organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Phenyl-3-tri­fluoro­meth­yl-1H-pyrazol-1-­yl)benzene­sulfonamide

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 August 2011; accepted 17 August 2011; online 27 August 2011)

Significant twists between the aromatic rings are evident in the structure of the title compound, C16H12F3N3O2S. With reference to the pyrazole plane, the N- and C-bound benzene rings form dihedral angles of 57.12 (11) and 29.75 (11)°, respectively. The dihedral angle between the benzene rings is 52.82 (11)°. The presence of N—H⋯O(sulfonamide) and N—H⋯N(pyrazole) hydrogen bonds lead to supra­molecular tubes along the b-axis direction. These are connected into layers via C—H⋯O inter­actions involving a bifurcated O atom (not involved in the N—H⋯O hydrogen bonding). Layers stack along the a-axis direction.

Related literature

For background to the biological applications of related species, see: Faidallah et al. (2007[Faidallah, H. M., Al-Saadi, M. S., Rostom, S. A. F. & Fahmy, H. T. Y. (2007). Med. Chem. Res. 16, 300-318.]); Al-Saadi et al. (2008[Al-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181-190.]). For the crystal structure of a related species, see: Dev et al. (1999[Vasu Dev, R., Shashi Rekha, K., Vyas, K., Mohanti, S. B., Rajender Kumar, P. & Om Reddy, G. (1999). Acta Cryst. C55, IUC9900161.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12F3N3O2S

  • Mr = 367.35

  • Monoclinic, P 21 /c

  • a = 16.2430 (7) Å

  • b = 4.9461 (2) Å

  • c = 21.2383 (8) Å

  • β = 111.231 (5)°

  • V = 1590.47 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.735, Tmax = 1.000

  • 7901 measured reflections

  • 3560 independent reflections

  • 2876 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.06

  • 3560 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1i 0.84 (3) 2.14 (3) 2.911 (2) 153 (2)
N3—H2⋯N2ii 0.87 (2) 2.21 (3) 3.049 (3) 164 (2)
C9—H9⋯O2iii 0.95 2.49 3.376 (3) 155
C16—H16⋯O2iv 0.95 2.55 3.137 (2) 120
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystallographic study of the title compound, (I), which is related to the anti-inflammatory drug, Celecoxib (Dev et al., 1999), was motivated by the recent reports of the biological activities exhibited by related pyrazole compounds (Faidallah et al., 2007; Al-Saadi et al., 2008).

Significant twists are evident in the molecule of (I), Fig. 1. With reference to the pyrazole (N1,N2,C2—C4) plane (r.m.s. deviation = 0,003 Å), the N-bound benzene ring (C11–C16) forms a dihedral angle of 57.12 (11) ° whereas the C-bound benzene ring (C5–C10) forms a dihedral angle of 29.75 (11) °; the dihedral angle formed between the two benzene rings is 52.82 (11) °. The orientations of the benzene rings in (I) differ from those in Celecoxib (Dev et al., 1999), the 4-methylphenyl derivative, with the dihedral angles formed between the N– and C-bound benzene rings and the pyrazole plane being 86.00 (12) and 15.25 (13) °, respectively.

Supramolecular tubes along the b axis feature in the crystal packing, Fig. 2. These are stabilized by amino-H hydrogen bonds to the pyrazole-N and to one of the sulfonamide-O atoms, Table 1. Tubes are linked into layers in the bc plane by C—H···O interactions whereby the sulfonamide-O2 atom is bifurcated, Table 1 and Fig. 3. Layers stack along the a axis, Fig. 4.

Related literature top

For background to the biological applications of related species, see: Faidallah et al. (2007); Al-Saadi et al. (2008). For the crystal structure of a related species, see: Dev et al. (1999).

Experimental top

A solution of 4,4,4-trifluoro-1-phenyl-1,3-butanedione (2.01 g, 10 mmol) in ethanol (50 ml) was refluxed with 4-hydrazinobenzenesulfonamide hydrochloride (2.2 g, 10 mmol) for 4 h, cooled and diluted with water. The precipitated crude product was filtered and recrystallized from ethanol as colourless crystals; M.pt. 431–433 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino-H atoms were located in a difference Fourier map, and subsequently refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular tube aligned along the b axis in (I) mediated by N—H···O and N—H···N hydrogen bonds shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The N—H···O and N—H···N hydrogen bonds and C—H···O interactions are shown as orange, blue and purple dashed lines, respectively.
[Figure 4] Fig. 4. A view in projection down the b axis of the unit-cell contents of (I) highlighting the stacking of layers along the a direction. The N—H···O and N—H···N hydrogen bonds and C—H···O interactions are shown as orange, blue and purple dashed lines, respectively.
4-(5-Phenyl-3-trifluoromethyl-1H-pyrazol-1-yl)benzenesulfonamide top
Crystal data top
C16H12F3N3O2SF(000) = 752
Mr = 367.35Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3338 reflections
a = 16.2430 (7) Åθ = 2.5–29.3°
b = 4.9461 (2) ŵ = 0.25 mm1
c = 21.2383 (8) ÅT = 100 K
β = 111.231 (5)°Prism, colourless
V = 1590.47 (11) Å30.40 × 0.10 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3560 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2876 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1621
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 64
Tmin = 0.735, Tmax = 1.000l = 2727
7901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.0489P]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C16H12F3N3O2SV = 1590.47 (11) Å3
Mr = 367.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2430 (7) ŵ = 0.25 mm1
b = 4.9461 (2) ÅT = 100 K
c = 21.2383 (8) Å0.40 × 0.10 × 0.05 mm
β = 111.231 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3560 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2876 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 1.000Rint = 0.031
7901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
3560 reflectionsΔρmin = 0.49 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38822 (3)0.81404 (10)0.32626 (2)0.01565 (14)
F10.90203 (11)0.1680 (3)0.69086 (6)0.0425 (4)
F20.94604 (9)0.1249 (3)0.63638 (7)0.0399 (4)
F30.81737 (9)0.1604 (3)0.64239 (8)0.0432 (4)
O10.37971 (9)1.0737 (3)0.35369 (8)0.0244 (4)
O20.38267 (9)0.7931 (3)0.25777 (7)0.0231 (3)
N10.74390 (11)0.3994 (3)0.49401 (8)0.0156 (4)
N20.75444 (11)0.2540 (4)0.55074 (8)0.0177 (4)
N30.31318 (11)0.6258 (4)0.33572 (9)0.0164 (4)
H10.3186 (17)0.461 (6)0.3280 (12)0.030 (7)*
H20.3050 (15)0.658 (5)0.3732 (12)0.020 (6)*
C10.87573 (14)0.0151 (5)0.63544 (11)0.0243 (5)
C20.83889 (13)0.1780 (4)0.57227 (10)0.0179 (4)
C30.88288 (13)0.2711 (4)0.53112 (10)0.0183 (4)
H30.94290.24150.53670.022*
C40.82048 (13)0.4154 (4)0.48055 (10)0.0163 (4)
C50.82969 (13)0.5586 (4)0.42273 (9)0.0159 (4)
C60.89089 (13)0.4628 (4)0.39583 (10)0.0195 (4)
H60.92660.31110.41600.023*
C70.90027 (14)0.5854 (5)0.34033 (10)0.0225 (5)
H70.94220.51810.32260.027*
C80.84853 (14)0.8061 (4)0.31056 (10)0.0224 (5)
H80.85420.88850.27190.027*
C90.78859 (14)0.9066 (4)0.33714 (11)0.0229 (5)
H90.75321.05870.31680.027*
C100.77983 (14)0.7863 (4)0.39346 (10)0.0201 (4)
H100.73970.85950.41220.024*
C110.65665 (12)0.4914 (4)0.45432 (9)0.0151 (4)
C120.61316 (15)0.6612 (5)0.48304 (11)0.0324 (6)
H120.63950.71330.52910.039*
C130.52997 (16)0.7552 (6)0.44350 (12)0.0372 (7)
H130.49850.87040.46270.045*
C140.49304 (12)0.6820 (4)0.37671 (10)0.0157 (4)
C150.53662 (14)0.5093 (4)0.34853 (10)0.0207 (5)
H150.51030.45800.30240.025*
C160.61907 (14)0.4107 (4)0.38786 (10)0.0209 (4)
H160.64940.28890.36920.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0135 (2)0.0142 (3)0.0179 (2)0.00119 (19)0.00409 (19)0.00217 (18)
F10.0559 (10)0.0483 (9)0.0155 (6)0.0101 (8)0.0035 (6)0.0034 (6)
F20.0336 (8)0.0494 (9)0.0404 (8)0.0254 (7)0.0179 (7)0.0220 (7)
F30.0308 (8)0.0513 (10)0.0446 (9)0.0026 (7)0.0104 (7)0.0283 (7)
O10.0196 (8)0.0133 (7)0.0360 (9)0.0023 (6)0.0051 (7)0.0020 (6)
O20.0185 (7)0.0320 (9)0.0189 (7)0.0016 (7)0.0068 (6)0.0080 (6)
N10.0152 (8)0.0185 (9)0.0130 (8)0.0028 (7)0.0050 (6)0.0008 (7)
N20.0190 (9)0.0194 (9)0.0143 (8)0.0009 (7)0.0056 (7)0.0017 (7)
N30.0170 (9)0.0144 (9)0.0187 (9)0.0009 (7)0.0075 (7)0.0001 (7)
C10.0202 (11)0.0282 (12)0.0247 (11)0.0059 (9)0.0083 (9)0.0065 (9)
C20.0174 (10)0.0186 (10)0.0167 (9)0.0034 (8)0.0048 (8)0.0006 (8)
C30.0147 (10)0.0214 (10)0.0187 (10)0.0024 (8)0.0061 (8)0.0001 (8)
C40.0136 (9)0.0174 (10)0.0175 (9)0.0005 (8)0.0053 (8)0.0026 (8)
C50.0137 (9)0.0180 (10)0.0145 (9)0.0032 (8)0.0034 (7)0.0013 (8)
C60.0150 (10)0.0226 (11)0.0195 (10)0.0024 (8)0.0043 (8)0.0015 (8)
C70.0224 (11)0.0276 (12)0.0201 (10)0.0000 (9)0.0110 (9)0.0006 (9)
C80.0234 (11)0.0266 (11)0.0173 (10)0.0043 (9)0.0073 (9)0.0025 (9)
C90.0213 (11)0.0205 (11)0.0243 (11)0.0018 (9)0.0052 (9)0.0048 (9)
C100.0191 (10)0.0199 (11)0.0231 (10)0.0010 (9)0.0099 (9)0.0015 (9)
C110.0129 (9)0.0166 (10)0.0152 (9)0.0010 (8)0.0043 (8)0.0025 (8)
C120.0244 (12)0.0470 (15)0.0183 (10)0.0133 (11)0.0013 (9)0.0148 (10)
C130.0272 (13)0.0526 (16)0.0243 (12)0.0208 (12)0.0003 (10)0.0182 (11)
C140.0134 (9)0.0151 (10)0.0176 (9)0.0004 (8)0.0046 (8)0.0013 (8)
C150.0191 (10)0.0263 (11)0.0151 (9)0.0022 (9)0.0045 (8)0.0036 (9)
C160.0185 (10)0.0249 (11)0.0194 (10)0.0065 (9)0.0070 (8)0.0034 (9)
Geometric parameters (Å, º) top
S1—O21.4283 (15)C6—C71.382 (3)
S1—O11.4373 (15)C6—H60.9500
S1—N31.6033 (18)C7—C81.383 (3)
S1—C141.7754 (19)C7—H70.9500
F1—C11.332 (3)C8—C91.383 (3)
F2—C11.330 (2)C8—H80.9500
F3—C11.332 (3)C9—C101.389 (3)
N1—N21.359 (2)C9—H90.9500
N1—C41.376 (3)C10—H100.9500
N1—C111.436 (2)C11—C121.374 (3)
N2—C21.333 (3)C11—C161.378 (3)
N3—H10.84 (3)C12—C131.387 (3)
N3—H20.87 (2)C12—H120.9500
C1—C21.492 (3)C13—C141.374 (3)
C2—C31.392 (3)C13—H130.9500
C3—C41.379 (3)C14—C151.377 (3)
C3—H30.9500C15—C161.385 (3)
C4—C51.471 (3)C15—H150.9500
C5—C61.397 (3)C16—H160.9500
C5—C101.395 (3)
O2—S1—O1119.85 (9)C7—C6—H6119.5
O2—S1—N3108.36 (9)C5—C6—H6119.5
O1—S1—N3106.20 (10)C6—C7—C8120.0 (2)
O2—S1—C14106.32 (9)C6—C7—H7120.0
O1—S1—C14107.22 (9)C8—C7—H7120.0
N3—S1—C14108.50 (9)C9—C8—C7119.9 (2)
N2—N1—C4112.43 (16)C9—C8—H8120.1
N2—N1—C11117.95 (15)C7—C8—H8120.1
C4—N1—C11129.36 (16)C8—C9—C10120.3 (2)
C2—N2—N1103.70 (16)C8—C9—H9119.9
S1—N3—H1113.6 (18)C10—C9—H9119.9
S1—N3—H2112.6 (16)C9—C10—C5120.4 (2)
H1—N3—H2115 (2)C9—C10—H10119.8
F2—C1—F1106.47 (18)C5—C10—H10119.8
F2—C1—F3107.48 (19)C12—C11—C16121.55 (19)
F1—C1—F3106.57 (18)C12—C11—N1119.34 (17)
F2—C1—C2110.94 (18)C16—C11—N1119.11 (18)
F1—C1—C2112.57 (19)C11—C12—C13118.7 (2)
F3—C1—C2112.45 (18)C11—C12—H12120.6
N2—C2—C3112.93 (18)C13—C12—H12120.6
N2—C2—C1119.24 (18)C14—C13—C12120.1 (2)
C3—C2—C1127.82 (19)C14—C13—H13119.9
C4—C3—C2105.10 (18)C12—C13—H13119.9
C4—C3—H3127.5C13—C14—C15120.76 (19)
C2—C3—H3127.5C13—C14—S1119.41 (16)
N1—C4—C3105.85 (17)C15—C14—S1119.83 (15)
N1—C4—C5125.03 (17)C14—C15—C16119.55 (19)
C3—C4—C5129.12 (18)C14—C15—H15120.2
C6—C5—C10118.42 (19)C16—C15—H15120.2
C6—C5—C4118.74 (18)C11—C16—C15119.24 (19)
C10—C5—C4122.85 (18)C11—C16—H16120.4
C7—C6—C5121.0 (2)C15—C16—H16120.4
C4—N1—N2—C20.4 (2)C6—C7—C8—C91.1 (3)
C11—N1—N2—C2174.33 (17)C7—C8—C9—C100.3 (3)
N1—N2—C2—C30.2 (2)C8—C9—C10—C51.7 (3)
N1—N2—C2—C1179.01 (18)C6—C5—C10—C92.7 (3)
F2—C1—C2—N2156.75 (19)C4—C5—C10—C9177.26 (19)
F1—C1—C2—N284.1 (2)N2—N1—C11—C1260.5 (3)
F3—C1—C2—N236.3 (3)C4—N1—C11—C12125.9 (2)
F2—C1—C2—C324.6 (3)N2—N1—C11—C16120.6 (2)
F1—C1—C2—C394.6 (3)C4—N1—C11—C1653.0 (3)
F3—C1—C2—C3145.0 (2)C16—C11—C12—C130.8 (4)
N2—C2—C3—C40.1 (2)N1—C11—C12—C13178.1 (2)
C1—C2—C3—C4178.6 (2)C11—C12—C13—C141.0 (4)
N2—N1—C4—C30.4 (2)C12—C13—C14—C151.8 (4)
C11—N1—C4—C3173.52 (19)C12—C13—C14—S1177.8 (2)
N2—N1—C4—C5179.93 (17)O2—S1—C14—C13158.1 (2)
C11—N1—C4—C56.0 (3)O1—S1—C14—C1328.8 (2)
C2—C3—C4—N10.3 (2)N3—S1—C14—C1385.5 (2)
C2—C3—C4—C5179.8 (2)O2—S1—C14—C1521.5 (2)
N1—C4—C5—C6149.8 (2)O1—S1—C14—C15150.81 (17)
C3—C4—C5—C629.6 (3)N3—S1—C14—C1594.88 (19)
N1—C4—C5—C1030.2 (3)C13—C14—C15—C160.7 (3)
C3—C4—C5—C10150.4 (2)S1—C14—C15—C16178.87 (16)
C10—C5—C6—C71.8 (3)C12—C11—C16—C151.9 (3)
C4—C5—C6—C7178.14 (19)N1—C11—C16—C15176.98 (18)
C5—C6—C7—C80.1 (3)C14—C15—C16—C111.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.84 (3)2.14 (3)2.911 (2)153 (2)
N3—H2···N2ii0.87 (2)2.21 (3)3.049 (3)164 (2)
C9—H9···O2iii0.952.493.376 (3)155
C16—H16···O2iv0.952.553.137 (2)120
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12F3N3O2S
Mr367.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.2430 (7), 4.9461 (2), 21.2383 (8)
β (°) 111.231 (5)
V3)1590.47 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.735, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7901, 3560, 2876
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.06
No. of reflections3560
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.49

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1i0.84 (3)2.14 (3)2.911 (2)153 (2)
N3—H2···N2ii0.87 (2)2.21 (3)3.049 (3)164 (2)
C9—H9···O2iii0.952.493.376 (3)155
C16—H16···O2iv0.952.553.137 (2)120
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181–190.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationVasu Dev, R., Shashi Rekha, K., Vyas, K., Mohanti, S. B., Rajender Kumar, P. & Om Reddy, G. (1999). Acta Cryst. C55, IUC9900161.  CrossRef IUCr Journals Google Scholar
First citationFaidallah, H. M., Al-Saadi, M. S., Rostom, S. A. F. & Fahmy, H. T. Y. (2007). Med. Chem. Res. 16, 300–318.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds