organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-1-(4-meth­­oxy­phen­yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 August 2011; accepted 18 August 2011; online 27 August 2011)

In the title compound, C23H17N3O, significant deviations from planarity are evidenced. This is quanti­fied in the dihedral angles formed between the central amino-benzene ring and the benzene rings of the meth­oxy­benzene [67.93 (8)°] and 1,2-dihydro­naphthalene [28.27 (8)°] residues. In the crystal the amino-H atoms form hydrogen bonds to the meth­oxy-O atom and to one of the cyano-N atoms to generate a two-dimensional array with a zigzag topology that stacks along the ([\overline{1}] [\overline{1}] 1) plane.

Related literature

For background to the biological activity of related compounds, see: Aly et al. (1991[Aly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827-834.]); Al-Saadi et al. (2005[Al-Saadi, S. M., Rostom, S. A. F. & Faid Allah, H. M. (2005). Alexandria J. Pharm. Sci., 19, 15-21.]); Rostom et al. (2011[Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. DOI: 10.1007/s00044-010-9469-0.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2438.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3O

  • Mr = 351.40

  • Monoclinic, P 21 /c

  • a = 9.0212 (4) Å

  • b = 22.1475 (8) Å

  • c = 9.3114 (4) Å

  • β = 110.410 (5)°

  • V = 1743.60 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.714, Tmax = 1.000

  • 8688 measured reflections

  • 3890 independent reflections

  • 2953 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.04

  • 3890 reflections

  • 252 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.89 (1) 2.21 (1) 3.0307 (19) 154 (2)
N2—H2⋯N1ii 0.88 (1) 2.33 (1) 3.115 (2) 149 (2)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x-1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The study of the title compound (I) was motivated by recent reports of the biological activity of related compounds (Aly et al., 1991; Al-Saadi et al., 2005; Rostom et al., 2011) and allied crystal structure investigations (Asiri et al., 2011).

The structure of (I), Fig. 1, is isostructural with the derivative in which the methoxybenzene group in (I) is substituted for a 2H-1,3-benzodioxol-5-yl group (Asiri et al., 2011). With respect to the amino-benzene ring, the benzene rings of the methoxybenzene and 1,2-dihydronaphthalene residues form dihedral angles of 67.93 (8) and 28.27 (8) °, respectively, indicating non-planarity in the molecule. In the 1,2-dihydronaphthalene residue, the cyclohexa-1,3-diene ring has a distorted half-chair conformation as defined by the following parameters (Cremer & Pople, 1975): q2 = 0.5166 (18) Å, ϕ2 = 84.4 (2) °, q3 = 0.1891 (19) Å, and puckering amplitude Q = 0.5501 (19) Å.

In the crystal structure, supramolecular arrays with zigzag topology and running parallel to the (1 1 1) plane are formed through NH···O(methoxy) and NH···N(cyano) hydrogen bonding, Table 1 and Fig. 2.

Related literature top

For background to the biological activity of related compounds, see: Aly et al. (1991); Al-Saadi et al. (2005); Rostom et al. (2011). For ring conformational analysis, see: Cremer & Pople (1975). For a related structure, see: Asiri et al. (2011).

Experimental top

A mixture of the 4-anisaldehyde (1.36 g,10 mmol), 1-tetralone (1.46 g, 10 mmol), ethyl cyanoacetate (1.1 g, 10 mmol) and ammonium acetate (6.2 g, 80 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool and the precipitate that formed was filtered, washed with water, dried and recrystallized from DMF; M.pt.: 487–488 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino-H atoms were located in a difference Fourier map, and subsequently refined with N—H = 0.88±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular array in (I) viewed towards the (1 1 1) plane. The N—H···O and N—H···.N hydrogen bonds are shown as orange and blue dashed lines, respectively.
3-Amino-1-(4-methoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile top
Crystal data top
C23H17N3OF(000) = 736
Mr = 351.40Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3338 reflections
a = 9.0212 (4) Åθ = 2.3–29.3°
b = 22.1475 (8) ŵ = 0.08 mm1
c = 9.3114 (4) ÅT = 100 K
β = 110.410 (5)°Plate, orange
V = 1743.60 (12) Å30.25 × 0.25 × 0.05 mm
Z = 4
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
3890 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2953 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scanh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2628
Tmin = 0.714, Tmax = 1.000l = 1211
8688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.7237P]
where P = (Fo2 + 2Fc2)/3
3890 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H17N3OV = 1743.60 (12) Å3
Mr = 351.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0212 (4) ŵ = 0.08 mm1
b = 22.1475 (8) ÅT = 100 K
c = 9.3114 (4) Å0.25 × 0.25 × 0.05 mm
β = 110.410 (5)°
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
3890 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2953 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 1.000Rint = 0.030
8688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
3890 reflectionsΔρmin = 0.23 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50780 (13)0.32058 (5)0.20429 (14)0.0233 (3)
N10.35267 (17)0.04178 (6)0.09331 (17)0.0253 (3)
N20.31052 (17)0.09057 (7)0.04975 (18)0.0273 (4)
H10.341 (2)0.1248 (6)0.101 (2)0.029 (5)*
H20.383 (2)0.0640 (8)0.048 (2)0.040 (6)*
N30.12484 (19)0.22536 (7)0.09041 (19)0.0348 (4)
C10.11308 (18)0.02880 (7)0.13513 (19)0.0181 (3)
C20.15970 (18)0.08249 (7)0.04721 (19)0.0191 (4)
C30.04407 (19)0.12715 (7)0.06686 (19)0.0194 (4)
C40.11146 (19)0.11967 (8)0.1705 (2)0.0221 (4)
C50.15320 (19)0.06722 (8)0.2563 (2)0.0222 (4)
C60.31513 (19)0.05910 (8)0.3770 (2)0.0245 (4)
H6A0.37190.09820.39750.029*
H6B0.37770.03020.34030.029*
C70.2964 (2)0.03549 (7)0.5226 (2)0.0221 (4)
H7A0.40170.02950.60240.027*
H7B0.23720.06510.56130.027*
C80.20844 (19)0.02353 (7)0.4888 (2)0.0201 (4)
C90.2469 (2)0.07051 (8)0.5946 (2)0.0219 (4)
H90.32890.06500.69080.026*
C100.1678 (2)0.12526 (8)0.5624 (2)0.0235 (4)
H100.19180.15630.63750.028*
C110.0535 (2)0.13428 (8)0.4195 (2)0.0242 (4)
H110.00140.17220.39530.029*
C120.01471 (19)0.08839 (7)0.3118 (2)0.0213 (4)
H120.06230.09550.21340.026*
C130.08722 (18)0.03175 (7)0.34554 (19)0.0182 (3)
C140.04050 (18)0.02098 (7)0.24062 (19)0.0183 (3)
C150.24040 (19)0.01280 (7)0.11644 (19)0.0206 (4)
C160.0873 (2)0.18193 (8)0.0198 (2)0.0235 (4)
C170.22517 (18)0.17059 (7)0.18816 (19)0.0198 (4)
C180.20113 (19)0.22527 (8)0.25000 (19)0.0219 (4)
H180.11680.22920.28840.026*
C190.29915 (19)0.27411 (8)0.25614 (19)0.0200 (4)
H190.28230.31120.29930.024*
C200.42161 (18)0.26902 (7)0.19956 (18)0.0186 (3)
C210.45114 (19)0.21406 (8)0.14320 (19)0.0215 (4)
H210.53780.20980.10840.026*
C220.35293 (19)0.16540 (8)0.13821 (19)0.0217 (4)
H220.37330.12770.09990.026*
C230.5989 (2)0.32247 (8)0.1054 (2)0.0254 (4)
H23A0.65520.36110.11860.038*
H23B0.52830.31840.00130.038*
H23C0.67550.28930.13140.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0230 (6)0.0200 (6)0.0264 (7)0.0091 (5)0.0079 (5)0.0019 (5)
N10.0189 (7)0.0213 (8)0.0318 (8)0.0017 (6)0.0039 (6)0.0000 (6)
N20.0174 (7)0.0234 (8)0.0343 (9)0.0044 (6)0.0004 (7)0.0086 (7)
N30.0357 (9)0.0216 (8)0.0331 (9)0.0061 (7)0.0056 (7)0.0032 (7)
C10.0162 (8)0.0153 (8)0.0234 (8)0.0010 (6)0.0078 (7)0.0013 (6)
C20.0171 (8)0.0200 (8)0.0202 (8)0.0002 (7)0.0063 (7)0.0007 (7)
C30.0189 (8)0.0161 (8)0.0216 (8)0.0005 (6)0.0052 (7)0.0010 (6)
C40.0192 (8)0.0194 (9)0.0263 (9)0.0033 (7)0.0061 (7)0.0005 (7)
C50.0162 (8)0.0229 (9)0.0257 (9)0.0003 (7)0.0050 (7)0.0033 (7)
C60.0146 (8)0.0218 (9)0.0339 (10)0.0008 (7)0.0043 (7)0.0060 (8)
C70.0179 (8)0.0183 (8)0.0268 (9)0.0009 (7)0.0036 (7)0.0005 (7)
C80.0170 (8)0.0184 (8)0.0268 (9)0.0033 (7)0.0101 (7)0.0003 (7)
C90.0205 (8)0.0222 (9)0.0235 (9)0.0052 (7)0.0083 (7)0.0009 (7)
C100.0245 (9)0.0181 (9)0.0306 (10)0.0049 (7)0.0130 (8)0.0060 (7)
C110.0198 (8)0.0162 (8)0.0377 (10)0.0015 (7)0.0114 (8)0.0026 (7)
C120.0156 (8)0.0200 (9)0.0278 (9)0.0017 (7)0.0071 (7)0.0006 (7)
C130.0140 (7)0.0153 (8)0.0266 (9)0.0034 (6)0.0090 (7)0.0023 (7)
C140.0173 (8)0.0164 (8)0.0224 (8)0.0014 (6)0.0083 (7)0.0004 (7)
C150.0194 (8)0.0186 (8)0.0220 (9)0.0039 (7)0.0049 (7)0.0016 (7)
C160.0193 (8)0.0200 (9)0.0251 (9)0.0059 (7)0.0001 (7)0.0024 (7)
C170.0160 (8)0.0184 (8)0.0202 (8)0.0019 (7)0.0002 (7)0.0034 (7)
C180.0174 (8)0.0254 (9)0.0214 (9)0.0015 (7)0.0050 (7)0.0027 (7)
C190.0193 (8)0.0191 (8)0.0191 (8)0.0005 (7)0.0037 (7)0.0025 (7)
C200.0166 (8)0.0189 (8)0.0165 (8)0.0049 (7)0.0013 (6)0.0013 (6)
C210.0194 (8)0.0248 (9)0.0200 (8)0.0015 (7)0.0065 (7)0.0002 (7)
C220.0229 (8)0.0171 (8)0.0228 (9)0.0002 (7)0.0049 (7)0.0011 (7)
C230.0219 (9)0.0271 (10)0.0261 (9)0.0061 (7)0.0072 (7)0.0052 (7)
Geometric parameters (Å, º) top
O1—C201.3735 (19)C8—C131.411 (2)
O1—C231.433 (2)C9—C101.386 (2)
N1—C151.154 (2)C9—H90.9500
N2—C21.357 (2)C10—C111.384 (2)
N2—H10.889 (9)C10—H100.9500
N2—H20.883 (9)C11—C121.385 (2)
N3—C161.147 (2)C11—H110.9500
C1—C141.402 (2)C12—C131.399 (2)
C1—C21.421 (2)C12—H120.9500
C1—C151.435 (2)C13—C141.486 (2)
C2—C31.402 (2)C17—C221.390 (2)
C3—C41.408 (2)C17—C181.390 (2)
C3—C161.434 (2)C18—C191.385 (2)
C4—C51.385 (2)C18—H180.9500
C4—C171.494 (2)C19—C201.384 (2)
C5—C141.414 (2)C19—H190.9500
C5—C61.512 (2)C20—C211.388 (2)
C6—C71.517 (2)C21—C221.386 (2)
C6—H6A0.9900C21—H210.9500
C6—H6B0.9900C22—H220.9500
C7—C81.504 (2)C23—H23A0.9800
C7—H7A0.9900C23—H23B0.9800
C7—H7B0.9900C23—H23C0.9800
C8—C91.391 (2)
C20—O1—C23116.67 (13)C9—C10—H10120.3
C2—N2—H1121.6 (13)C10—C11—C12120.38 (16)
C2—N2—H2118.4 (14)C10—C11—H11119.8
H1—N2—H2119.1 (19)C12—C11—H11119.8
C14—C1—C2121.91 (14)C11—C12—C13121.00 (16)
C14—C1—C15124.01 (15)C11—C12—H12119.5
C2—C1—C15113.81 (14)C13—C12—H12119.5
N2—C2—C3121.41 (15)C12—C13—C8118.40 (15)
N2—C2—C1121.35 (15)C12—C13—C14123.62 (15)
C3—C2—C1117.23 (14)C8—C13—C14117.96 (14)
C2—C3—C4121.63 (15)C1—C14—C5118.82 (15)
C2—C3—C16118.66 (15)C1—C14—C13122.83 (14)
C4—C3—C16119.70 (15)C5—C14—C13118.19 (14)
C5—C4—C3119.95 (15)N1—C15—C1173.19 (17)
C5—C4—C17122.08 (15)N3—C16—C3178.65 (19)
C3—C4—C17117.93 (15)C22—C17—C18118.55 (15)
C4—C5—C14120.44 (15)C22—C17—C4121.21 (15)
C4—C5—C6121.76 (15)C18—C17—C4120.19 (15)
C14—C5—C6117.65 (15)C19—C18—C17120.51 (15)
C5—C6—C7109.01 (14)C19—C18—H18119.7
C5—C6—H6A109.9C17—C18—H18119.7
C7—C6—H6A109.9C20—C19—C18120.22 (15)
C5—C6—H6B109.9C20—C19—H19119.9
C7—C6—H6B109.9C18—C19—H19119.9
H6A—C6—H6B108.3O1—C20—C19115.98 (14)
C8—C7—C6109.13 (14)O1—C20—C21124.07 (15)
C8—C7—H7A109.9C19—C20—C21119.94 (15)
C6—C7—H7A109.9C22—C21—C20119.35 (15)
C8—C7—H7B109.9C22—C21—H21120.3
C6—C7—H7B109.9C20—C21—H21120.3
H7A—C7—H7B108.3C21—C22—C17121.31 (15)
C9—C8—C13119.53 (15)C21—C22—H22119.3
C9—C8—C7121.24 (15)C17—C22—H22119.3
C13—C8—C7119.21 (15)O1—C23—H23A109.5
C10—C9—C8121.23 (16)O1—C23—H23B109.5
C10—C9—H9119.4H23A—C23—H23B109.5
C8—C9—H9119.4O1—C23—H23C109.5
C11—C10—C9119.31 (16)H23A—C23—H23C109.5
C11—C10—H10120.3H23B—C23—H23C109.5
C14—C1—C2—N2177.16 (16)C9—C8—C13—C14175.09 (14)
C15—C1—C2—N23.0 (2)C7—C8—C13—C146.4 (2)
C14—C1—C2—C31.8 (2)C2—C1—C14—C51.9 (2)
C15—C1—C2—C3175.94 (15)C15—C1—C14—C5175.51 (15)
N2—C2—C3—C4178.21 (17)C2—C1—C14—C13173.29 (15)
C1—C2—C3—C40.7 (2)C15—C1—C14—C130.3 (3)
N2—C2—C3—C160.9 (3)C4—C5—C14—C11.0 (2)
C1—C2—C3—C16179.86 (15)C6—C5—C14—C1176.69 (15)
C2—C3—C4—C50.1 (3)C4—C5—C14—C13174.42 (16)
C16—C3—C4—C5179.01 (16)C6—C5—C14—C131.3 (2)
C2—C3—C4—C17177.76 (15)C12—C13—C14—C128.1 (2)
C16—C3—C4—C171.4 (2)C8—C13—C14—C1150.04 (16)
C3—C4—C5—C140.0 (3)C12—C13—C14—C5156.66 (16)
C17—C4—C5—C14177.51 (16)C8—C13—C14—C525.2 (2)
C3—C4—C5—C6175.50 (16)C5—C4—C17—C2270.5 (2)
C17—C4—C5—C62.0 (3)C3—C4—C17—C22111.93 (18)
C4—C5—C6—C7132.25 (17)C5—C4—C17—C18112.04 (19)
C14—C5—C6—C743.4 (2)C3—C4—C17—C1865.5 (2)
C5—C6—C7—C858.90 (18)C22—C17—C18—C192.4 (2)
C6—C7—C8—C9142.75 (15)C4—C17—C18—C19175.12 (15)
C6—C7—C8—C1335.7 (2)C17—C18—C19—C200.5 (2)
C13—C8—C9—C100.3 (2)C23—O1—C20—C19160.73 (14)
C7—C8—C9—C10178.80 (15)C23—O1—C20—C2119.5 (2)
C8—C9—C10—C113.0 (2)C18—C19—C20—O1177.14 (14)
C9—C10—C11—C122.2 (2)C18—C19—C20—C213.1 (2)
C10—C11—C12—C131.4 (2)O1—C20—C21—C22177.48 (15)
C11—C12—C13—C84.0 (2)C19—C20—C21—C222.8 (2)
C11—C12—C13—C14174.11 (15)C20—C21—C22—C170.2 (2)
C9—C8—C13—C123.2 (2)C18—C17—C22—C212.7 (2)
C7—C8—C13—C12175.35 (15)C4—C17—C22—C21174.76 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.89 (1)2.21 (1)3.0307 (19)154 (2)
N2—H2···N1ii0.88 (1)2.33 (1)3.115 (2)149 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H17N3O
Mr351.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0212 (4), 22.1475 (8), 9.3114 (4)
β (°) 110.410 (5)
V3)1743.60 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent Technologies SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.714, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8688, 3890, 2953
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.04
No. of reflections3890
No. of parameters252
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.889 (9)2.207 (12)3.0307 (19)153.9 (17)
N2—H2···N1ii0.883 (9)2.326 (14)3.115 (2)148.8 (18)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors thank King Abdulaziz University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAl-Saadi, S. M., Rostom, S. A. F. & Faid Allah, H. M. (2005). Alexandria J. Pharm. Sci., 19, 15–21.  CAS Google Scholar
First citationAly, A. S., El-Ezabawy, S. R. & Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827–834.  CAS Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2438.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. DOI: 10.1007/s00044-010-9469-0.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds