—H···O (blue dashed lines) hydrogen bonds.
[Figure 3] Fig. 3. End-on view of the supramolecular tube in (I) sustained by O—H···O, O—H···N (orange dashed lines) and N—H···O (blue dashed lines) hydrogen bonds.
[Figure 4] Fig. 4. A view in projection down the b axis of the packing of supramolecular tubes in (I). The O—H···O, O—H···N (orange) and N—H···O (blue) hydrogen bonds are shown as dashed lines.
tert-Butyl N-[3-hydroxy-1-phenyl-4-(pyrimidin-2- ylsulfanyl)butan-2-yl]carbamate monohydrate top
Crystal data top
C19H25N3O3S·H2OF(000) = 840
Mr = 393.50Dx = 1.281 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 31450 reflections
a = 19.4238 (7) Åθ = 2.9–27.5°
b = 5.1275 (2) ŵ = 0.19 mm1
c = 22.4815 (8) ÅT = 120 K
β = 114.319 (2)°Needle, colourless
V = 2040.38 (13) Å30.30 × 0.02 × 0.02 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
4032 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 65
Tmin = 0.801, Tmax = 1.000l = 2928
11781 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0169P)2 + 4.9933P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4032 reflectionsΔρmax = 0.27 e Å3
259 parametersΔρmin = 0.26 e Å3
6 restraintsAbsolute structure: Flack (1983), 1442 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (11)
Crystal data top
C19H25N3O3S·H2OV = 2040.38 (13) Å3
Mr = 393.50Z = 4
Monoclinic, C2Mo Kα radiation
a = 19.4238 (7) ŵ = 0.19 mm1
b = 5.1275 (2) ÅT = 120 K
c = 22.4815 (8) Å0.30 × 0.02 × 0.02 mm
β = 114.319 (2)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
4032 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3409 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 1.000Rint = 0.048
11781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112Δρmax = 0.27 e Å3
S = 1.04Δρmin = 0.26 e Å3
4032 reflectionsAbsolute structure: Flack (1983), 1442 Friedel pairs
259 parametersAbsolute structure parameter: 0.11 (11)
6 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38657 (5)0.93234 (19)0.94519 (4)0.0274 (2)
O10.51141 (12)0.8689 (5)0.89189 (11)0.0260 (6)
H1O0.526 (2)1.023 (3)0.898 (2)0.039*
O20.33859 (13)0.2943 (4)0.71553 (11)0.0262 (6)
O30.25342 (12)0.5902 (4)0.64894 (11)0.0230 (5)
N10.29924 (15)1.2998 (6)0.95196 (13)0.0263 (7)
N20.27041 (16)1.1435 (6)0.84405 (13)0.0274 (7)
N30.35124 (14)0.7325 (5)0.73525 (13)0.0195 (6)
H3N0.3325 (17)0.881 (3)0.7189 (14)0.023*
C10.43449 (16)0.8764 (7)0.84546 (14)0.0212 (7)
H10.41841.06140.83370.025*
C20.38603 (18)0.7501 (7)0.87609 (15)0.0247 (7)
H2A0.40490.57140.89050.030*
H2B0.33340.73580.84280.030*
C30.31002 (17)1.1467 (7)0.90796 (16)0.0228 (7)
C40.24166 (18)1.4693 (7)0.92708 (16)0.0300 (8)
H40.23151.58250.95600.036*
C50.19690 (19)1.4849 (8)0.86141 (17)0.0337 (9)
H50.15611.60480.84450.040*
C60.21382 (19)1.3195 (8)0.82139 (17)0.0324 (9)
H60.18441.32920.77570.039*
C70.42887 (16)0.7273 (7)0.78451 (14)0.0203 (7)
H70.44380.54180.79690.024*
C80.31684 (17)0.5180 (6)0.70118 (15)0.0187 (7)
C90.20689 (17)0.3927 (7)0.60200 (15)0.0232 (7)
C100.16727 (19)0.2235 (7)0.63384 (17)0.0282 (8)
H10A0.13910.33480.65140.042*
H10B0.20490.12220.66930.042*
H10C0.13230.10450.60130.042*
C110.15008 (19)0.5600 (7)0.54834 (17)0.0292 (8)
H11A0.17670.66840.52860.044*
H11B0.12310.67220.56690.044*
H11C0.11380.44720.51490.044*
C120.25420 (18)0.2360 (7)0.57476 (16)0.0260 (8)
H12A0.28290.10240.60640.039*
H12B0.28920.35290.56650.039*
H12C0.22080.15200.53380.039*
C130.48159 (17)0.8439 (7)0.75607 (15)0.0241 (7)
H13A0.46151.01510.73610.029*
H13B0.53200.87340.79190.029*
C140.48983 (18)0.6690 (7)0.70518 (16)0.0227 (7)
C150.44298 (19)0.6935 (7)0.63926 (16)0.0274 (8)
H150.40640.82910.62500.033*
C160.44908 (19)0.5222 (7)0.59414 (17)0.0298 (8)
H160.41630.53970.54920.036*
C170.50219 (19)0.3270 (8)0.61384 (17)0.0316 (8)
H170.50590.20910.58270.038*
C180.55023 (19)0.3022 (7)0.67897 (18)0.0321 (8)
H180.58760.16930.69260.038*
C190.54376 (18)0.4719 (7)0.72444 (17)0.0279 (8)
H190.57660.45320.76930.033*
O1W0.58202 (13)0.3603 (5)0.91425 (12)0.0322 (6)
H1W0.6181 (15)0.351 (8)0.9517 (9)0.048*
H2W0.561 (2)0.506 (4)0.912 (2)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0276 (4)0.0302 (5)0.0216 (4)0.0040 (4)0.0071 (3)0.0014 (4)
O10.0206 (11)0.0223 (15)0.0251 (11)0.0019 (10)0.0008 (9)0.0033 (10)
O20.0275 (12)0.0122 (13)0.0316 (13)0.0011 (10)0.0048 (10)0.0004 (10)
O30.0217 (11)0.0167 (12)0.0227 (12)0.0003 (9)0.0010 (9)0.0035 (10)
N10.0276 (14)0.0291 (18)0.0228 (14)0.0027 (13)0.0111 (12)0.0029 (13)
N20.0272 (15)0.0315 (18)0.0207 (14)0.0017 (13)0.0071 (12)0.0004 (13)
N30.0167 (13)0.0118 (14)0.0244 (14)0.0006 (11)0.0028 (11)0.0003 (12)
C10.0180 (14)0.0200 (19)0.0212 (15)0.0024 (13)0.0037 (12)0.0025 (13)
C20.0270 (17)0.0200 (19)0.0257 (17)0.0012 (14)0.0093 (14)0.0035 (15)
C30.0209 (16)0.023 (2)0.0247 (17)0.0023 (14)0.0099 (14)0.0002 (15)
C40.0286 (17)0.029 (2)0.0355 (19)0.0004 (16)0.0169 (15)0.0036 (17)
C50.0227 (17)0.033 (2)0.039 (2)0.0037 (16)0.0057 (15)0.0045 (18)
C60.0254 (17)0.034 (2)0.0289 (18)0.0038 (16)0.0022 (15)0.0032 (17)
C70.0180 (15)0.0166 (18)0.0217 (16)0.0020 (13)0.0037 (13)0.0001 (14)
C80.0185 (15)0.0191 (18)0.0176 (15)0.0009 (13)0.0066 (13)0.0010 (13)
C90.0248 (15)0.0193 (19)0.0221 (15)0.0017 (14)0.0063 (12)0.0032 (15)
C100.0291 (18)0.025 (2)0.0348 (19)0.0047 (15)0.0175 (15)0.0048 (16)
C110.0272 (18)0.023 (2)0.0296 (19)0.0005 (15)0.0042 (15)0.0018 (16)
C120.0252 (16)0.027 (2)0.0249 (17)0.0017 (15)0.0098 (14)0.0024 (15)
C130.0212 (16)0.0188 (19)0.0308 (18)0.0029 (14)0.0091 (14)0.0026 (14)
C140.0219 (16)0.0178 (17)0.0307 (18)0.0031 (14)0.0132 (14)0.0008 (15)
C150.0252 (17)0.026 (2)0.0315 (18)0.0002 (15)0.0122 (15)0.0014 (16)
C160.0263 (18)0.032 (2)0.0299 (19)0.0056 (16)0.0104 (15)0.0006 (16)
C170.0345 (19)0.032 (2)0.038 (2)0.0106 (17)0.0241 (17)0.0103 (17)
C180.0280 (18)0.0231 (19)0.052 (2)0.0039 (16)0.0233 (17)0.0039 (18)
C190.0279 (17)0.026 (2)0.0324 (18)0.0028 (16)0.0156 (14)0.0031 (16)
O1W0.0281 (13)0.0268 (16)0.0327 (13)0.0001 (11)0.0033 (10)0.0008 (11)
Geometric parameters (Å, º) top
S1—C31.759 (3)C9—C111.521 (5)
S1—C21.809 (3)C9—C121.526 (5)
O1—C11.428 (3)C10—H10A0.9800
O1—H1O0.833 (10)C10—H10B0.9800
O2—C81.219 (4)C10—H10C0.9800
O3—C81.357 (4)C11—H11A0.9800
O3—C91.473 (4)C11—H11B0.9800
N1—C41.343 (4)C11—H11C0.9800
N1—C31.345 (4)C12—H12A0.9800
N2—C31.321 (4)C12—H12B0.9800
N2—C61.349 (5)C12—H12C0.9800
N3—C81.350 (4)C13—C141.513 (5)
N3—C71.458 (4)C13—H13A0.9900
N3—H3N0.856 (10)C13—H13B0.9900
C1—C21.521 (4)C14—C151.389 (5)
C1—C71.533 (4)C14—C191.390 (5)
C1—H11.0000C15—C161.383 (5)
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—C171.373 (5)
C4—C51.373 (5)C16—H160.9500
C4—H40.9500C17—C181.381 (5)
C5—C61.371 (5)C17—H170.9500
C5—H50.9500C18—C191.387 (5)
C6—H60.9500C18—H180.9500
C7—C131.534 (4)C19—H190.9500
C7—H71.0000O1W—H1W0.846 (10)
C9—C101.520 (5)O1W—H2W0.842 (10)
C3—S1—C2102.08 (16)C10—C9—C12113.2 (3)
C1—O1—H1O107 (3)C11—C9—C12109.8 (3)
C8—O3—C9120.2 (2)C9—C10—H10A109.5
C4—N1—C3115.3 (3)C9—C10—H10B109.5
C3—N2—C6114.9 (3)H10A—C10—H10B109.5
C8—N3—C7122.1 (3)C9—C10—H10C109.5
C8—N3—H3N117 (2)H10A—C10—H10C109.5
C7—N3—H3N118 (2)H10B—C10—H10C109.5
O1—C1—C2108.3 (2)C9—C11—H11A109.5
O1—C1—C7107.9 (2)C9—C11—H11B109.5
C2—C1—C7111.3 (3)H11A—C11—H11B109.5
O1—C1—H1109.8C9—C11—H11C109.5
C2—C1—H1109.8H11A—C11—H11C109.5
C7—C1—H1109.8H11B—C11—H11C109.5
C1—C2—S1112.5 (2)C9—C12—H12A109.5
C1—C2—H2A109.1C9—C12—H12B109.5
S1—C2—H2A109.1H12A—C12—H12B109.5
C1—C2—H2B109.1C9—C12—H12C109.5
S1—C2—H2B109.1H12A—C12—H12C109.5
H2A—C2—H2B107.8H12B—C12—H12C109.5
N2—C3—N1127.6 (3)C14—C13—C7112.4 (3)
N2—C3—S1120.6 (3)C14—C13—H13A109.1
N1—C3—S1111.8 (2)C7—C13—H13A109.1
N1—C4—C5122.4 (3)C14—C13—H13B109.1
N1—C4—H4118.8C7—C13—H13B109.1
C5—C4—H4118.8H13A—C13—H13B107.9
C6—C5—C4116.9 (3)C15—C14—C19118.5 (3)
C6—C5—H5121.5C15—C14—C13121.7 (3)
C4—C5—H5121.5C19—C14—C13119.7 (3)
N2—C6—C5123.0 (3)C16—C15—C14120.6 (3)
N2—C6—H6118.5C16—C15—H15119.7
C5—C6—H6118.5C14—C15—H15119.7
N3—C7—C1109.9 (2)C17—C16—C15120.4 (3)
N3—C7—C13109.6 (2)C17—C16—H16119.8
C1—C7—C13111.4 (3)C15—C16—H16119.8
N3—C7—H7108.6C16—C17—C18119.9 (3)
C1—C7—H7108.6C16—C17—H17120.0
C13—C7—H7108.6C18—C17—H17120.0
O2—C8—N3125.5 (3)C17—C18—C19119.8 (3)
O2—C8—O3125.3 (3)C17—C18—H18120.1
N3—C8—O3109.3 (3)C19—C18—H18120.1
O3—C9—C10109.6 (2)C18—C19—C14120.8 (3)
O3—C9—C11102.2 (3)C18—C19—H19119.6
C10—C9—C11110.7 (3)C14—C19—H19119.6
O3—C9—C12110.9 (2)H1W—O1W—H2W107 (4)
O1—C1—C2—S165.2 (3)C7—N3—C8—O215.8 (5)
C7—C1—C2—S1176.4 (2)C7—N3—C8—O3165.2 (3)
C3—S1—C2—C189.9 (2)C9—O3—C8—O23.5 (5)
C6—N2—C3—N11.4 (5)C9—O3—C8—N3177.5 (2)
C6—N2—C3—S1179.2 (3)C8—O3—C9—C1070.1 (3)
C4—N1—C3—N20.6 (5)C8—O3—C9—C11172.5 (3)
C4—N1—C3—S1179.9 (2)C8—O3—C9—C1255.5 (4)
C2—S1—C3—N20.9 (3)N3—C7—C13—C1470.4 (3)
C2—S1—C3—N1178.6 (2)C1—C7—C13—C14167.8 (3)
C3—N1—C4—C50.1 (5)C7—C13—C14—C1591.7 (4)
N1—C4—C5—C60.5 (5)C7—C13—C14—C1986.0 (4)
C3—N2—C6—C51.7 (5)C19—C14—C15—C161.2 (5)
C4—C5—C6—N21.4 (6)C13—C14—C15—C16176.5 (3)
C8—N3—C7—C1135.6 (3)C14—C15—C16—C170.7 (5)
C8—N3—C7—C13101.7 (3)C15—C16—C17—C180.5 (5)
O1—C1—C7—N3179.3 (3)C16—C17—C18—C191.1 (5)
C2—C1—C7—N362.0 (3)C17—C18—C19—C140.6 (5)
O1—C1—C7—C1357.7 (3)C15—C14—C19—C180.5 (5)
C2—C1—C7—C13176.3 (3)C13—C14—C19—C18177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O1wi0.83 (2)2.00 (2)2.813 (4)168 (4)
O1w—H1w···N1ii0.85 (2)2.12 (2)2.958 (4)174 (4)
O1w—H2w···O10.84 (3)2.06 (3)2.893 (4)170 (4)
N3—H3n···O2i0.86 (2)2.13 (2)2.910 (3)152 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z+2.

Experimental details

Crystal data
Chemical formulaC19H25N3O3S·H2O
Mr393.50
Crystal system, space groupMonoclinic, C2
Temperature (K)120
a, b, c (Å)19.4238 (7), 5.1275 (2), 22.4815 (8)
β (°) 114.319 (2)
V3)2040.38 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.02 × 0.02
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.801, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11781, 4032, 3409
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.112, 1.04
No. of reflections4032
No. of parameters259
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26
Absolute structureFlack (1983), 1442 Friedel pairs
Absolute structure parameter0.11 (11)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O1wi0.83 (2)2.00 (2)2.813 (4)168 (4)
O1w—H1w···N1ii0.85 (2)2.12 (2)2.958 (4)174 (4)
O1w—H2w···O10.84 (3)2.06 (3)2.893 (4)170 (4)
N3—H3n···O2i0.859 (19)2.126 (16)2.910 (3)152 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z+2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrik, A. & Wong, C.-H. (2003). Org. Biomol. Chem. 1, 5–14.  CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Facchinetti, V., Moreth, M., Penido, C., Henriques, M. G. M. O., Varotti, F. P., Krettli, L. G., Krettli, A. U., da Silva, F. S., Caffarena, E. R. & de Magalhães, C. S. (2009b). Eur. J. Med. Chem. 44, 3816–3820.  CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Ferreira, M. L. G., Ferreira, T. G., Cardinot, D., de Souza, M. V. N. & Lourenço, M. C. S. (2011). Eur. J. Med. Chem. 46, 974–978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCunico, W., Gomes, C. R. B., Harrison, W. T. A., Moreth, M., Wardell, J. L. & Wardell, S. M. S. C. (2009c). Z. Kristallogr. 224, 461–470.  CrossRef CAS Google Scholar
First citationCunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009a). Eur. J. Med. Chem. 44, 1363–1368.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, A. K., Bilcer, G. & Schiltz, G. (2001). Synthesis, pp. 2203–2229.  CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMarcin, L. R., Higgins, M. A., Zusi, F. C., Zhang, Y., Dee, M. F., Parker, M. F., Muckelbauer, J. K., Camac, D. M., Morin, P. E., Ramamurthy, V., Tebben, A. J., Lentz, K. A., Grace, J. E., Marcinkeviciene, J. A., Kopcho, L. M., Burton, C. R., Barten, D. M., Toyn, J. H., Meredith, J. E., Albright, C. F., Bronson, J. J., Macor, J. E. & Thompson, L. A. (2011). Bioorg. Med. Chem. Lett. 21, 537–541.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrudel, N., Garg, R., Messier, N., Sundar, S., Ouellette, M. & Tremblay, M. J. (2008). J. Infect. Dis. 198, 1292–1299.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2313-o2314
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds