metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of di­chlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3N2,N1,N6)manganese(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 10 August 2011; accepted 20 August 2011; online 27 August 2011)

The MnII ion in the title complex, [MnCl2(C18H12N6)], is five-coordinated in a distorted square-pyramidal geometry by three N atoms of the tridentate 2,4,6-tri-2-pyridyl-1,3,5-triazine ligand and two chloride anions. In the crystal, the pyridyl rings are located approximately parallel to their carrier triazine ring, making dihedral angles of 5.0 (1), 3.8 (1) and 3.2 (1)°. Intramolecular C—H⋯N hydrogen bonds are present. The complexes are stacked in columns along the c axis and linked by inter­molecular C—H⋯Cl hydrogen bonds, forming one-dimensional chains. In the column, inter­molecular ππ inter­actions between the six-membered rings are present, the shortest centroid–centroid distance being 3.623 (2) Å. The structure reported herein represents a monoclinic polymorph of the previously reported triclinic form [Ha (2010[Ha, K. (2010). Acta Cryst. E66, m262.]). Acta Cryst. E66, m262].

Related literature

For the triclinic crystal structure of the title complex, see: Ha (2010[Ha, K. (2010). Acta Cryst. E66, m262.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C18H12N6)]

  • Mr = 438.18

  • Monoclinic, P 21 /c

  • a = 10.8799 (9) Å

  • b = 19.5524 (16) Å

  • c = 8.6446 (7) Å

  • β = 101.051 (2)°

  • V = 1804.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 200 K

  • 0.29 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 1.000

  • 13299 measured reflections

  • 4450 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.01

  • 4450 reflections

  • 292 parameters

  • All H-atom parameters refined

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.189 (2)
Mn1—N4 2.318 (2)
Mn1—N6 2.348 (2)
Mn1—Cl1 2.3470 (10)
Mn1—Cl2 2.3400 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl1i 0.91 (3) 2.76 (3) 3.589 (3) 151 (3)
C15—H15⋯Cl1ii 0.92 (3) 2.81 (3) 3.633 (4) 151 (2)
C3—H3⋯N2 0.97 (3) 2.52 (3) 2.896 (4) 103 (2)
C9—H9⋯N3 0.92 (3) 2.41 (3) 2.735 (4) 101 (2)
C15—H15⋯N3 0.92 (3) 2.57 (3) 2.869 (4) 100 (2)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title complex, [MnCl2(tptz)] (tptz = 2,4,6-tri-2-pyridyl-1,3,5-triazine, C18H12N6), was previously reported in the triclinic space group P1 (Ha, 2010). The structure presented herein is essentially the same as the published structure and represents a monoclinic polymorph.

The MnII ion in the complex is five-coordinated in an approximately square-pyramidal geometry by three N atoms of the tridentate tptz ligand and two chloride anions (Fig. 1). While the Mn—Cl bond lengths are almost equal, the Mn—N bond lengths are somewhat different (Table 1). The Mn1—N4/6(pyridyl) bonds are slightly longer than the Mn1—N1(triazine) bond. In the crystal, the pyridyl rings are located approximately parallel to their carrier triazine ring, making dihedral angles of 5.0 (1)°, 3.8 (1)° and 3.2 (1)°. The complexes are stacked in columns along the c axis and linked by intermolecular C—H···Cl hydrogen bonds, forming one-dimensional chains (Fig. 2 and Table 2). There are also intramolecular C—H···N hydrogen bonds (Table 2). In the column, intermolecular π-π interactions between the six-membered rings are present, the shortest centroid-centroid distance being 3.623 (2) Å.

Related literature top

For the triclinic crystal structure of the title complex, see: Ha (2010).

Experimental top

To a solution of MnCl2.4H2O (0.2969 g, 1.50 mmol) in MeOH (30 ml) was added 2,4,6-tri-2-pyridyl-1,3,5-triazine (0.1561 g, 0.50 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with MeOH and dried at 50 °C, to give a yellow powder (0.1355 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an N,N-dimethylformamide (DMF) solution at 60 °C.

Refinement top

All H atoms were located from Fourier difference maps and refined isotropically: C—H = 0.91 (3)–0.99 (3) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Intermolecular hydrogen-bond interactions are drawn with dashed lines.
dichlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine- κ3N2,N1,N6)manganese(II) top
Crystal data top
[MnCl2(C18H12N6)]F(000) = 884
Mr = 438.18Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3437 reflections
a = 10.8799 (9) Åθ = 2.6–28.0°
b = 19.5524 (16) ŵ = 1.04 mm1
c = 8.6446 (7) ÅT = 200 K
β = 101.051 (2)°Stick, yellow
V = 1804.8 (3) Å30.29 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4450 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1413
Tmin = 0.826, Tmax = 1.000k = 2621
13299 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
4450 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[MnCl2(C18H12N6)]V = 1804.8 (3) Å3
Mr = 438.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8799 (9) ŵ = 1.04 mm1
b = 19.5524 (16) ÅT = 200 K
c = 8.6446 (7) Å0.29 × 0.15 × 0.15 mm
β = 101.051 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4450 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2653 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.000Rint = 0.056
13299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.01Δρmax = 0.52 e Å3
4450 reflectionsΔρmin = 0.56 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.67220 (5)0.04692 (2)0.39757 (5)0.02899 (15)
Cl10.85416 (9)0.08835 (5)0.32140 (10)0.0471 (3)
Cl20.49434 (8)0.09448 (4)0.23876 (10)0.0428 (2)
N10.7359 (2)0.01546 (12)0.6079 (3)0.0259 (6)
N20.8167 (2)0.12055 (12)0.7203 (3)0.0266 (6)
N30.8117 (2)0.02159 (12)0.8809 (3)0.0279 (6)
N40.6701 (2)0.06745 (12)0.3264 (3)0.0279 (6)
N50.9360 (2)0.18914 (13)0.9898 (3)0.0324 (6)
N60.6586 (2)0.11029 (12)0.6245 (3)0.0277 (6)
C10.7629 (3)0.08207 (14)0.5988 (3)0.0256 (7)
C20.7235 (3)0.11228 (15)0.4397 (3)0.0255 (7)
C30.7402 (3)0.18052 (16)0.4105 (4)0.0286 (7)
H30.783 (3)0.2070 (16)0.499 (4)0.046 (10)*
C40.7004 (3)0.20518 (17)0.2583 (4)0.0340 (8)
H40.710 (3)0.2521 (15)0.233 (4)0.034 (9)*
C50.6451 (3)0.16038 (17)0.1432 (4)0.0342 (8)
H50.614 (3)0.1737 (14)0.039 (4)0.029 (8)*
C60.6321 (3)0.09226 (17)0.1815 (4)0.0326 (8)
H60.595 (3)0.0583 (15)0.109 (4)0.036 (9)*
C70.8439 (3)0.08676 (14)0.8588 (3)0.0249 (7)
C80.9099 (3)0.12252 (15)1.0019 (3)0.0259 (7)
C90.9396 (3)0.08632 (17)1.1435 (4)0.0304 (7)
H90.922 (3)0.0405 (14)1.147 (3)0.027 (8)*
C100.9995 (3)0.12008 (19)1.2765 (4)0.0352 (8)
H101.016 (3)0.0986 (15)1.372 (4)0.041 (10)*
C111.0281 (3)0.18794 (18)1.2663 (4)0.0354 (8)
H111.067 (3)0.2127 (17)1.357 (4)0.057 (11)*
C120.9943 (3)0.22022 (18)1.1217 (4)0.0358 (8)
H121.007 (3)0.2657 (15)1.110 (3)0.026 (8)*
C130.7578 (3)0.01119 (14)0.7514 (4)0.0268 (7)
C140.7155 (3)0.08276 (14)0.7630 (3)0.0261 (7)
C150.7327 (3)0.11732 (17)0.9051 (4)0.0328 (8)
H150.779 (3)0.0970 (15)0.993 (4)0.042 (10)*
C160.6929 (3)0.18411 (18)0.9038 (4)0.0413 (9)
H160.699 (3)0.2114 (16)0.992 (4)0.046 (10)*
C170.6338 (3)0.21370 (17)0.7629 (4)0.0384 (8)
H170.606 (3)0.2621 (15)0.760 (3)0.035 (9)*
C180.6168 (3)0.17449 (16)0.6269 (4)0.0322 (7)
H180.567 (3)0.1904 (15)0.528 (4)0.033 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0372 (3)0.0270 (3)0.0217 (3)0.0009 (2)0.0029 (2)0.0030 (2)
Cl10.0452 (6)0.0684 (7)0.0269 (5)0.0200 (4)0.0046 (4)0.0010 (4)
Cl20.0392 (5)0.0497 (6)0.0354 (5)0.0031 (4)0.0029 (4)0.0097 (4)
N10.0348 (15)0.0224 (13)0.0199 (13)0.0009 (11)0.0035 (11)0.0001 (10)
N20.0296 (15)0.0277 (14)0.0218 (13)0.0020 (11)0.0028 (11)0.0001 (11)
N30.0363 (16)0.0248 (14)0.0213 (13)0.0008 (11)0.0023 (12)0.0017 (11)
N40.0333 (16)0.0282 (14)0.0206 (14)0.0012 (11)0.0013 (11)0.0014 (11)
N50.0366 (17)0.0307 (15)0.0277 (15)0.0004 (12)0.0006 (12)0.0028 (12)
N60.0339 (16)0.0255 (14)0.0228 (14)0.0029 (11)0.0033 (11)0.0021 (11)
C10.0284 (17)0.0246 (17)0.0234 (16)0.0004 (13)0.0038 (13)0.0024 (12)
C20.0293 (17)0.0269 (17)0.0205 (15)0.0014 (13)0.0053 (13)0.0006 (12)
C30.0315 (18)0.0301 (18)0.0225 (16)0.0002 (14)0.0007 (14)0.0017 (13)
C40.044 (2)0.0272 (19)0.0319 (19)0.0023 (15)0.0090 (16)0.0064 (14)
C50.042 (2)0.040 (2)0.0195 (17)0.0028 (15)0.0020 (15)0.0034 (14)
C60.041 (2)0.035 (2)0.0206 (17)0.0009 (15)0.0028 (15)0.0031 (14)
C70.0252 (17)0.0241 (17)0.0244 (16)0.0034 (12)0.0020 (13)0.0003 (12)
C80.0254 (17)0.0277 (17)0.0231 (16)0.0052 (13)0.0005 (13)0.0004 (13)
C90.0343 (19)0.0307 (19)0.0262 (18)0.0032 (14)0.0054 (15)0.0015 (14)
C100.036 (2)0.048 (2)0.0194 (18)0.0072 (16)0.0010 (15)0.0007 (15)
C110.032 (2)0.047 (2)0.0252 (18)0.0034 (15)0.0009 (15)0.0096 (16)
C120.037 (2)0.031 (2)0.038 (2)0.0018 (15)0.0029 (16)0.0084 (16)
C130.0296 (17)0.0247 (16)0.0266 (17)0.0030 (13)0.0064 (14)0.0035 (13)
C140.0354 (19)0.0230 (16)0.0206 (16)0.0019 (13)0.0070 (14)0.0004 (12)
C150.040 (2)0.0314 (19)0.0258 (18)0.0030 (15)0.0039 (16)0.0002 (14)
C160.057 (3)0.035 (2)0.035 (2)0.0046 (17)0.0146 (18)0.0102 (17)
C170.052 (2)0.0285 (19)0.036 (2)0.0064 (16)0.0116 (18)0.0007 (15)
C180.036 (2)0.0303 (19)0.0302 (19)0.0014 (14)0.0053 (15)0.0069 (14)
Geometric parameters (Å, º) top
Mn1—N12.189 (2)C4—H40.95 (3)
Mn1—N42.318 (2)C5—C61.386 (4)
Mn1—N62.348 (2)C5—H50.93 (3)
Mn1—Cl12.3470 (10)C6—H60.95 (3)
Mn1—Cl22.3400 (10)C7—C81.481 (4)
N1—C131.324 (4)C8—C91.397 (4)
N1—C11.341 (3)C9—C101.377 (4)
N2—C11.333 (4)C9—H90.92 (3)
N2—C71.349 (4)C10—C111.369 (5)
N3—C131.325 (4)C10—H100.91 (3)
N3—C71.345 (4)C11—C121.386 (5)
N4—C61.333 (4)C11—H110.95 (4)
N4—C21.359 (4)C12—H120.91 (3)
N5—C121.340 (4)C13—C141.483 (4)
N5—C81.341 (4)C14—C151.383 (4)
N6—C181.337 (4)C15—C161.375 (4)
N6—C141.350 (4)C15—H150.92 (3)
C1—C21.483 (4)C16—C171.390 (5)
C2—C31.376 (4)C16—H160.92 (3)
C3—C41.390 (4)C17—C181.386 (4)
C3—H30.97 (3)C17—H170.99 (3)
C4—C51.375 (4)C18—H180.97 (3)
N1—Mn1—N470.63 (9)N4—C6—H6112.6 (19)
N1—Mn1—Cl2143.46 (7)C5—C6—H6124.3 (19)
N4—Mn1—Cl2105.24 (7)N3—C7—N2124.8 (3)
N1—Mn1—Cl1105.99 (7)N3—C7—C8115.2 (3)
N4—Mn1—Cl1102.96 (7)N2—C7—C8119.9 (3)
Cl2—Mn1—Cl1110.21 (4)N5—C8—C9122.9 (3)
N1—Mn1—N670.16 (8)N5—C8—C7118.0 (3)
N4—Mn1—N6137.01 (8)C9—C8—C7119.1 (3)
Cl2—Mn1—N695.92 (7)C10—C9—C8118.8 (3)
Cl1—Mn1—N6104.10 (6)C10—C9—H9120.6 (19)
C13—N1—C1115.8 (2)C8—C9—H9120.5 (19)
C13—N1—Mn1122.03 (19)C11—C10—C9119.2 (3)
C1—N1—Mn1122.03 (18)C11—C10—H10120 (2)
C1—N2—C7114.3 (2)C9—C10—H10121 (2)
C13—N3—C7115.1 (2)C10—C11—C12118.4 (3)
C6—N4—C2117.1 (3)C10—C11—H11121 (2)
C6—N4—Mn1125.9 (2)C12—C11—H11121 (2)
C2—N4—Mn1116.75 (19)N5—C12—C11124.2 (3)
C12—N5—C8116.5 (3)N5—C12—H12114.1 (19)
C18—N6—C14117.4 (3)C11—C12—H12121.6 (19)
C18—N6—Mn1125.8 (2)N1—C13—N3124.9 (3)
C14—N6—Mn1116.04 (18)N1—C13—C14115.6 (3)
N2—C1—N1124.7 (3)N3—C13—C14119.5 (3)
N2—C1—C2120.8 (3)N6—C14—C15123.6 (3)
N1—C1—C2114.5 (3)N6—C14—C13114.3 (2)
N4—C2—C3123.1 (3)C15—C14—C13122.0 (3)
N4—C2—C1114.8 (2)C16—C15—C14117.9 (3)
C3—C2—C1122.1 (3)C16—C15—H15123 (2)
C2—C3—C4118.8 (3)C14—C15—H15119 (2)
C2—C3—H3115.7 (19)C15—C16—C17119.6 (3)
C4—C3—H3125.4 (19)C15—C16—H16125 (2)
C5—C4—C3118.5 (3)C17—C16—H16115 (2)
C5—C4—H4119.9 (19)C18—C17—C16118.5 (3)
C3—C4—H4121.6 (19)C18—C17—H17120.9 (18)
C4—C5—C6119.4 (3)C16—C17—H17120.6 (18)
C4—C5—H5123.1 (18)N6—C18—C17122.8 (3)
C6—C5—H5117.6 (18)N6—C18—H18114.8 (17)
N4—C6—C5123.1 (3)C17—C18—H18122.2 (17)
N4—Mn1—N1—C13173.6 (2)C3—C4—C5—C60.7 (5)
Cl2—Mn1—N1—C1384.0 (3)C2—N4—C6—C50.2 (5)
Cl1—Mn1—N1—C1388.0 (2)Mn1—N4—C6—C5173.1 (2)
N6—Mn1—N1—C1311.6 (2)C4—C5—C6—N40.4 (5)
N4—Mn1—N1—C110.8 (2)C13—N3—C7—N25.2 (4)
Cl2—Mn1—N1—C1100.4 (2)C13—N3—C7—C8177.1 (3)
Cl1—Mn1—N1—C187.7 (2)C1—N2—C7—N35.6 (4)
N6—Mn1—N1—C1172.8 (2)C1—N2—C7—C8176.8 (3)
N1—Mn1—N4—C6177.8 (3)C12—N5—C8—C90.7 (4)
Cl2—Mn1—N4—C635.9 (3)C12—N5—C8—C7179.2 (3)
Cl1—Mn1—N4—C679.6 (3)N3—C7—C8—N5175.0 (3)
N6—Mn1—N4—C6152.6 (2)N2—C7—C8—N52.8 (4)
N1—Mn1—N4—C28.9 (2)N3—C7—C8—C93.5 (4)
Cl2—Mn1—N4—C2150.78 (19)N2—C7—C8—C9178.7 (3)
Cl1—Mn1—N4—C293.8 (2)N5—C8—C9—C100.8 (5)
N6—Mn1—N4—C234.1 (3)C7—C8—C9—C10179.2 (3)
N1—Mn1—N6—C18179.1 (3)C8—C9—C10—C110.1 (5)
N4—Mn1—N6—C18153.8 (2)C9—C10—C11—C120.5 (5)
Cl2—Mn1—N6—C1833.9 (2)C8—N5—C12—C110.1 (5)
Cl1—Mn1—N6—C1878.7 (3)C10—C11—C12—N50.6 (5)
N1—Mn1—N6—C1411.4 (2)C1—N1—C13—N35.2 (4)
N4—Mn1—N6—C1436.7 (3)Mn1—N1—C13—N3170.7 (2)
Cl2—Mn1—N6—C14156.7 (2)C1—N1—C13—C14173.8 (2)
Cl1—Mn1—N6—C1490.8 (2)Mn1—N1—C13—C1410.3 (3)
C7—N2—C1—N10.3 (4)C7—N3—C13—N10.6 (4)
C7—N2—C1—C2178.0 (3)C7—N3—C13—C14178.4 (2)
C13—N1—C1—N24.7 (4)C18—N6—C14—C150.2 (4)
Mn1—N1—C1—N2171.1 (2)Mn1—N6—C14—C15170.2 (2)
C13—N1—C1—C2173.1 (3)C18—N6—C14—C13179.2 (3)
Mn1—N1—C1—C211.0 (3)Mn1—N6—C14—C1310.4 (3)
C6—N4—C2—C30.6 (4)N1—C13—C14—N60.9 (4)
Mn1—N4—C2—C3173.4 (2)N3—C13—C14—N6178.1 (3)
C6—N4—C2—C1179.4 (3)N1—C13—C14—C15179.7 (3)
Mn1—N4—C2—C16.6 (3)N3—C13—C14—C151.3 (4)
N2—C1—C2—N4179.9 (3)N6—C14—C15—C162.1 (5)
N1—C1—C2—N42.2 (4)C13—C14—C15—C16178.6 (3)
N2—C1—C2—C30.1 (4)C14—C15—C16—C172.1 (5)
N1—C1—C2—C3177.8 (3)C15—C16—C17—C180.0 (5)
N4—C2—C3—C40.3 (5)C14—N6—C18—C172.5 (5)
C1—C2—C3—C4179.7 (3)Mn1—N6—C18—C17166.8 (2)
C2—C3—C4—C50.4 (5)C16—C17—C18—N62.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.91 (3)2.76 (3)3.589 (3)151 (3)
C15—H15···Cl1ii0.92 (3)2.81 (3)3.633 (4)151 (2)
C3—H3···N20.97 (3)2.52 (3)2.896 (4)103 (2)
C9—H9···N30.92 (3)2.41 (3)2.735 (4)101 (2)
C15—H15···N30.92 (3)2.57 (3)2.869 (4)100 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[MnCl2(C18H12N6)]
Mr438.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.8799 (9), 19.5524 (16), 8.6446 (7)
β (°) 101.051 (2)
V3)1804.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.29 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.826, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13299, 4450, 2653
Rint0.056
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.01
No. of reflections4450
No. of parameters292
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.52, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—N12.189 (2)Mn1—Cl12.3470 (10)
Mn1—N42.318 (2)Mn1—Cl22.3400 (10)
Mn1—N62.348 (2)
N1—Mn1—N470.63 (9)N1—Mn1—N670.16 (8)
Cl2—Mn1—Cl1110.21 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl1i0.91 (3)2.76 (3)3.589 (3)151 (3)
C15—H15···Cl1ii0.92 (3)2.81 (3)3.633 (4)151 (2)
C3—H3···N20.97 (3)2.52 (3)2.896 (4)103 (2)
C9—H9···N30.92 (3)2.41 (3)2.735 (4)101 (2)
C15—H15···N30.92 (3)2.57 (3)2.869 (4)100 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010). Acta Cryst. E66, m262.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds