organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-Hy­dr­oxy-9-(prop-2-en-1-yl)-9,10-di­hydro-9,10-propano­anthracen-12-one

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 11 August 2011; accepted 17 August 2011; online 27 August 2011)

In the title compound, C20H18O2, the central six-membered ring adopts a boat conformation and the terminal benzene rings make a dihedral angle of 42.66 (4)° with each other. In the crystal structure, the O—H group forms both an intra- and an inter­molecular O—H⋯O hydrogen bond; the former generates an S(5) ring and the latter leads to inversion-generated R22(10) loops. The dimers are further linked into ribbons propagating along the a axis by C—H⋯O inter­actions, and the packing is consolidated by weak C—H⋯π inter­actions.

Related literature

For background to benzocta­mine, see: Wilhelm & Schmidt (1969[Wilhelm, M. & Schmidt, P. (1969). Helv. Chim. Acta, 52, 1385-1395.]); Karama et al. (2010a[Karama, U., Al-Saidey, A. & Almansour, A. (2010a). Molecules, 15, 4201-4206.]). For further synthetic details, see: Karama et al. (2010b[Karama, U., Al-Saidey, A. & Almansour, A. (2010b). J. Chem. Res. 34, 241-242.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O2

  • Mr = 290.34

  • Triclinic, [P \overline 1]

  • a = 7.60940 (1) Å

  • b = 9.16090 (1) Å

  • c = 11.1735 (2) Å

  • α = 84.202 (1)°

  • β = 85.707 (1)°

  • γ = 69.895 (1)°

  • V = 727.02 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.57 × 0.39 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.978

  • 14851 measured reflections

  • 5283 independent reflections

  • 4634 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.06

  • 5283 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.948 (18) 2.08 (2) 2.600 (2) 113 (2)
O2—H1O2⋯O1i 0.948 (18) 2.01 (2) 2.8041 (10) 140 (2)
C14—H14A⋯O2ii 1.00 2.41 3.3909 (12) 166
C17—H17ACg1iii 1.00 2.92 3.6542 (10) 131
C20—H20ACg1iv 0.95 2.79 3.6357 (11) 149
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoctamine is a clinically useful drug for the treatment of anxiety (Wilhelm & Schmidt, 1969) and our research group recently reported (Karama et al., 2010a) the synthesis of bishomobenzoctamine (Karama et al., 2010b) as it is a structural mimic of benzoctamine and was derived from anthrone which might be exhibited antidepressant activity. The title compound is the key intermediate for the synthesis of bishomobenzoctamine and its crystal structure is presented here.

In the molecular structure (Fig 1), the central 6-membered ring (C1/C6–C8/C13/C14) adopts a boat conformation with puckering amplitude Q = 0.6082 (9) Å, θ = 91.42 (8)° and ϕ = 120.69 (9)° (Cremer & Pople, 1975). The terminal benzene rings (C1–C6 and C8–C13) make a dihedral angle of 42.66 (4)° to each other. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

The crystal packing is shown in Fig. 2. The molecules are linked by the intermolecular O2—H1O2···O1 hydrogen bonds (Table 1) and generating R22(10) ring motifs (Bernstein et al., 1995). These ring motifs are further linked into ribbons along a axis via intermolecular C14—H14A···O2 hydrogen bonds (Table 1). In addition, the C—H···π interactions (Table 1) which involves C17 and C20 with the phenyl ring (Cg1; C1–C6) further stabilized the structure.

Related literature top

For background to benzoctamine, see: Wilhelm & Schmidt (1969); Karama et al. (2010a). For further synthetic details, see: Karama et al. (2010b). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995). For the operation of the cryostat, see: Cosier & Glazer (1986).

Experimental top

To 12-Bromo-9-(prop-2-en-1-yl)-9,10-dihydro-9,10-ethanoanthracen-12-carbaldehyde (Karama et al., 2010a) (1 g, 2.85 mmol) in THF (10 ml) was added 1M aqueous NaOH (10 ml). The mixture was stirred at room temperature for 4 h, extracted with ether twice, washed with water, dried with MgSO4 and the solvent was evaporated in vacuo to yield the crude product. The crude product was purified by column chromatography on silica gel (petroleum ether–ethyl acetate 5:1) and product was crystallized from EtOAc to reveal the title compound as colourless blocks.

Refinement top

H1O2 atom attached to the O atom was located from the difference map and refined freely [O—H = 0.948 (19) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95, 0.99 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent the intermolecular hydrogen bonds.
15-hydroxy-1-(prop-2-en-1-yl)tetracyclo[6.6.3.02,7.09,14]heptadeca- 2,4,6,9(14),10,12-hexaen-16-one top
Crystal data top
C20H18O2Z = 2
Mr = 290.34F(000) = 308
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.60940 (1) ÅCell parameters from 7628 reflections
b = 9.16090 (1) Åθ = 2.4–32.6°
c = 11.1735 (2) ŵ = 0.08 mm1
α = 84.202 (1)°T = 100 K
β = 85.707 (1)°Block, colourless
γ = 69.895 (1)°0.57 × 0.39 × 0.27 mm
V = 727.02 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5283 independent reflections
Radiation source: fine-focus sealed tube4634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.954, Tmax = 0.978k = 1313
14851 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.073P)2 + 0.1953P]
where P = (Fo2 + 2Fc2)/3
5283 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H18O2γ = 69.895 (1)°
Mr = 290.34V = 727.02 (2) Å3
Triclinic, P1Z = 2
a = 7.60940 (1) ÅMo Kα radiation
b = 9.16090 (1) ŵ = 0.08 mm1
c = 11.1735 (2) ÅT = 100 K
α = 84.202 (1)°0.57 × 0.39 × 0.27 mm
β = 85.707 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5283 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4634 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.978Rint = 0.022
14851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.59 e Å3
5283 reflectionsΔρmin = 0.26 e Å3
203 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68817 (9)0.54934 (8)0.00032 (6)0.01745 (14)
O20.37722 (10)0.68003 (9)0.12072 (7)0.01983 (15)
C10.78621 (12)0.92873 (9)0.16802 (8)0.01291 (15)
C20.85293 (13)1.05379 (10)0.15089 (8)0.01569 (16)
H2A0.97751.03740.12030.019*
C30.73774 (14)1.20262 (10)0.17841 (9)0.01855 (17)
H3A0.78401.28730.16860.022*
C40.55436 (14)1.22547 (10)0.22043 (9)0.01800 (17)
H4A0.47451.32680.23830.022*
C50.48627 (12)1.10130 (10)0.23671 (8)0.01547 (16)
H5A0.36001.11920.26430.019*
C60.60259 (12)0.95029 (9)0.21274 (8)0.01269 (15)
C70.54044 (11)0.80676 (9)0.23205 (8)0.01258 (15)
C80.70206 (12)0.66696 (9)0.28388 (8)0.01320 (15)
C90.67772 (13)0.55204 (10)0.36921 (8)0.01689 (17)
H9A0.55540.56010.40040.020*
C100.83112 (15)0.42584 (11)0.40902 (9)0.02055 (18)
H10A0.81260.34840.46680.025*
C111.01105 (14)0.41270 (11)0.36456 (9)0.02113 (19)
H11A1.11560.32800.39340.025*
C121.03761 (13)0.52413 (10)0.27754 (9)0.01737 (17)
H12A1.16020.51450.24600.021*
C130.88421 (12)0.64985 (9)0.23660 (8)0.01354 (15)
C140.90580 (11)0.76761 (9)0.13675 (8)0.01299 (15)
H14A1.04000.76110.12730.016*
C150.84323 (12)0.73065 (10)0.01665 (8)0.01417 (15)
H15A0.80810.82620.03920.017*
H15B0.94980.65070.02160.017*
C160.67958 (12)0.67252 (10)0.03665 (8)0.01311 (15)
C170.50015 (12)0.76547 (10)0.10507 (8)0.01383 (15)
H17A0.43820.86500.05570.017*
C180.35765 (12)0.83894 (10)0.31087 (8)0.01568 (16)
H18A0.25660.92250.26830.019*
H18B0.32270.74370.31950.019*
C190.36715 (13)0.88655 (11)0.43476 (8)0.01713 (17)
H19A0.47800.83500.47750.021*
C200.22942 (14)0.99649 (11)0.48766 (9)0.02011 (18)
H20C0.11701.05000.44710.024*
H20A0.24341.02160.56600.024*
H1O20.412 (3)0.602 (2)0.0653 (18)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (3)0.0167 (3)0.0194 (3)0.0076 (2)0.0007 (2)0.0050 (2)
O20.0168 (3)0.0261 (3)0.0222 (3)0.0133 (3)0.0034 (2)0.0089 (3)
C10.0129 (3)0.0129 (3)0.0139 (4)0.0056 (3)0.0012 (3)0.0005 (3)
C20.0174 (4)0.0158 (3)0.0161 (4)0.0087 (3)0.0010 (3)0.0000 (3)
C30.0244 (4)0.0143 (3)0.0192 (4)0.0094 (3)0.0022 (3)0.0000 (3)
C40.0224 (4)0.0121 (3)0.0182 (4)0.0039 (3)0.0025 (3)0.0014 (3)
C50.0153 (4)0.0143 (3)0.0154 (4)0.0031 (3)0.0016 (3)0.0013 (3)
C60.0127 (3)0.0126 (3)0.0133 (3)0.0049 (3)0.0010 (3)0.0010 (3)
C70.0112 (3)0.0139 (3)0.0133 (4)0.0050 (3)0.0005 (3)0.0020 (3)
C80.0141 (3)0.0131 (3)0.0132 (4)0.0056 (3)0.0005 (3)0.0010 (3)
C90.0201 (4)0.0159 (4)0.0157 (4)0.0082 (3)0.0014 (3)0.0004 (3)
C100.0278 (5)0.0154 (4)0.0179 (4)0.0078 (3)0.0010 (3)0.0029 (3)
C110.0235 (4)0.0146 (4)0.0218 (4)0.0022 (3)0.0042 (3)0.0017 (3)
C120.0151 (4)0.0157 (4)0.0193 (4)0.0025 (3)0.0020 (3)0.0010 (3)
C130.0134 (3)0.0128 (3)0.0145 (4)0.0046 (3)0.0008 (3)0.0009 (3)
C140.0115 (3)0.0134 (3)0.0147 (4)0.0053 (3)0.0007 (3)0.0009 (3)
C150.0134 (3)0.0154 (3)0.0150 (4)0.0069 (3)0.0025 (3)0.0022 (3)
C160.0130 (3)0.0146 (3)0.0119 (3)0.0050 (3)0.0000 (3)0.0010 (3)
C170.0116 (3)0.0162 (3)0.0151 (4)0.0062 (3)0.0003 (3)0.0027 (3)
C180.0129 (3)0.0197 (4)0.0157 (4)0.0071 (3)0.0017 (3)0.0035 (3)
C190.0157 (4)0.0214 (4)0.0156 (4)0.0079 (3)0.0014 (3)0.0032 (3)
C200.0201 (4)0.0223 (4)0.0188 (4)0.0086 (3)0.0040 (3)0.0044 (3)
Geometric parameters (Å, º) top
O1—C161.2198 (10)C10—C111.3903 (14)
O2—C171.4034 (10)C10—H10A0.9500
O2—H1O20.948 (19)C11—C121.3929 (13)
C1—C21.3957 (11)C11—H11A0.9500
C1—C61.4023 (11)C12—C131.3955 (12)
C1—C141.5039 (11)C12—H12A0.9500
C2—C31.3945 (13)C13—C141.5122 (12)
C2—H2A0.9500C14—C151.5622 (12)
C3—C41.3901 (14)C14—H14A1.0000
C3—H3A0.9500C15—C161.5081 (12)
C4—C51.3946 (12)C15—H15A0.9900
C4—H4A0.9500C15—H15B0.9900
C5—C61.4024 (12)C16—C171.5329 (12)
C5—H5A0.9500C17—H17A1.0000
C6—C71.5342 (11)C18—C191.5069 (13)
C7—C81.5369 (12)C18—H18A0.9900
C7—C181.5441 (12)C18—H18B0.9900
C7—C171.5822 (12)C19—C201.3281 (13)
C8—C91.3988 (12)C19—H19A0.9500
C8—C131.4081 (12)C20—H20C0.9500
C9—C101.3939 (13)C20—H20A0.9500
C9—H9A0.9500
C17—O2—H1O2109.6 (11)C11—C12—H12A120.0
C2—C1—C6120.78 (8)C13—C12—H12A120.0
C2—C1—C14121.59 (8)C12—C13—C8120.62 (8)
C6—C1—C14117.62 (7)C12—C13—C14121.59 (8)
C3—C2—C1120.39 (8)C8—C13—C14117.74 (7)
C3—C2—H2A119.8C1—C14—C13109.28 (7)
C1—C2—H2A119.8C1—C14—C15110.01 (7)
C4—C3—C2119.14 (8)C13—C14—C15109.10 (7)
C4—C3—H3A120.4C1—C14—H14A109.5
C2—C3—H3A120.4C13—C14—H14A109.5
C3—C4—C5120.75 (8)C15—C14—H14A109.5
C3—C4—H4A119.6C16—C15—C14112.12 (7)
C5—C4—H4A119.6C16—C15—H15A109.2
C4—C5—C6120.56 (8)C14—C15—H15A109.2
C4—C5—H5A119.7C16—C15—H15B109.2
C6—C5—H5A119.7C14—C15—H15B109.2
C5—C6—C1118.33 (7)H15A—C15—H15B107.9
C5—C6—C7123.79 (7)O1—C16—C15120.54 (8)
C1—C6—C7117.88 (7)O1—C16—C17118.56 (8)
C6—C7—C8109.17 (7)C15—C16—C17120.90 (7)
C6—C7—C18111.72 (7)O2—C17—C16109.59 (7)
C8—C7—C18112.73 (7)O2—C17—C7109.46 (7)
C6—C7—C17108.29 (7)C16—C17—C7112.40 (7)
C8—C7—C17107.27 (6)O2—C17—H17A108.4
C18—C7—C17107.46 (7)C16—C17—H17A108.4
C9—C8—C13118.50 (8)C7—C17—H17A108.4
C9—C8—C7124.06 (8)C19—C18—C7115.09 (7)
C13—C8—C7117.33 (7)C19—C18—H18A108.5
C10—C9—C8120.67 (8)C7—C18—H18A108.5
C10—C9—H9A119.7C19—C18—H18B108.5
C8—C9—H9A119.7C7—C18—H18B108.5
C11—C10—C9120.33 (8)H18A—C18—H18B107.5
C11—C10—H10A119.8C20—C19—C18123.72 (9)
C9—C10—H10A119.8C20—C19—H19A118.1
C10—C11—C12119.80 (8)C18—C19—H19A118.1
C10—C11—H11A120.1C19—C20—H20C120.0
C12—C11—H11A120.1C19—C20—H20A120.0
C11—C12—C13120.02 (9)H20C—C20—H20A120.0
C6—C1—C2—C30.18 (13)C9—C8—C13—C122.45 (13)
C14—C1—C2—C3178.71 (8)C7—C8—C13—C12178.77 (8)
C1—C2—C3—C41.48 (14)C9—C8—C13—C14174.81 (8)
C2—C3—C4—C50.90 (14)C7—C8—C13—C141.50 (11)
C3—C4—C5—C61.00 (14)C2—C1—C14—C13136.26 (8)
C4—C5—C6—C12.27 (13)C6—C1—C14—C1345.17 (10)
C4—C5—C6—C7178.01 (8)C2—C1—C14—C15103.98 (9)
C2—C1—C6—C51.69 (13)C6—C1—C14—C1574.60 (9)
C14—C1—C6—C5176.90 (8)C12—C13—C14—C1138.29 (8)
C2—C1—C6—C7178.58 (8)C8—C13—C14—C144.47 (10)
C14—C1—C6—C72.83 (11)C12—C13—C14—C15101.38 (9)
C5—C6—C7—C8140.45 (8)C8—C13—C14—C1575.85 (9)
C1—C6—C7—C839.84 (10)C1—C14—C15—C1683.63 (8)
C5—C6—C7—C1815.07 (11)C13—C14—C15—C1636.24 (9)
C1—C6—C7—C18165.21 (8)C14—C15—C16—O1125.97 (9)
C5—C6—C7—C17103.08 (9)C14—C15—C16—C1753.24 (10)
C1—C6—C7—C1776.64 (9)O1—C16—C17—O24.54 (11)
C6—C7—C8—C9143.59 (8)C15—C16—C17—O2174.69 (7)
C18—C7—C8—C918.81 (12)O1—C16—C17—C7126.48 (8)
C17—C7—C8—C999.29 (9)C15—C16—C17—C752.74 (10)
C6—C7—C8—C1340.32 (10)C6—C7—C17—O2156.87 (7)
C18—C7—C8—C13165.10 (7)C8—C7—C17—O285.43 (8)
C17—C7—C8—C1376.81 (9)C18—C7—C17—O236.03 (9)
C13—C8—C9—C101.83 (13)C6—C7—C17—C1681.11 (8)
C7—C8—C9—C10177.88 (8)C8—C7—C17—C1636.59 (9)
C8—C9—C10—C110.19 (15)C18—C7—C17—C16158.05 (7)
C9—C10—C11—C121.64 (15)C6—C7—C18—C1959.15 (10)
C10—C11—C12—C131.02 (15)C8—C7—C18—C1964.23 (10)
C11—C12—C13—C81.05 (14)C17—C7—C18—C19177.80 (7)
C11—C12—C13—C14176.11 (8)C7—C18—C19—C20139.88 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.948 (18)2.08 (2)2.600 (2)113 (2)
O2—H1O2···O1i0.948 (18)2.01 (2)2.8041 (10)140 (2)
C14—H14A···O2ii1.002.413.3909 (12)166
C17—H17A···Cg1iii1.002.923.6542 (10)131
C20—H20A···Cg1iv0.952.793.6357 (11)149
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H18O2
Mr290.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.60940 (1), 9.16090 (1), 11.1735 (2)
α, β, γ (°)84.202 (1), 85.707 (1), 69.895 (1)
V3)727.02 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.57 × 0.39 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14851, 5283, 4634
Rint0.022
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.06
No. of reflections5283
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.948 (18)2.08 (2)2.600 (2)113 (2)
O2—H1O2···O1i0.948 (18)2.01 (2)2.8041 (10)140 (2)
C14—H14A···O2ii1.002.413.3909 (12)166
C17—H17A···Cg1iii1.002.923.6542 (10)131
C20—H20A···Cg1iv0.95002.793.6357 (11)149
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z; (iv) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

UK, AIM and NA are grateful to the Deanship of Scientific Research, College of Science, King Saud University (KSU), for funding the synthetic chemistry work under Research Grant No. RGP-VPP-128.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKarama, U., Al-Saidey, A. & Almansour, A. (2010a). Molecules, 15, 4201–4206.  CrossRef CAS Google Scholar
First citationKarama, U., Al-Saidey, A. & Almansour, A. (2010b). J. Chem. Res. 34, 241–242.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilhelm, M. & Schmidt, P. (1969). Helv. Chim. Acta, 52, 1385–1395.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds