metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1225-m1226

(Penta­fluoro­propionato-κO)tetra­kis­(tri­methyl­phosphine oxide-κO)copper(II) penta­fluoro­propionate

aFaculty of Chemistry, Nicolaus Copernicus University, Gagarina 7,87-100 Toruń, Poland, bDepartment of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium, and cDepartment of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
*Correspondence e-mail: lianger@chem.kuleuven.be

(Received 14 July 2011; accepted 2 August 2011; online 11 August 2011)

The title compound, [Cu(C3F5O2)(C3H9OP)4](C3F5O2), comprises a cationic CuII complex and a disordered penta­fluoro­propionate counter-ion. The metal atom has a distorted square-pyramidal coordination environment formed by four O atoms originating from trimethyl­phosphine oxide mol­ecules and the remaining one belonging to the monodentate penta­fluoro­propionate anion, which is situated in the basal plane of the pyramid. The mol­ecules are held together in the crystal by a net of weak C—H⋯O and C—H⋯F hydrogen bonds. The counter anion is disordered over two sets of sites in a 0.629 (5):0.371 (5) ratio.

Related literature

For our previous studies on metal complexes suitable for chemical vapour deposition (CVD), see: Szymańska et al. (2007[Szymańska, I., Piszczek, P., Szczęsny, R. & Szłyk, E. (2007). Polyhedron, 26, 2440-2448.], 2009[Szymańska, I., Piszczek, P. & Szłyk, E. (2009). Polyhedron, 28, 721-728.]); Piszczek et al. (2008[Piszczek, P., Szymańska, I., Bala, W., Bartkiewicz, K., Talik, E. & Heiman, J. (2008). Thin Solid Films, 516, 3924-3930.]). For crystal structures of metal complexes with trimethyl­phosphine oxide ligands involving metal ions from the first transition series, see: Hill et al. (2003[Hill, N. J., Leung, L.-S., Levason, W. & Webster, M. (2003). Inorg. Chim. Acta, 343, 169-174.]) for Sc(III); Johnson & Bergman (2001[Johnson, J. S. & Bergman, R. G. (2001). J. Am. Chem. Soc. 123, 2923-2924.]) for Ti(III); Veige et al. (2003[Veige, A. S., Slaughter, L. M., Lobkovsky, E. B., Wolczanski, P. T., Matsunaga, N., Decker, S. A. & Cundari, T. R. (2003). Inorg. Chem. 42, 6204-6224.]) for V(III); Cotton et al. (1991[Cotton, F. A., Luck, R. L. & Son, K.-A. (1991). Inorg. Chim. Acta, 184, 177-183.]) for Fe(II); Edelmann & Behrens (1986[Edelmann, F. & Behrens, U. (1986). Acta Cryst. C42, 1715-1717.]) for Co(II); Klein et al. (1999[Klein, H.-F., Dal, A., Hartmann, S., Flörke, U. & Haupt, H.-J. (1999). Inorg. Chim. Acta, 287, 199-203.]) for Ni(II); Hlavinka & Hagadorn (2005[Hlavinka, M. L. & Hagadorn, J. R. (2005). Organometallics, 24, 4116-4118.]) for Zn(II). For crystallographic data on CuII complexes with a penta­fluoro­propionate ligand, see: Jiang et al. (1998[Jiang, Z.-H., Sun, B.-W., Liao, D.-Z., Wang, G.-L., Dahan, F. & Tuchagues, J.-P. (1998). Inorg. Chim. Acta, 279, 69-75.]); Zhang et al. (1999[Zhang, L., Li, S.-Q., Sun, B.-W., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1999). Polyhedron, 18, 781-785.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3F5O2)(C3H9OP)4](C3F5O2)

  • Mr = 757.89

  • Triclinic, [P \overline 1]

  • a = 9.5955 (8) Å

  • b = 12.2627 (11) Å

  • c = 14.1848 (12) Å

  • α = 82.720 (2)°

  • β = 80.501 (1)°

  • γ = 82.899 (2)°

  • V = 1623.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.48 × 0.17 × 0.03 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.655, Tmax = 0.972

  • 10254 measured reflections

  • 7148 independent reflections

  • 6207 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.07

  • 7148 reflections

  • 416 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9535 (18)
Cu1—O4 1.9582 (18)
Cu1—O3 1.965 (2)
Cu1—O5 1.9863 (19)
Cu1—O2 2.1876 (19)
O1—Cu1—O4 172.44 (8)
O1—Cu1—O3 90.48 (8)
O4—Cu1—O3 88.42 (8)
O1—Cu1—O5 91.12 (8)
O4—Cu1—O5 87.71 (8)
O3—Cu1—O5 162.51 (8)
O1—Cu1—O2 94.54 (7)
O4—Cu1—O2 92.99 (7)
O3—Cu1—O2 102.55 (8)
O5—Cu1—O2 94.69 (8)

Table 2
Geometry of selected hydrogen bonds (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O5 0.98 2.57 3.265 (3) 128
C5—H5A⋯O4 0.98 2.42 3.204 (4) 136
C10—H10B⋯O3 0.98 2.58 3.266 (4) 127
C1—H1A⋯F2i 0.98 2.52 3.392 (3) 149
C1—H1B⋯O6ii 0.98 2.47 3.265 (3) 138
C4—H4A⋯F4iii 0.98 2.51 3.482 (3) 170
C4—H4C⋯F3i 0.98 2.53 3.478 (5) 163
C9—H9A⋯F7A 0.98 2.44 3.322 (6) 150
C11—H11B⋯O8Aiv 0.98 2.42 3.289 (7) 147
C12—H12B⋯O8Aiv 0.98 2.52 3.388 (8) 147
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z; (iii) -x, -y+1, -z; (iv) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During our ongoing studies on metal complexes with tertiary phosphines (Szymańska et al., 2007) and perfluorinated carboxylates (Piszczek et al., 2008; Szymańska et al., 2009) suitable for chemical vapour deposition (CVD), the title compound was accidentally isolated. It is the first report on the crystal structure of a Cu complex with trimethylphosphine oxides. There is however some literature on coordination compounds of trimethylphosphine oxide ligands with other metals from the first transition series such as: Sc(III) (Hill et al., 2003), Ti(III) (Johnson & Bergman, 2001), V(III) (Veige et al., 2003), Fe(II) (Cotton et al., 1991), Co(II) (Edelmann & Behrens, 1986), Ni(II) (Klein et al., 1999), Zn(II) (Hlavinka & Hagadorn, 2005).

Furthermore, there are also only two reports on crystal structures of CuII complexes containing coordinating pentafluoropropionate ions (Jiang et al., 1998; Zhang et al., 1999).

The title compound has one monocationic CuII complex and one pentafluoropropionate counter-ion present in the asymmetric unit (Fig.1). The geometry around the CuII ion is a distorted square-pyramid formed by four O atoms originating from trimethylphosphine oxide molecules and one from the monodentate pentafluoropropionate ion, which is located in the base plane of the pyramid. The corresponding bond lengths and angles are presented in Table 1. The geometrical features of the ligands are in good agreement with reported values. The counter-ion is disordered over two positions with refined site occupancies of 0.629 (5):0.371 (5). There are weak intramolecular C—H···O interactions between the methyl groups of three distinct trimethylphosphine oxides (P1, P2 and P4) involving the atoms C3, C5 and C10, that act as donors, and O5 (from the counter-ion), as well as O4 and O3 (from the oxide ligands), that act as acceptors, respectively (Table 2). The C9 methyl group from P3 however, interacts with the counter-ion by weak C9—H9A···F7A hydrogen bonding with a C···F distance of 3.322 (6) Å, and a C—H—F angle of 150°. The packing is further stabilized by numerous weak intermolecular C—H···O and C—H···F interactions.

Related literature top

For our previous studies on metal complexes suitable for chemical

vapour deposition (CVD), see: Szymańska et al. (2007, 2009); Piszczek et al. (2008). For crystal structures of metal complexes with trimethylphosphine oxide ligands involving metal ions from the first transition series, see: Hill et al. (2003) for Sc(III); Johnson & Bergman (2001) for Ti(III); Veige et al. (2003) for V(III); Cotton et al. (1991) for Fe(II); Edelmann & Behrens (1986) for Co(II); Klein et al. (1999) for Ni(II); Hlavinka & Hagadorn (2005) for Zn(II). For crystallographic data on CuII complexes with a pentafluoropropionate ligand, see: Jiang et al. (1998); Zhang et al. (1999).

Experimental top

(C2F5COO)2Cu (1.04 mmol) was placed in a Schlenk tube, dissolved in 25 ml of freshly distilled acetonitrile, and copper powder (5 mmol) was added. The obtained suspension was stirred until the solution was pale yellow. Then PMe3 (2.1 ml of a 1 M THF solution) was added and the reaction mixture was stirred for 18 h at ambient temperature, and filtered. The solvent was evaporated under reduced pressure, yielding [Cu2(PMe3)2(µ–C2F5CO2)2] as a pale yellow, viscous oil. Crystals of the title CuII complex suitable for X-ray studies were obtained after a few months, presumably upon slow oxidation by diffused air.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.98 and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C). The counter-ion was found to be disordered and modeled in two positions. Refinement included bond lengths restraints applied to the O8B—O7B, C17B—O7B and C17B—O8B as well as to ADPs of 'A' part.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; the other orientation of the disordered counter-ion has been omitted for clarity.
(Pentafluoropropionato-κO)tetrakis(trimethylphosphine oxide-κO)copper(II) pentafluoropropionate top
Crystal data top
[Cu(C3F5O2)(C3H9OP)4](C3F5O2)Z = 2
Mr = 757.89F(000) = 774
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5955 (8) ÅCell parameters from 5155 reflections
b = 12.2627 (11) Åθ = 2.2–28.1°
c = 14.1848 (12) ŵ = 0.96 mm1
α = 82.720 (2)°T = 100 K
β = 80.501 (1)°Plate, colorless
γ = 82.899 (2)°0.48 × 0.17 × 0.03 mm
V = 1623.9 (2) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
7148 independent reflections
Radiation source: fine-focus sealed tube6207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1012
Tmin = 0.655, Tmax = 0.972k = 1215
10254 measured reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.8569P]
where P = (Fo2 + 2Fc2)/3
7148 reflections(Δ/σ)max = 0.004
416 parametersΔρmax = 1.33 e Å3
33 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu(C3F5O2)(C3H9OP)4](C3F5O2)γ = 82.899 (2)°
Mr = 757.89V = 1623.9 (2) Å3
Triclinic, P1Z = 2
a = 9.5955 (8) ÅMo Kα radiation
b = 12.2627 (11) ŵ = 0.96 mm1
c = 14.1848 (12) ÅT = 100 K
α = 82.720 (2)°0.48 × 0.17 × 0.03 mm
β = 80.501 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
7148 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
6207 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.972Rint = 0.016
10254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04733 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 1.33 e Å3
7148 reflectionsΔρmin = 0.64 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.08108 (3)0.78725 (2)0.19051 (2)0.01610 (10)
P10.24449 (7)0.85300 (5)0.01852 (5)0.01593 (14)
F10.1350 (2)0.6864 (2)0.05341 (14)0.0504 (6)
O10.18617 (19)0.87540 (15)0.08413 (13)0.0192 (4)
C10.3916 (3)0.9301 (2)0.0631 (2)0.0219 (5)
H1B0.36211.00880.05830.033*
H1C0.42530.91860.13050.033*
H1A0.46830.90530.02510.033*
P20.25316 (7)0.53881 (6)0.24912 (5)0.02095 (16)
F20.3344 (2)0.76050 (17)0.0154 (2)0.0551 (7)
O20.2545 (2)0.65462 (16)0.20071 (14)0.0241 (4)
C20.1173 (3)0.8928 (2)0.09896 (19)0.0216 (5)
H2A0.08080.97060.09500.032*
H2C0.03860.84670.08100.032*
H2B0.16280.88290.16490.032*
P30.23148 (7)0.95789 (6)0.28343 (5)0.02113 (16)
F30.3038 (4)0.5932 (3)0.17037 (17)0.0865 (11)
O30.1153 (2)0.88590 (17)0.28130 (14)0.0239 (4)
C30.3067 (3)0.7111 (2)0.0298 (2)0.0241 (6)
H3B0.22870.66540.00610.036*
H3C0.38410.68840.00810.036*
H3A0.34160.70170.09750.036*
P40.15738 (7)0.75219 (6)0.37572 (5)0.02040 (16)
F40.3406 (2)0.54896 (16)0.03595 (14)0.0372 (4)
O40.0456 (2)0.71361 (15)0.29524 (14)0.0219 (4)
C40.4003 (3)0.4476 (3)0.2000 (2)0.0311 (7)
H4C0.48930.47760.20290.047*
H4A0.39310.44050.13300.047*
H4B0.39880.37470.23740.047*
F50.1333 (3)0.51630 (18)0.0786 (2)0.0734 (9)
O50.00828 (19)0.71780 (16)0.09965 (14)0.0210 (4)
C50.0986 (3)0.4756 (3)0.2401 (3)0.0339 (7)
H5A0.01340.52170.26590.051*
H5C0.10160.40230.27690.051*
H5B0.09590.46810.17240.051*
O60.1970 (2)0.84408 (17)0.12865 (17)0.0327 (5)
C60.2642 (4)0.5320 (3)0.3743 (2)0.0373 (8)
H6A0.18570.58050.40530.056*
H6B0.35480.55610.38220.056*
H6C0.25810.45580.40400.056*
C70.4043 (3)0.8860 (3)0.2605 (2)0.0337 (7)
H7B0.41050.81840.30520.050*
H7C0.47520.93330.26950.050*
H7A0.42240.86680.19430.050*
C80.2270 (3)1.0803 (2)0.2011 (2)0.0285 (6)
H8B0.13261.12160.21150.043*
H8A0.24731.06030.13510.043*
H8C0.29871.12620.21130.043*
C90.2105 (4)1.0049 (3)0.3994 (2)0.0371 (8)
H9B0.11561.04450.41380.056*
H9C0.28261.05470.40030.056*
H9A0.22180.94130.44790.056*
C100.2257 (3)0.8943 (3)0.3576 (2)0.0297 (6)
H10B0.14750.94070.34880.045*
H10C0.29440.91330.41380.045*
H10A0.27280.90670.30030.045*
C110.0891 (3)0.7320 (3)0.4869 (2)0.0317 (7)
H11A0.00690.77380.48120.048*
H11C0.06010.65320.50250.048*
H11B0.16290.75790.53790.048*
C120.3045 (3)0.6728 (3)0.3907 (2)0.0308 (7)
H12C0.27110.59400.40110.046*
H12A0.35030.68690.33290.046*
H12B0.37300.69380.44640.046*
C130.1330 (3)0.7628 (2)0.0938 (2)0.0221 (5)
C140.2120 (3)0.7015 (2)0.0332 (2)0.0238 (6)
C150.2495 (4)0.5889 (3)0.0808 (2)0.0369 (8)
O7A0.4474 (9)0.8498 (7)0.7251 (5)0.0477 (17)0.629 (5)
O8A0.5882 (6)0.7691 (6)0.6074 (5)0.0323 (13)0.629 (5)
C16A0.4755 (7)0.8008 (5)0.6533 (5)0.021 (2)0.629 (5)
C17A0.3420 (5)0.7754 (4)0.6121 (4)0.0329 (9)0.629 (5)
F6A0.2231 (3)0.8483 (2)0.6315 (2)0.0347 (8)0.629 (5)
F7A0.3679 (4)0.7818 (4)0.5132 (2)0.0379 (9)0.629 (5)
C18A0.2969 (6)0.6623 (4)0.6453 (4)0.0372 (10)0.629 (5)
F8A0.2645 (6)0.6562 (5)0.7412 (3)0.0703 (16)0.629 (5)
F9A0.1885 (4)0.6422 (4)0.6027 (4)0.0480 (12)0.629 (5)
F10A0.3998 (4)0.5841 (3)0.6197 (4)0.0678 (16)0.629 (5)
O7B0.4232 (16)0.8398 (13)0.7137 (9)0.052 (4)*0.371 (5)
O8B0.5843 (13)0.8011 (11)0.5898 (11)0.071 (6)0.371 (5)
C16B0.4611 (9)0.7981 (10)0.6411 (8)0.035 (6)*0.371 (5)
C17B0.3690 (6)0.7217 (6)0.6021 (4)0.041 (2)*0.371 (5)
F7B0.3527 (9)0.7481 (6)0.5070 (4)0.053 (3)*0.371 (5)
F6B0.4318 (6)0.6141 (5)0.6041 (5)0.0376 (18)*0.371 (5)
C18B0.2217 (7)0.7160 (6)0.6562 (4)0.046 (2)*0.371 (5)
F8B0.1567 (7)0.8193 (4)0.6525 (4)0.0486 (17)*0.371 (5)
F9B0.1530 (7)0.6463 (5)0.6187 (4)0.0319 (19)*0.371 (5)
F10B0.2208 (7)0.6733 (6)0.7469 (4)0.0378 (18)*0.371 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01510 (16)0.01617 (17)0.01697 (17)0.00428 (12)0.00109 (11)0.00082 (12)
P10.0158 (3)0.0150 (3)0.0169 (3)0.0026 (2)0.0013 (2)0.0017 (2)
F10.0599 (14)0.0691 (15)0.0299 (10)0.0364 (12)0.0006 (9)0.0139 (10)
O10.0221 (9)0.0172 (9)0.0179 (9)0.0055 (7)0.0004 (7)0.0017 (7)
C10.0181 (12)0.0232 (13)0.0236 (13)0.0048 (10)0.0008 (10)0.0002 (11)
P20.0181 (3)0.0204 (3)0.0220 (3)0.0000 (3)0.0013 (2)0.0024 (3)
F20.0481 (12)0.0329 (11)0.0966 (19)0.0074 (9)0.0504 (13)0.0130 (11)
O20.0189 (9)0.0232 (10)0.0273 (10)0.0015 (8)0.0017 (8)0.0053 (8)
C20.0213 (12)0.0226 (13)0.0213 (13)0.0041 (11)0.0044 (10)0.0008 (10)
P30.0221 (3)0.0230 (4)0.0199 (3)0.0078 (3)0.0044 (3)0.0015 (3)
F30.148 (3)0.096 (2)0.0307 (12)0.097 (2)0.0034 (15)0.0048 (13)
O30.0256 (10)0.0268 (10)0.0204 (9)0.0106 (8)0.0011 (8)0.0057 (8)
C30.0280 (14)0.0170 (13)0.0253 (14)0.0011 (11)0.0004 (11)0.0047 (10)
P40.0184 (3)0.0224 (3)0.0199 (3)0.0047 (3)0.0007 (2)0.0025 (3)
F40.0430 (11)0.0317 (10)0.0440 (11)0.0200 (9)0.0147 (9)0.0053 (8)
O40.0207 (9)0.0191 (9)0.0235 (10)0.0036 (7)0.0035 (7)0.0007 (7)
C40.0251 (14)0.0303 (16)0.0333 (16)0.0069 (12)0.0011 (12)0.0002 (13)
F50.0782 (18)0.0247 (11)0.134 (3)0.0036 (11)0.0712 (19)0.0002 (13)
O50.0186 (9)0.0223 (10)0.0232 (9)0.0063 (8)0.0033 (7)0.0020 (7)
C50.0250 (14)0.0236 (15)0.054 (2)0.0052 (12)0.0060 (14)0.0057 (14)
O60.0338 (11)0.0214 (10)0.0461 (13)0.0031 (9)0.0157 (10)0.0088 (9)
C60.0400 (18)0.045 (2)0.0225 (15)0.0030 (15)0.0028 (13)0.0042 (13)
C70.0243 (14)0.0352 (17)0.0403 (18)0.0036 (13)0.0085 (13)0.0055 (14)
C80.0299 (15)0.0247 (15)0.0313 (15)0.0071 (12)0.0065 (12)0.0019 (12)
C90.050 (2)0.0398 (18)0.0264 (16)0.0216 (16)0.0047 (14)0.0079 (13)
C100.0279 (14)0.0259 (15)0.0324 (16)0.0015 (12)0.0018 (12)0.0050 (12)
C110.0315 (15)0.0391 (18)0.0253 (15)0.0034 (13)0.0051 (12)0.0055 (13)
C120.0236 (14)0.0383 (17)0.0307 (16)0.0140 (13)0.0073 (11)0.0090 (13)
C130.0235 (13)0.0191 (13)0.0255 (14)0.0069 (11)0.0078 (10)0.0009 (10)
C140.0246 (13)0.0229 (14)0.0261 (14)0.0043 (11)0.0096 (11)0.0013 (11)
C150.054 (2)0.0300 (17)0.0333 (17)0.0229 (16)0.0176 (15)0.0027 (13)
O7A0.059 (4)0.062 (4)0.029 (3)0.007 (3)0.003 (2)0.032 (2)
O8A0.030 (2)0.030 (4)0.036 (3)0.0178 (18)0.0070 (18)0.001 (2)
C16A0.023 (3)0.028 (4)0.015 (3)0.0121 (19)0.003 (2)0.0083 (18)
C17A0.038 (2)0.027 (2)0.0363 (18)0.0004 (15)0.007 (2)0.0156 (17)
F6A0.0312 (16)0.0262 (15)0.0452 (17)0.0042 (12)0.0056 (13)0.0053 (13)
F7A0.045 (2)0.049 (2)0.0245 (14)0.0102 (17)0.0080 (12)0.0096 (13)
C18A0.036 (3)0.0291 (18)0.050 (2)0.0039 (18)0.016 (2)0.0034 (19)
F8A0.058 (3)0.108 (4)0.0394 (17)0.005 (3)0.0178 (19)0.025 (2)
F9A0.0239 (19)0.071 (3)0.055 (2)0.023 (2)0.0081 (18)0.007 (2)
F10A0.046 (2)0.0196 (18)0.151 (5)0.0063 (18)0.048 (3)0.025 (2)
O8B0.092 (9)0.038 (8)0.069 (9)0.038 (6)0.058 (7)0.016 (6)
Geometric parameters (Å, º) top
Cu1—O11.9535 (18)O6—C131.220 (4)
Cu1—O41.9582 (18)C6—H6A0.9800
Cu1—O31.965 (2)C6—H6B0.9800
Cu1—O51.9863 (19)C6—H6C0.9800
Cu1—O22.1876 (19)C7—H7B0.9800
P1—O11.5176 (19)C7—H7C0.9800
P1—C11.780 (3)C7—H7A0.9800
P1—C31.786 (3)C8—H8B0.9800
P1—C21.789 (3)C8—H8A0.9800
F1—C141.346 (4)C8—H8C0.9800
C1—H1B0.9800C9—H9B0.9800
C1—H1C0.9800C9—H9C0.9800
C1—H1A0.9800C9—H9A0.9800
P2—O21.498 (2)C10—H10B0.9800
P2—C51.786 (3)C10—H10C0.9800
P2—C61.787 (3)C10—H10A0.9800
P2—C41.792 (3)C11—H11A0.9800
F2—C141.345 (3)C11—H11C0.9800
C2—H2A0.9800C11—H11B0.9800
C2—H2C0.9800C12—H12C0.9800
C2—H2B0.9800C12—H12A0.9800
P3—O31.511 (2)C12—H12B0.9800
P3—C71.779 (3)C13—C141.549 (4)
P3—C81.782 (3)C14—C151.516 (4)
P3—C91.784 (3)O7A—C16A1.222 (8)
F3—C151.296 (4)O8A—C16A1.213 (9)
C3—H3B0.9800C16A—C17A1.572 (8)
C3—H3C0.9800C17A—F6A1.373 (6)
C3—H3A0.9800C17A—F7A1.378 (6)
P4—O41.5116 (19)C17A—C18A1.499 (6)
P4—C121.782 (3)C18A—F10A1.328 (6)
P4—C111.783 (3)C18A—F9A1.348 (5)
P4—C101.787 (3)C18A—F8A1.339 (7)
F4—C151.334 (4)O7B—C16B1.191 (14)
C4—H4C0.9800O8B—C16B1.285 (14)
C4—H4A0.9800C16B—C17B1.569 (8)
C4—H4B0.9800C17B—F6B1.379 (6)
F5—C151.337 (5)C17B—F7B1.378 (6)
O5—C131.265 (3)C17B—C18B1.498 (6)
C5—H5A0.9800C18B—F10B1.325 (7)
C5—H5C0.9800C18B—F9B1.349 (5)
C5—H5B0.9800C18B—F8B1.339 (7)
O1—Cu1—O4172.44 (8)P3—C7—H7A109.5
O1—Cu1—O390.48 (8)H7B—C7—H7A109.5
O4—Cu1—O388.42 (8)H7C—C7—H7A109.5
O1—Cu1—O591.12 (8)P3—C8—H8B109.5
O4—Cu1—O587.71 (8)P3—C8—H8A109.5
O3—Cu1—O5162.51 (8)H8B—C8—H8A109.5
O1—Cu1—O294.54 (7)P3—C8—H8C109.5
O4—Cu1—O292.99 (7)H8B—C8—H8C109.5
O3—Cu1—O2102.55 (8)H8A—C8—H8C109.5
O5—Cu1—O294.69 (8)P3—C9—H9B109.5
O1—P1—C1109.87 (12)P3—C9—H9C109.5
O1—P1—C3113.30 (12)H9B—C9—H9C109.5
C1—P1—C3106.69 (13)P3—C9—H9A109.5
O1—P1—C2112.92 (12)H9B—C9—H9A109.5
C1—P1—C2106.63 (13)H9C—C9—H9A109.5
C3—P1—C2107.03 (14)P4—C10—H10B109.5
P1—O1—Cu1131.81 (11)P4—C10—H10C109.5
P1—C1—H1B109.5H10B—C10—H10C109.5
P1—C1—H1C109.5P4—C10—H10A109.5
H1B—C1—H1C109.5H10B—C10—H10A109.5
P1—C1—H1A109.5H10C—C10—H10A109.5
H1B—C1—H1A109.5P4—C11—H11A109.5
H1C—C1—H1A109.5P4—C11—H11C109.5
O2—P2—C5113.83 (14)H11A—C11—H11C109.5
O2—P2—C6111.92 (15)P4—C11—H11B109.5
C5—P2—C6106.86 (17)H11A—C11—H11B109.5
O2—P2—C4112.71 (13)H11C—C11—H11B109.5
C5—P2—C4105.21 (16)P4—C12—H12C109.5
C6—P2—C4105.69 (16)P4—C12—H12A109.5
P2—O2—Cu1130.30 (11)H12C—C12—H12A109.5
P1—C2—H2A109.5P4—C12—H12B109.5
P1—C2—H2C109.5H12C—C12—H12B109.5
H2A—C2—H2C109.5H12A—C12—H12B109.5
P1—C2—H2B109.5O6—C13—O5129.8 (3)
H2A—C2—H2B109.5O6—C13—C14117.6 (2)
H2C—C2—H2B109.5O5—C13—C14112.6 (2)
O3—P3—C7112.50 (14)F2—C14—F1105.9 (3)
O3—P3—C8114.19 (13)F2—C14—C15106.8 (3)
C7—P3—C8107.45 (15)F1—C14—C15107.2 (3)
O3—P3—C9109.04 (14)F2—C14—C13111.1 (2)
C7—P3—C9108.03 (18)F1—C14—C13111.7 (2)
C8—P3—C9105.23 (16)C15—C14—C13113.7 (2)
P3—O3—Cu1133.98 (12)F3—C15—F4109.1 (3)
P1—C3—H3B109.5F3—C15—F5107.2 (3)
P1—C3—H3C109.5F4—C15—F5107.2 (3)
H3B—C3—H3C109.5F3—C15—C14111.1 (3)
P1—C3—H3A109.5F4—C15—C14111.5 (3)
H3B—C3—H3A109.5F5—C15—C14110.6 (3)
H3C—C3—H3A109.5O8A—C16A—O7A131.6 (7)
O4—P4—C12109.79 (13)O8A—C16A—C17A114.0 (6)
O4—P4—C11110.73 (13)O7A—C16A—C17A114.5 (6)
C12—P4—C11107.01 (16)F6A—C17A—F7A104.2 (4)
O4—P4—C10114.59 (13)F6A—C17A—C18A106.1 (4)
C12—P4—C10107.08 (16)F7A—C17A—C18A105.5 (4)
C11—P4—C10107.30 (16)F6A—C17A—C16A114.6 (4)
P4—O4—Cu1134.85 (12)F7A—C17A—C16A111.0 (4)
P2—C4—H4C109.5C18A—C17A—C16A114.4 (4)
P2—C4—H4A109.5F10A—C18A—F9A103.9 (4)
H4C—C4—H4A109.5F10A—C18A—F8A110.5 (5)
P2—C4—H4B109.5F9A—C18A—F8A112.9 (5)
H4C—C4—H4B109.5F10A—C18A—C17A111.3 (5)
H4A—C4—H4B109.5F9A—C18A—C17A111.9 (4)
C13—O5—Cu1111.38 (18)F8A—C18A—C17A106.5 (5)
P2—C5—H5A109.5O7B—C16B—O8B125.4 (8)
P2—C5—H5C109.5O7B—C16B—C17B123.0 (9)
H5A—C5—H5C109.5O8B—C16B—C17B111.4 (9)
P2—C5—H5B109.5F6B—C17B—F7B102.7 (4)
H5A—C5—H5B109.5F6B—C17B—C18B106.1 (5)
H5C—C5—H5B109.5F7B—C17B—C18B105.6 (5)
P2—C6—H6A109.5F6B—C17B—C16B111.5 (5)
P2—C6—H6B109.5F7B—C17B—C16B115.0 (5)
H6A—C6—H6B109.5C18B—C17B—C16B114.9 (4)
P2—C6—H6C109.5F10B—C18B—F9B103.9 (5)
H6A—C6—H6C109.5F10B—C18B—F8B110.0 (5)
H6B—C6—H6C109.5F9B—C18B—F8B112.8 (5)
P3—C7—H7B109.5F10B—C18B—C17B112.6 (5)
P3—C7—H7C109.5F9B—C18B—C17B110.3 (4)
H7B—C7—H7C109.5F8B—C18B—C17B107.3 (5)
C1—P1—O1—Cu1154.13 (15)F1—C14—C15—F3169.7 (3)
C3—P1—O1—Cu134.9 (2)C13—C14—C15—F345.8 (4)
C2—P1—O1—Cu186.98 (17)F2—C14—C15—F444.8 (4)
O3—Cu1—O1—P1166.61 (16)F1—C14—C15—F468.4 (4)
O5—Cu1—O1—P130.81 (16)C13—C14—C15—F4167.7 (3)
O2—Cu1—O1—P163.98 (16)F2—C14—C15—F5164.0 (3)
C5—P2—O2—Cu137.4 (2)F1—C14—C15—F550.8 (3)
C6—P2—O2—Cu183.9 (2)C13—C14—C15—F573.1 (3)
C4—P2—O2—Cu1157.08 (16)O8A—C16A—C17A—F6A151.9 (6)
O1—Cu1—O2—P2163.26 (16)O7A—C16A—C17A—F6A27.5 (8)
O4—Cu1—O2—P216.18 (17)O8A—C16A—C17A—F7A34.2 (7)
O3—Cu1—O2—P2105.23 (16)O7A—C16A—C17A—F7A145.2 (7)
O5—Cu1—O2—P271.76 (17)O8A—C16A—C17A—C18A85.1 (7)
C7—P3—O3—Cu149.3 (2)O7A—C16A—C17A—C18A95.4 (7)
C8—P3—O3—Cu173.5 (2)F6A—C17A—C18A—F10A172.6 (4)
C9—P3—O3—Cu1169.11 (19)F7A—C17A—C18A—F10A62.4 (5)
O1—Cu1—O3—P328.23 (18)C16A—C17A—C18A—F10A60.0 (6)
O4—Cu1—O3—P3159.25 (18)F6A—C17A—C18A—F9A56.9 (6)
O5—Cu1—O3—P3123.5 (2)F7A—C17A—C18A—F9A53.3 (6)
O2—Cu1—O3—P366.53 (18)C16A—C17A—C18A—F9A175.7 (5)
C12—P4—O4—Cu1140.10 (18)F6A—C17A—C18A—F8A66.8 (5)
C11—P4—O4—Cu1102.0 (2)F7A—C17A—C18A—F8A177.1 (4)
C10—P4—O4—Cu119.6 (2)C16A—C17A—C18A—F8A60.5 (6)
O3—Cu1—O4—P441.48 (18)O7B—C16B—C17B—F6B113.4 (14)
O5—Cu1—O4—P4121.46 (18)O8B—C16B—C17B—F6B61.0 (11)
O2—Cu1—O4—P4143.97 (17)O7B—C16B—C17B—F7B130.3 (14)
O1—Cu1—O5—C1399.79 (18)O8B—C16B—C17B—F7B55.4 (12)
O4—Cu1—O5—C1372.74 (18)O7B—C16B—C17B—C18B7.4 (16)
O3—Cu1—O5—C134.6 (4)O8B—C16B—C17B—C18B178.3 (10)
O2—Cu1—O5—C13165.56 (18)F6B—C17B—C18B—F10B60.9 (6)
Cu1—O5—C13—O66.3 (4)F7B—C17B—C18B—F10B169.4 (6)
Cu1—O5—C13—C14173.07 (17)C16B—C17B—C18B—F10B62.8 (8)
O6—C13—C14—F210.4 (4)F6B—C17B—C18B—F9B54.7 (6)
O5—C13—C14—F2170.1 (2)F7B—C17B—C18B—F9B53.8 (7)
O6—C13—C14—F1128.4 (3)C16B—C17B—C18B—F9B178.4 (6)
O5—C13—C14—F152.1 (3)F6B—C17B—C18B—F8B177.9 (5)
O6—C13—C14—C15110.1 (3)F7B—C17B—C18B—F8B69.4 (6)
O5—C13—C14—C1569.4 (3)C16B—C17B—C18B—F8B58.4 (7)
F2—C14—C15—F377.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O50.982.573.265 (3)128
C5—H5A···O40.982.423.204 (4)136
C10—H10B···O30.982.583.266 (4)127
C1—H1A···F2i0.982.523.392 (3)149
C1—H1B···O6ii0.982.473.265 (3)138
C4—H4A···F4iii0.982.513.482 (3)170
C4—H4C···F3i0.982.533.478 (5)163
C9—H9A···F7A0.982.443.322 (6)150
C11—H11B···O8Aiv0.982.423.289 (7)147
C12—H12B···O8Aiv0.982.523.388 (8)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C3F5O2)(C3H9OP)4](C3F5O2)
Mr757.89
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5955 (8), 12.2627 (11), 14.1848 (12)
α, β, γ (°)82.720 (2), 80.501 (1), 82.899 (2)
V3)1623.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.48 × 0.17 × 0.03
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.655, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
10254, 7148, 6207
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.07
No. of reflections7148
No. of parameters416
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.64

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.9535 (18)Cu1—O51.9863 (19)
Cu1—O41.9582 (18)Cu1—O22.1876 (19)
Cu1—O31.965 (2)
O1—Cu1—O4172.44 (8)O3—Cu1—O5162.51 (8)
O1—Cu1—O390.48 (8)O1—Cu1—O294.54 (7)
O4—Cu1—O388.42 (8)O4—Cu1—O292.99 (7)
O1—Cu1—O591.12 (8)O3—Cu1—O2102.55 (8)
O4—Cu1—O587.71 (8)O5—Cu1—O294.69 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O50.982.573.265 (3)128
C5—H5A···O40.982.423.204 (4)136
C10—H10B···O30.982.583.266 (4)127
C1—H1A···F2i0.982.523.392 (3)149
C1—H1B···O6ii0.982.473.265 (3)138
C4—H4A···F4iii0.982.513.482 (3)170
C4—H4C···F3i0.982.533.478 (5)163
C9—H9A···F7A0.982.443.322 (6)150
C11—H11B···O8Aiv0.982.423.289 (7)147
C12—H12B···O8Aiv0.982.523.388 (8)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x1, y, z.
 

Acknowledgements

IBSz thanks the Ministry of Science and High Education for grant N N204 546539. LD thanks the Research Foundation Flanders (FWO) for financial support.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Luck, R. L. & Son, K.-A. (1991). Inorg. Chim. Acta, 184, 177–183.  CrossRef CAS Google Scholar
First citationEdelmann, F. & Behrens, U. (1986). Acta Cryst. C42, 1715–1717.  CrossRef IUCr Journals Google Scholar
First citationHill, N. J., Leung, L.-S., Levason, W. & Webster, M. (2003). Inorg. Chim. Acta, 343, 169–174.  CrossRef CAS Google Scholar
First citationHlavinka, M. L. & Hagadorn, J. R. (2005). Organometallics, 24, 4116–4118.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, Z.-H., Sun, B.-W., Liao, D.-Z., Wang, G.-L., Dahan, F. & Tuchagues, J.-P. (1998). Inorg. Chim. Acta, 279, 69–75.  CrossRef CAS Google Scholar
First citationJohnson, J. S. & Bergman, R. G. (2001). J. Am. Chem. Soc. 123, 2923–2924.  CrossRef CAS Google Scholar
First citationKlein, H.-F., Dal, A., Hartmann, S., Flörke, U. & Haupt, H.-J. (1999). Inorg. Chim. Acta, 287, 199–203.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPiszczek, P., Szymańska, I., Bala, W., Bartkiewicz, K., Talik, E. & Heiman, J. (2008). Thin Solid Films, 516, 3924–3930.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzymańska, I., Piszczek, P., Szczęsny, R. & Szłyk, E. (2007). Polyhedron, 26, 2440–2448.  Google Scholar
First citationSzymańska, I., Piszczek, P. & Szłyk, E. (2009). Polyhedron, 28, 721–728.  Google Scholar
First citationVeige, A. S., Slaughter, L. M., Lobkovsky, E. B., Wolczanski, P. T., Matsunaga, N., Decker, S. A. & Cundari, T. R. (2003). Inorg. Chem. 42, 6204–6224.  CrossRef CAS Google Scholar
First citationZhang, L., Li, S.-Q., Sun, B.-W., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Wang, G.-L., Yao, X.-K. & Wang, H.-G. (1999). Polyhedron, 18, 781–785.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1225-m1226
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds