organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2283-o2284

(2E)-1-(2,4-Di­methyl­quinolin-3-yl)-3-(thio­phen-2-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 August 2011; accepted 4 August 2011; online 11 August 2011)

Two independent but virtually identical mol­ecules comprise the asymmetric unit in the title compound, C18H15NOS. With reference to the quinolin-3-yl group, the 3-(thio­phen-2-yl)prop-2-en-1-one residue is almost perpendicular, with all but the carbonyl O atom lying to one side of the plane. This conformation is reflected by the C—C—C—C torsion angles of −102.2 (3) and 81.1 (3)° in the two independent mol­ecules. The dihedral angle formed between the 13 non-H atoms directly associated with the quinolin-3-yl group and the thio­phen-2-yl ring is 87.70 (11)° [83.85 (10)° for the second independent mol­ecule]. The presence of C—H⋯O, C—H⋯N and ππ inter­actions [centroid–centroid distance = 3.5590 (12) Å] lead to supra­molecular chains along the c-axis direction. These are connected along the a-axis direction by C—H⋯π inter­actions. The resultant supra­molecular layers stack along the b axis.

Related literature

For background details and biological applications of quinolines, see: Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]); Xiang et al. (2006[Xiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175-187.]). For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Siddiqui et al. (2008[Siddiqui, Z. B., Asad, M. & Praveen, S. (2008). Med. Chem. Res. 17, 318-325.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NOS

  • Mr = 293.37

  • Monoclinic, P 21 /n

  • a = 10.4935 (4) Å

  • b = 23.8464 (8) Å

  • c = 11.5464 (4) Å

  • β = 93.756 (3)°

  • V = 2883.07 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.947, Tmax = 0.967

  • 14916 measured reflections

  • 6427 independent reflections

  • 4075 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.160

  • S = 1.03

  • 6427 reflections

  • 409 parameters

  • 182 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.95 2.51 3.391 (3) 154
C6—H6⋯O2 0.95 2.55 3.382 (3) 146
C23—H23⋯N1ii 0.95 2.50 3.382 (3) 154
C24—H24⋯O1 0.95 2.48 3.330 (3) 149
C12—H12c⋯Cg1iii 0.98 2.67 142 4 (1)
C26—H26c⋯Cg2iv 0.98 2.67 143 4 (1)
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcone derivatives have attracted wide attention owing to their occurrence in natural products and biologically active compounds (Dimmock et al., 1999; Siddiqui et al., 2008). Quinoline chalcone analogues have also gained notice due to their bioactivities such as anti-plasmodial, anti-microbial, anti-malarial and anti-cancer activities (Kalluraya & Sreenivasa, 1998; Xiang et al., 2006). It was in this context that the title compound, (I), was investigated.

Two independent molecules comprise the crystallographic asymmetric unit of (I), Fig. 1, and as may be seen from Fig. 2, the molecular conformations are almost identical with a minor variation in the relative orientations of the terminal thiophenyl rings. The 3-(thiophen-2-yl)prop-2-en-1-one residue is almost normal to the least-squares plane through the quinolin-3-yl group and three bound C substituents (r.m.s. deviations = 0.028 and 0.035 Å, respectively), i.e. 13 non-C atoms. This conformation is reflected in the C6—C7—C10—C9 and C24—C25—C28—C27 torsion angles of -102.2 (3) and 81.1 (3) °, respectively. With reference to the aforementioned quinolin-3-yl plane, the carbonyl-O lies to one side and the remaining atoms of the 3-(thiophen-2-yl)prop-2-en-1-one residue to the other. The dihedral angles formed between the quinolin-3-yl and thiophen-2-yl rings are 87.70 (11) and 83.85 (10) °, respectively. The conformation about the ethene bond is E [C5C6 = 1.345 (3) Å, and C23C24 = 1.341 (3) Å].

In the crystal packing, supramolecular layers are formed in the ac plane owing to a combination of C—H···O, C—H···N, C—H···π and ππ interactions, Table 1 and Fig. 3. The two independent molecules comprising the asymmetric unit are linked via the C—H···O interactions, to form an eight-membered {···OC2H}2 synthon. These are linked into a supramolecular chain along the c axis by C—H···N and ππ interactions. The C—H···π contacts extend in the a direction. Layers stack along the b axis as illustrated in Fig. 4.

Related literature top

For background details and biological applications of quinolines, see: Kalluraya & Sreenivasa (1998); Xiang et al. (2006). For the biological activity of chalcones, see: Dimmock et al. (1999); Siddiqui et al. (2008).

Experimental top

A mixture of 3-acetyl-2,4-dimethylquinoline (0.01 M), 2-thiophenecarboxaldehyde (0.01 M) and a catalytic amount of KOH in distilled ethanol was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The solid that formed was filtered, dried and purified by column chromatography using 1:3 mixture of ethyl acetate and hexane. Recrystallization was by slow evaporation of its acetone solution which yielded colourless needles. M.pt. 418–420 K. Yield: 82%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. Each thiophen-2-yl ring was found to be disordered so that there were two co-planar but oppositely orientated orientations for each. Pairs of 1,2- and 1,3-related distances involving the unprimed and primed atoms were restrained to within 0.01 Å of each other. Each ring was restrained to lie on a plane within 0.01 Å. The anisotropic displacement factors of the primed atoms were set to those of the unprimed ones, and were restrained to be nearly isotropic. From the refinement, the major component of the S1- and S2-containing rings were 0.765 (2) and 0.814 (2), respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules comprising the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the two independent molecules comprising the asymmetric unit of (I). The first independent molecule (with the S1 atom) is shown in red.
[Figure 3] Fig. 3. Assembly of molecules in the ac plane in (I) mediated by C—H···O (orange dashed lines), C—H···N (blue), C—H···π (purple) and ππ (pink) interactions.
[Figure 4] Fig. 4. A view in projection down the a axis of the crystal packing in (I) highlighting the stacking of layers along the b axis.
(2E)-1-(2,4-Dimethylquinolin-3-yl)-3-(thiophen-2-yl)prop-2-en-1-one top
Crystal data top
C18H15NOSF(000) = 1232
Mr = 293.37Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4109 reflections
a = 10.4935 (4) Åθ = 2.5–29.2°
b = 23.8464 (8) ŵ = 0.22 mm1
c = 11.5464 (4) ÅT = 100 K
β = 93.756 (3)°Block, colourless
V = 2883.07 (18) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6427 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4075 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3022
Tmin = 0.947, Tmax = 0.967l = 1411
14916 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.299P]
where P = (Fo2 + 2Fc2)/3
6427 reflections(Δ/σ)max < 0.001
409 parametersΔρmax = 0.56 e Å3
182 restraintsΔρmin = 0.46 e Å3
Crystal data top
C18H15NOSV = 2883.07 (18) Å3
Mr = 293.37Z = 8
Monoclinic, P21/nMo Kα radiation
a = 10.4935 (4) ŵ = 0.22 mm1
b = 23.8464 (8) ÅT = 100 K
c = 11.5464 (4) Å0.25 × 0.20 × 0.15 mm
β = 93.756 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6427 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4075 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.967Rint = 0.040
14916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055182 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.03Δρmax = 0.56 e Å3
6427 reflectionsΔρmin = 0.46 e Å3
409 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.30670 (9)0.05958 (3)0.34043 (8)0.0224 (3)0.765 (2)
S21.08225 (8)0.05541 (3)0.60970 (7)0.0228 (3)0.814 (2)
S1'0.2891 (5)0.10382 (16)0.1135 (4)0.0224 (3)0.235 (2)
S2'1.1144 (6)0.10712 (19)0.8273 (5)0.0228 (3)0.186 (2)
O10.83016 (16)0.07720 (7)0.36269 (14)0.0240 (4)
O20.56274 (16)0.07794 (7)0.59472 (14)0.0259 (4)
N10.87096 (18)0.13639 (8)0.00826 (16)0.0182 (4)
N20.52776 (18)0.14083 (8)0.94581 (16)0.0181 (4)
C10.1610 (3)0.06381 (10)0.2659 (3)0.0246 (9)0.765 (2)
H10.08350.05210.29650.029*0.765 (2)
C20.1682 (4)0.08583 (10)0.1576 (3)0.0284 (9)0.765 (2)
H20.09710.09120.10350.034*0.765 (2)
C30.2925 (5)0.09927 (16)0.1371 (4)0.0253 (14)0.765 (2)
H30.31440.11570.06610.030*0.765 (2)
C1'0.1608 (11)0.0803 (2)0.1824 (9)0.0246 (9)0.235 (2)
H1'0.07550.08030.14920.029*0.235 (2)
C2'0.1964 (10)0.0612 (2)0.2923 (9)0.0284 (9)0.235 (2)
H2'0.13790.04680.34420.034*0.235 (2)
C3'0.3256 (10)0.0652 (2)0.3189 (7)0.0253 (14)0.235 (2)
H3'0.36780.05420.39060.030*0.235 (2)
C40.3847 (2)0.08728 (9)0.22700 (19)0.0194 (5)
C50.5200 (2)0.09698 (9)0.22462 (19)0.0176 (5)
H50.54820.11440.15690.021*
C60.6106 (2)0.08403 (10)0.3082 (2)0.0202 (5)
H60.58630.06670.37760.024*
C70.7457 (2)0.09599 (9)0.29473 (19)0.0179 (5)
C80.8360 (2)0.04453 (10)0.0864 (2)0.0245 (6)
H8A0.86680.03410.01110.037*
H8B0.75050.02890.09340.037*
H8C0.89440.02960.14870.037*
C90.8305 (2)0.10735 (10)0.09594 (19)0.0176 (5)
C100.7826 (2)0.13304 (9)0.19578 (19)0.0173 (5)
C110.7760 (2)0.19024 (9)0.20381 (19)0.0168 (5)
C120.7250 (2)0.21978 (10)0.3063 (2)0.0202 (5)
H12A0.69950.19200.36280.030*
H12B0.65070.24250.28020.030*
H12C0.79150.24410.34260.030*
C130.8209 (2)0.22287 (9)0.11100 (19)0.0164 (5)
C140.8211 (2)0.28242 (10)0.1100 (2)0.0204 (5)
H140.79120.30240.17400.024*
C150.8636 (2)0.31132 (10)0.0179 (2)0.0221 (5)
H150.86350.35120.01850.027*
C160.9074 (2)0.28255 (10)0.0774 (2)0.0213 (5)
H160.93580.30300.14150.026*
C170.9096 (2)0.22560 (10)0.0792 (2)0.0198 (5)
H170.94050.20670.14410.024*
C180.8664 (2)0.19410 (9)0.01481 (19)0.0162 (5)
C191.2324 (3)0.06405 (10)0.6756 (3)0.0227 (8)0.814 (2)
H191.30880.05230.64290.027*0.814 (2)
C201.2283 (3)0.08988 (9)0.7808 (3)0.0262 (8)0.814 (2)
H201.30160.09830.83040.031*0.814 (2)
C211.1044 (5)0.10228 (15)0.8064 (4)0.0231 (12)0.814 (2)
H211.08510.12050.87630.028*0.814 (2)
C19'1.2382 (12)0.0828 (3)0.7536 (10)0.0227 (8)0.186 (2)
H19B1.32530.08510.78120.027*0.186 (2)
C20'1.1962 (11)0.0594 (3)0.6493 (9)0.0262 (8)0.186 (2)
H20B1.25140.04370.59590.031*0.186 (2)
C21'1.0652 (12)0.0613 (2)0.6307 (7)0.0231 (12)0.186 (2)
H21B1.01890.04730.56330.028*0.186 (2)
C221.0104 (2)0.08626 (9)0.72294 (19)0.0186 (5)
C230.8752 (2)0.09631 (9)0.7276 (2)0.0172 (5)
H230.84840.11270.79700.021*
C240.7833 (2)0.08503 (9)0.6447 (2)0.0185 (5)
H240.80610.06840.57420.022*
C250.6489 (2)0.09748 (9)0.6595 (2)0.0184 (5)
C260.6714 (2)0.22170 (10)0.6441 (2)0.0211 (5)
H26A0.69540.19340.58800.032*
H26B0.74650.24410.66920.032*
H26C0.60540.24630.60780.032*
C270.6204 (2)0.19306 (10)0.74765 (19)0.0173 (5)
C280.6142 (2)0.13577 (9)0.75760 (19)0.0160 (5)
C290.5674 (2)0.11100 (10)0.85886 (19)0.0176 (5)
C300.5630 (2)0.04845 (9)0.8706 (2)0.0239 (6)
H30A0.53450.03860.94710.036*
H30B0.64840.03290.86230.036*
H30C0.50330.03290.81010.036*
C310.5763 (2)0.22622 (9)0.84016 (19)0.0161 (5)
C320.5758 (2)0.28574 (10)0.8390 (2)0.0201 (5)
H320.60590.30520.77440.024*
C330.5327 (2)0.31534 (10)0.9295 (2)0.0233 (6)
H330.53220.35520.92710.028*
C340.4888 (2)0.28715 (10)1.0269 (2)0.0227 (6)
H340.46010.30811.09010.027*
C350.4877 (2)0.22986 (10)1.0305 (2)0.0203 (5)
H350.45730.21121.09600.024*
C360.5314 (2)0.19812 (9)0.93734 (19)0.0163 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0241 (5)0.0243 (5)0.0195 (5)0.0060 (4)0.0075 (3)0.0004 (3)
S20.0227 (5)0.0262 (5)0.0201 (4)0.0063 (3)0.0063 (3)0.0009 (3)
S1'0.0241 (5)0.0243 (5)0.0195 (5)0.0060 (4)0.0075 (3)0.0004 (3)
S2'0.0227 (5)0.0262 (5)0.0201 (4)0.0063 (3)0.0063 (3)0.0009 (3)
O10.0256 (10)0.0285 (10)0.0174 (9)0.0003 (8)0.0019 (8)0.0032 (7)
O20.0213 (9)0.0341 (10)0.0220 (9)0.0001 (8)0.0015 (8)0.0057 (8)
N10.0164 (10)0.0207 (10)0.0176 (10)0.0011 (8)0.0014 (8)0.0021 (8)
N20.0173 (10)0.0211 (10)0.0160 (10)0.0017 (8)0.0027 (8)0.0009 (8)
C10.0109 (15)0.0289 (18)0.034 (2)0.0063 (14)0.0056 (16)0.0078 (16)
C20.0205 (18)0.034 (2)0.031 (2)0.0014 (15)0.0037 (16)0.0022 (16)
C30.023 (2)0.035 (2)0.018 (3)0.0026 (16)0.0002 (19)0.0067 (18)
C1'0.0109 (15)0.0289 (18)0.034 (2)0.0063 (14)0.0056 (16)0.0078 (16)
C2'0.0205 (18)0.034 (2)0.031 (2)0.0014 (15)0.0037 (16)0.0022 (16)
C3'0.023 (2)0.035 (2)0.018 (3)0.0026 (16)0.0002 (19)0.0067 (18)
C40.0207 (13)0.0170 (12)0.0211 (13)0.0017 (10)0.0062 (10)0.0041 (10)
C50.0215 (13)0.0170 (11)0.0151 (11)0.0038 (10)0.0071 (10)0.0024 (9)
C60.0235 (13)0.0211 (12)0.0168 (12)0.0040 (10)0.0064 (10)0.0020 (10)
C70.0234 (13)0.0170 (12)0.0136 (11)0.0003 (10)0.0034 (10)0.0026 (9)
C80.0302 (14)0.0206 (13)0.0234 (13)0.0020 (11)0.0065 (11)0.0035 (10)
C90.0172 (12)0.0215 (12)0.0141 (11)0.0014 (10)0.0005 (10)0.0014 (9)
C100.0129 (12)0.0242 (12)0.0147 (11)0.0028 (10)0.0008 (9)0.0007 (9)
C110.0112 (11)0.0236 (12)0.0157 (11)0.0009 (10)0.0003 (9)0.0030 (10)
C120.0203 (13)0.0225 (12)0.0183 (12)0.0009 (10)0.0053 (10)0.0037 (10)
C130.0114 (11)0.0202 (12)0.0173 (12)0.0001 (9)0.0009 (9)0.0010 (9)
C140.0161 (12)0.0215 (13)0.0234 (13)0.0018 (10)0.0002 (10)0.0043 (10)
C150.0189 (13)0.0192 (12)0.0279 (14)0.0017 (10)0.0009 (11)0.0047 (10)
C160.0169 (13)0.0269 (13)0.0202 (13)0.0002 (10)0.0016 (10)0.0074 (10)
C170.0167 (12)0.0260 (13)0.0168 (12)0.0005 (10)0.0030 (10)0.0001 (10)
C180.0108 (11)0.0218 (12)0.0159 (12)0.0025 (10)0.0003 (9)0.0000 (9)
C190.0129 (15)0.0265 (17)0.0296 (19)0.0053 (13)0.0086 (14)0.0095 (14)
C200.0179 (16)0.0256 (16)0.035 (2)0.0010 (13)0.0009 (15)0.0017 (14)
C210.024 (2)0.0246 (19)0.020 (2)0.0005 (14)0.0058 (17)0.0020 (16)
C19'0.0129 (15)0.0265 (17)0.0296 (19)0.0053 (13)0.0086 (14)0.0095 (14)
C20'0.0179 (16)0.0256 (16)0.035 (2)0.0010 (13)0.0009 (15)0.0017 (14)
C21'0.024 (2)0.0246 (19)0.020 (2)0.0005 (14)0.0058 (17)0.0020 (16)
C220.0215 (13)0.0156 (11)0.0192 (12)0.0012 (10)0.0052 (10)0.0023 (9)
C230.0202 (13)0.0155 (11)0.0164 (12)0.0013 (10)0.0059 (10)0.0014 (9)
C240.0197 (13)0.0208 (12)0.0154 (12)0.0019 (10)0.0038 (10)0.0001 (10)
C250.0200 (13)0.0197 (12)0.0155 (12)0.0002 (10)0.0025 (10)0.0031 (9)
C260.0209 (13)0.0250 (13)0.0179 (12)0.0004 (10)0.0043 (10)0.0030 (10)
C270.0119 (12)0.0227 (12)0.0171 (12)0.0015 (10)0.0001 (9)0.0032 (10)
C280.0114 (11)0.0228 (12)0.0141 (11)0.0039 (9)0.0016 (9)0.0001 (9)
C290.0143 (12)0.0218 (12)0.0168 (12)0.0016 (10)0.0012 (9)0.0023 (10)
C300.0313 (14)0.0176 (12)0.0232 (13)0.0005 (11)0.0064 (11)0.0031 (10)
C310.0108 (11)0.0196 (12)0.0180 (12)0.0007 (9)0.0017 (9)0.0009 (9)
C320.0178 (13)0.0209 (12)0.0216 (13)0.0017 (10)0.0013 (10)0.0032 (10)
C330.0179 (13)0.0189 (12)0.0330 (15)0.0002 (10)0.0011 (11)0.0040 (11)
C340.0179 (13)0.0265 (13)0.0237 (13)0.0011 (10)0.0016 (10)0.0090 (11)
C350.0167 (12)0.0250 (13)0.0195 (13)0.0024 (10)0.0027 (10)0.0010 (10)
C360.0109 (11)0.0218 (12)0.0163 (12)0.0010 (9)0.0011 (9)0.0003 (10)
Geometric parameters (Å, º) top
S1—C11.708 (3)C14—H140.9500
S1—C41.721 (2)C15—C161.399 (3)
S2—C221.717 (2)C15—H150.9500
S2—C191.717 (3)C16—C171.358 (3)
S1'—C41.646 (5)C16—H160.9500
S1'—C1'1.704 (8)C17—C181.418 (3)
S2'—C221.649 (6)C17—H170.9500
S2'—C19'1.700 (8)C19—C201.365 (4)
O1—C71.229 (3)C19—H190.9500
O2—C251.227 (3)C20—C211.384 (5)
N1—C91.319 (3)C20—H200.9500
N1—C181.379 (3)C21—C221.387 (4)
N2—C291.320 (3)C21—H210.9500
N2—C361.370 (3)C19'—C20'1.374 (8)
C1—C21.362 (4)C19'—H19B0.9500
C1—H10.9500C20'—C21'1.379 (8)
C2—C31.379 (5)C20'—H20B0.9500
C2—H20.9500C21'—C221.378 (7)
C3—C41.401 (5)C21'—H21B0.9500
C3—H30.9500C22—C231.443 (3)
C1'—C2'1.377 (8)C23—C241.341 (3)
C1'—H1'0.9500C23—H230.9500
C2'—C3'1.373 (8)C24—C251.461 (3)
C2'—H2'0.9500C24—H240.9500
C3'—C41.369 (7)C25—C281.517 (3)
C3'—H3'0.9500C26—C271.505 (3)
C4—C51.440 (3)C26—H26A0.9800
C5—C61.345 (3)C26—H26B0.9800
C5—H50.9500C26—H26C0.9800
C6—C71.465 (3)C27—C281.373 (3)
C6—H60.9500C27—C311.430 (3)
C7—C101.515 (3)C28—C291.426 (3)
C8—C91.503 (3)C29—C301.499 (3)
C8—H8A0.9800C30—H30A0.9800
C8—H8B0.9800C30—H30B0.9800
C8—H8C0.9800C30—H30C0.9800
C9—C101.426 (3)C31—C361.414 (3)
C10—C111.369 (3)C31—C321.420 (3)
C11—C131.429 (3)C32—C331.362 (3)
C11—C121.505 (3)C32—H320.9500
C12—H12A0.9800C33—C341.413 (3)
C12—H12B0.9800C33—H330.9500
C12—H12C0.9800C34—C351.367 (3)
C13—C181.415 (3)C34—H340.9500
C13—C141.420 (3)C35—C361.416 (3)
C14—C151.367 (3)C35—H350.9500
C1—S1—C492.77 (15)N1—C18—C13122.8 (2)
C22—S2—C1992.72 (14)N1—C18—C17118.2 (2)
C4—S1'—C1'90.5 (5)C13—C18—C17119.0 (2)
C22—S2'—C19'91.3 (5)C20—C19—S2111.5 (2)
C9—N1—C18117.9 (2)C20—C19—H19124.2
C29—N2—C36118.1 (2)S2—C19—H19124.2
C2—C1—S1112.5 (3)C19—C20—C21111.8 (3)
C2—C1—H1123.7C19—C20—H20124.1
S1—C1—H1123.7C21—C20—H20124.1
C1—C2—C3110.9 (3)C22—C21—C20115.3 (4)
C1—C2—H2124.5C22—C21—H21122.3
C3—C2—H2124.5C20—C21—H21122.3
C2—C3—C4116.1 (4)C20'—C19'—S2'111.5 (8)
C2—C3—H3121.9C20'—C19'—H19B124.3
C4—C3—H3121.9S2'—C19'—H19B124.3
C2'—C1'—S1'111.3 (8)C19'—C20'—C21'112.5 (7)
C2'—C1'—H1'124.3C19'—C20'—H20B123.8
S1'—C1'—H1'124.3C21'—C20'—H20B123.8
C3'—C2'—C1'112.8 (7)C20'—C21'—C22110.8 (6)
C3'—C2'—H2'123.6C20'—C21'—H21B124.6
C1'—C2'—H2'123.6C22—C21'—H21B124.6
C2'—C3'—C4110.2 (6)C21—C22—C21'110.0 (6)
C2'—C3'—H3'124.9C21—C22—C23125.8 (3)
C4—C3'—H3'124.9C21'—C22—C23124.2 (6)
C3—C4—C3'109.1 (6)C21—C22—S2'3.9 (4)
C3—C4—C5125.9 (3)C21'—C22—S2'113.9 (5)
C3'—C4—C5125.0 (5)C23—C22—S2'121.9 (3)
C3—C4—S1'6.1 (4)C21—C22—S2108.6 (3)
C3'—C4—S1'115.2 (5)C21'—C22—S21.4 (5)
C5—C4—S1'119.8 (3)C23—C22—S2125.55 (17)
C3—C4—S1107.6 (3)S2'—C22—S2112.5 (3)
C3'—C4—S11.5 (5)C24—C23—C22127.1 (2)
C5—C4—S1126.48 (17)C24—C23—H23116.5
S1'—C4—S1113.7 (2)C22—C23—H23116.5
C6—C5—C4126.9 (2)C23—C24—C25122.0 (2)
C6—C5—H5116.6C23—C24—H24119.0
C4—C5—H5116.6C25—C24—H24119.0
C5—C6—C7121.5 (2)O2—C25—C24122.0 (2)
C5—C6—H6119.3O2—C25—C28118.7 (2)
C7—C6—H6119.3C24—C25—C28119.36 (19)
O1—C7—C6121.6 (2)C27—C26—H26A109.5
O1—C7—C10119.0 (2)C27—C26—H26B109.5
C6—C7—C10119.41 (19)H26A—C26—H26B109.5
C9—C8—H8A109.5C27—C26—H26C109.5
C9—C8—H8B109.5H26A—C26—H26C109.5
H8A—C8—H8B109.5H26B—C26—H26C109.5
C9—C8—H8C109.5C28—C27—C31117.9 (2)
H8A—C8—H8C109.5C28—C27—C26122.6 (2)
H8B—C8—H8C109.5C31—C27—C26119.4 (2)
N1—C9—C10122.9 (2)C27—C28—C29120.1 (2)
N1—C9—C8116.8 (2)C27—C28—C25121.4 (2)
C10—C9—C8120.3 (2)C29—C28—C25118.4 (2)
C11—C10—C9120.3 (2)N2—C29—C28122.9 (2)
C11—C10—C7120.9 (2)N2—C29—C30117.0 (2)
C9—C10—C7118.7 (2)C28—C29—C30120.1 (2)
C10—C11—C13118.1 (2)C29—C30—H30A109.5
C10—C11—C12122.8 (2)C29—C30—H30B109.5
C13—C11—C12119.1 (2)H30A—C30—H30B109.5
C11—C12—H12A109.5C29—C30—H30C109.5
C11—C12—H12B109.5H30A—C30—H30C109.5
H12A—C12—H12B109.5H30B—C30—H30C109.5
C11—C12—H12C109.5C36—C31—C32118.7 (2)
H12A—C12—H12C109.5C36—C31—C27118.2 (2)
H12B—C12—H12C109.5C32—C31—C27123.2 (2)
C18—C13—C14118.5 (2)C33—C32—C31120.8 (2)
C18—C13—C11118.0 (2)C33—C32—H32119.6
C14—C13—C11123.5 (2)C31—C32—H32119.6
C15—C14—C13120.7 (2)C32—C33—C34120.4 (2)
C15—C14—H14119.6C32—C33—H33119.8
C13—C14—H14119.6C34—C33—H33119.8
C14—C15—C16120.4 (2)C35—C34—C33120.3 (2)
C14—C15—H15119.8C35—C34—H34119.9
C16—C15—H15119.8C33—C34—H34119.9
C17—C16—C15120.6 (2)C34—C35—C36120.5 (2)
C17—C16—H16119.7C34—C35—H35119.8
C15—C16—H16119.7C36—C35—H35119.8
C16—C17—C18120.8 (2)N2—C36—C31122.8 (2)
C16—C17—H17119.6N2—C36—C35117.8 (2)
C18—C17—H17119.6C31—C36—C35119.4 (2)
C4—S1—C1—C20.36 (11)C22—S2—C19—C200.20 (10)
S1—C1—C2—C30.33 (19)S2—C19—C20—C210.04 (19)
C1—C2—C3—C41.1 (3)C19—C20—C21—C220.3 (3)
C4—S1'—C1'—C2'1.0 (4)C22—S2'—C19'—C20'0.5 (4)
S1'—C1'—C2'—C3'0.7 (6)S2'—C19'—C20'—C21'0.2 (6)
C1'—C2'—C3'—C40.2 (6)C19'—C20'—C21'—C220.3 (6)
C2—C3—C4—C3'1.4 (4)C20—C21—C22—C21'0.5 (4)
C2—C3—C4—C5179.2 (2)C20—C21—C22—C23177.6 (2)
C2—C3—C4—S11.3 (3)C20—C21—C22—S20.5 (3)
C2'—C3'—C4—C30.9 (5)C20'—C21'—C22—C210.4 (5)
C2'—C3'—C4—C5179.6 (3)C20'—C21'—C22—C23177.6 (3)
C2'—C3'—C4—S1'1.0 (5)C20'—C21'—C22—S2'0.6 (5)
C2'—C3'—C4—S11 (8)C20'—C21'—C22—S21 (8)
C1'—S1'—C4—C31 (2)C19'—S2'—C22—C212 (4)
C1'—S1'—C4—C3'1.2 (4)C19'—S2'—C22—C21'0.6 (4)
C1'—S1'—C4—C5179.4 (2)C19'—S2'—C22—C23177.7 (2)
C1'—S1'—C4—S11.1 (3)C19'—S2'—C22—S20.6 (3)
C1—S1—C4—C30.9 (2)C19—S2—C22—C210.38 (19)
C1—S1—C4—C5179.6 (2)C19—S2—C22—C23177.5 (2)
C1—S1—C4—S1'0.96 (18)C19—S2—C22—S2'0.55 (19)
C3—C4—C5—C6177.5 (3)C21—C22—C23—C24174.7 (3)
C3'—C4—C5—C63.1 (4)C21'—C22—C23—C242.0 (4)
S1'—C4—C5—C6177.5 (2)S2'—C22—C23—C24174.8 (2)
S1—C4—C5—C63.1 (4)S2—C22—C23—C242.0 (3)
C4—C5—C6—C7179.7 (2)C22—C23—C24—C25179.7 (2)
C5—C6—C7—O1169.4 (2)C23—C24—C25—O2165.9 (2)
C5—C6—C7—C1011.5 (3)C23—C24—C25—C2814.3 (3)
C18—N1—C9—C100.1 (3)C31—C27—C28—C291.2 (3)
C18—N1—C9—C8179.80 (19)C26—C27—C28—C29178.7 (2)
N1—C9—C10—C110.5 (3)C31—C27—C28—C25175.06 (19)
C8—C9—C10—C11179.1 (2)C26—C27—C28—C255.0 (3)
N1—C9—C10—C7176.5 (2)O2—C25—C28—C2798.7 (3)
C8—C9—C10—C73.9 (3)C24—C25—C28—C2781.1 (3)
O1—C7—C10—C1198.3 (3)O2—C25—C28—C2977.7 (3)
C6—C7—C10—C1180.8 (3)C24—C25—C28—C29102.5 (3)
O1—C7—C10—C978.7 (3)C36—N2—C29—C280.4 (3)
C6—C7—C10—C9102.2 (3)C36—N2—C29—C30179.72 (19)
C9—C10—C11—C131.4 (3)C27—C28—C29—N20.4 (3)
C7—C10—C11—C13175.53 (19)C25—C28—C29—N2176.0 (2)
C9—C10—C11—C12179.3 (2)C27—C28—C29—C30178.8 (2)
C7—C10—C11—C123.8 (3)C25—C28—C29—C304.7 (3)
C10—C11—C13—C181.7 (3)C28—C27—C31—C361.2 (3)
C12—C11—C13—C18178.99 (19)C26—C27—C31—C36178.75 (19)
C10—C11—C13—C14178.9 (2)C28—C27—C31—C32178.9 (2)
C12—C11—C13—C140.4 (3)C26—C27—C31—C321.2 (3)
C18—C13—C14—C150.3 (3)C36—C31—C32—C330.1 (3)
C11—C13—C14—C15179.1 (2)C27—C31—C32—C33180.0 (2)
C13—C14—C15—C160.3 (3)C31—C32—C33—C340.6 (3)
C14—C15—C16—C170.8 (3)C32—C33—C34—C350.9 (3)
C15—C16—C17—C180.7 (3)C33—C34—C35—C360.6 (3)
C9—N1—C18—C130.2 (3)C29—N2—C36—C310.4 (3)
C9—N1—C18—C17179.94 (19)C29—N2—C36—C35179.47 (19)
C14—C13—C18—N1179.5 (2)C32—C31—C36—N2179.7 (2)
C11—C13—C18—N11.1 (3)C27—C31—C36—N20.4 (3)
C14—C13—C18—C170.4 (3)C32—C31—C36—C350.2 (3)
C11—C13—C18—C17179.03 (19)C27—C31—C36—C35179.71 (19)
C16—C17—C18—N1180.0 (2)C34—C35—C36—N2179.9 (2)
C16—C17—C18—C130.1 (3)C34—C35—C36—C310.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.952.513.391 (3)154
C6—H6···O20.952.553.382 (3)146
C23—H23···N1ii0.952.503.382 (3)154
C24—H24···O10.952.483.330 (3)149
C12—H12c···Cg1iii0.982.671424 (1)
C26—H26c···Cg2iv0.982.671434 (1)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x1/2, y1/2, z3/2; (iv) x3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H15NOS
Mr293.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.4935 (4), 23.8464 (8), 11.5464 (4)
β (°) 93.756 (3)
V3)2883.07 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.947, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
14916, 6427, 4075
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.160, 1.03
No. of reflections6427
No. of parameters409
No. of restraints182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C31–C36 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.952.513.391 (3)154
C6—H6···O20.952.553.382 (3)146
C23—H23···N1ii0.952.503.382 (3)154
C24—H24···O10.952.483.330 (3)149
C12—H12c···Cg1iii0.982.671423.499 (2)
C26—H26c···Cg2iv0.982.671433.503 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x1/2, y1/2, z3/2; (iv) x3/2, y1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@yahoo.co.in.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors also thank the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, Z. B., Asad, M. & Praveen, S. (2008). Med. Chem. Res. 17, 318–325.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, W., Tiekink, E. R. T., Iouri, K., Nikolai, K. & Mei, L. G. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2283-o2284
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds