metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1255-m1256

catena-Poly[[di­aqua­copper(II)]-μ-hy­drox­ido-κ2O:O-μ-[4-(4H-1,2,4-triazol-4-yl)benzoato]-κ2N1:N2]

aCollege of Physics, Jilin University, Changchun 130012, People's Republic of China, and bDepartment of Physics Education, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: chemshihc@163.com

(Received 7 August 2011; accepted 11 August 2011; online 17 August 2011)

The title compound, [Cu(C9H6N3O2)(OH)(H2O)2]n, adopts a chain motif along [010] in which the CuII atoms are bridged by hy­droxy groups and 4-(1,2,4-triazol-4-yl)benzoate (tab) ligands. The CuII atom lies on an inversion center and is six-coordinated by two N atoms from two tab ligands, two hy­droxy groups and two water mol­ecules, giving a distorted octa­hedral geometry. The hy­droxy group and the tab ligand are located on a mirror plane. One of the water H atoms is disordered over two positions with equal occupancy factors. Inter­molecular O—H⋯O hydrogen bonds extend the chains into a layer parallel to (100) and C—H⋯O hydrogen bonds connect the layers into a three-dimensional network.

Related literature

For general background to the applications of coordination polymers, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Liu et al. (2010[Liu, D., Ren, Z.-G., Li, H.-X., Chen, Y., Wang, J., Zhang, Y. & Lang, J.-P. (2010). CrystEngComm, 12, 1912-1919.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568-m1569.]); Zhang et al. (2004[Zhang, J., Li, Z.-J., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Inorg. Chem. 43, 8085-8091.]). For a related structure, see: Lin et al. (2011[Lin, M.-H., Zhou, J.-F., Liu, B.-B. & Lin, J.-L. (2011). Acta Cryst. E67, m352.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H6N3O2)(OH)(H2O)2]

  • Mr = 304.75

  • Monoclinic, P 21 /m

  • a = 6.787 (5) Å

  • b = 6.758 (5) Å

  • c = 12.036 (5) Å

  • β = 102.919 (5)°

  • V = 538.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.64, Tmax = 0.75

  • 3021 measured reflections

  • 1165 independent reflections

  • 1010 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.083

  • S = 1.12

  • 1165 reflections

  • 111 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H9⋯O2i 0.84 (3) 2.07 (3) 2.907 (4) 172 (3)
O4—H10A⋯O2ii 0.83 (3) 1.94 (3) 2.746 (3) 164 (3)
O4—H10⋯O4iii 0.85 (6) 1.94 (6) 2.762 (4) 165 (6)
O4—H10′⋯O4iv 0.85 (2) 1.93 (2) 2.759 (4) 165 (7)
C6—H6⋯O1v 0.93 2.44 3.172 (5) 135
C8—H8⋯O1vi 0.93 2.23 3.052 (4) 147
Symmetry codes: (i) x, y, z+1; (ii) [-x, y-{\script{1\over 2}}, -z-1]; (iii) -x-1, -y, -z; (iv) [x, -y+{\script{1\over 2}}, z]; (v) x-1, y, z; (vi) [-x+1, y-{\script{1\over 2}}, -z-1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers are currently of great interest due to structural versatility, unique properties and potential applications in catalysis, gas storage and in molecular-based magnetic materials (Liu et al., 2010; Zhang et al., 2004). Heterocyclic carboxylates have often been used as mono-, bi- or multidentate ligands to bind transition metal centers, leading to the formation of moderately robust metal–organic coordination frameworks (Aghabozorg et al., 2008; Wang et al., 2009). In this contribution, we selected 4-(1,2,4-triazol-4-yl)benzoic acid (Htab) as an organic carboxylate ligand, generating a coordination polymer, [Cu(C9H6N3O2)(H2O)2(OH)], which is reported here.

The title compound adopts a chain motif, in which the hydroxy groups and tab ligands as bridges to connect adjacent octahedrally coordinated CuII atoms (Fig. 1). The CuII atom lies on an inversion center and is six-coordinated by two N atoms from two tab ligands, two O atoms from hydroxy groups and two water molecules, giving a distorted octahedral geometry. The Cu—O and Cu—N bond lengths and the O—Cu—O, O—Cu—N and N—Cu—N bond angles are in the normal range (Lin et al., 2011). The hydroxy group and the tab ligand are located on a mirro plane. One of the water H atoms is disordered over two positions with equal occupancy factors. Intermolecular O—H···O hydrogen bonds extend the chains into a layer parallel to (1 0 0). C—H···O hydrogen bonds connect the layers into a three-dimensional network (Fig. 2).

Related literature top

For general background to the applications of coordination polymers, see: Aghabozorg et al. (2008); Liu et al. (2010); Wang et al. (2009); Zhang et al. (2004). For a related structure, see: Lin et al. (2011).

Experimental top

The synthesis was performed under hydrothermal conditions. A mixture of CuCl2.2H2O (0.2 mmol, 0.034 g), 4-(1,2,4-triazol-4-yl)benzoic acid (0.2 mmol, 0.038 g), NaOH (0.2 mmol, 0.008 g) and H2O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 433 K and a constant temperature was maintained at 433 K for 96 h. After the mixture was cooled to 293 K, blue crystals of the title compound were obtained from the reaction.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference Fourier map and refined with O—H distance restraints of 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. One H atom of water molecule (O4) is disordered over two positions with equal occupancy factors. [Symmetry codes: (i) -x, -y, -z; (ii) x, 1/2 - y, z; (iii) -x, y - 1/2, -z; (iv) x, y - 1/2, z; (v) x, y + 1/2, z.]
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound, built by hydrogen bonds (dashed lines).
catena-Poly[[diaquacopper(II)]-µ-hydroxido-κ2O:O- µ-[4-(4H-1,2,4-triazol-4-yl)benzoato]- κ2N1:N2] top
Crystal data top
[Cu(C9H6N3O2)(OH)(H2O)2]F(000) = 310
Mr = 304.75Dx = 1.881 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1165 reflections
a = 6.787 (5) Åθ = 1.0–26.1°
b = 6.758 (5) ŵ = 2.05 mm1
c = 12.036 (5) ÅT = 293 K
β = 102.919 (5)°Block, blue
V = 538.1 (6) Å30.21 × 0.19 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1165 independent reflections
Radiation source: fine-focus sealed tube1010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 78
Tmin = 0.64, Tmax = 0.75k = 78
3021 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.5502P]
where P = (Fo2 + 2Fc2)/3
1165 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.45 e Å3
4 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C9H6N3O2)(OH)(H2O)2]V = 538.1 (6) Å3
Mr = 304.75Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.787 (5) ŵ = 2.05 mm1
b = 6.758 (5) ÅT = 293 K
c = 12.036 (5) Å0.21 × 0.19 × 0.15 mm
β = 102.919 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1010 reflections with I > 2σ(I)
Tmin = 0.64, Tmax = 0.75Rint = 0.022
3021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0284 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.45 e Å3
1165 reflectionsΔρmin = 0.37 e Å3
111 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2717 (6)0.25000.3753 (3)0.0147 (7)
C20.4779 (6)0.25000.3610 (3)0.0185 (8)
H20.56110.25000.28820.022*
C30.5609 (6)0.25000.4564 (3)0.0176 (8)
H30.70060.25000.44730.021*
C40.4374 (5)0.25000.5653 (3)0.0135 (7)
C50.2310 (6)0.25000.5770 (3)0.0264 (10)
H50.14740.25000.64960.032*
C60.1448 (6)0.25000.4827 (3)0.0279 (10)
H60.00520.25000.49150.033*
C70.5284 (6)0.25000.6686 (3)0.0148 (7)
C80.1359 (4)0.0900 (4)0.2195 (2)0.0174 (6)
H80.15300.04100.23900.021*
N10.1836 (5)0.25000.2760 (2)0.0151 (7)
N20.0624 (3)0.1479 (3)0.13349 (17)0.0150 (5)
O10.7151 (4)0.25000.6538 (2)0.0184 (6)
O20.4060 (4)0.25000.7656 (2)0.0260 (7)
Cu10.00000.00000.00000.01409 (17)
O30.0096 (4)0.25000.0802 (2)0.0145 (5)
O40.3805 (3)0.0459 (3)0.07541 (19)0.0254 (5)
H90.118 (4)0.25000.130 (3)0.038*
H10A0.413 (5)0.040 (4)0.126 (2)0.038*
H100.471 (8)0.017 (11)0.040 (6)0.038*0.50
H10'0.372 (10)0.169 (2)0.086 (6)0.038*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (19)0.0156 (18)0.0121 (18)0.0000.0112 (15)0.000
C20.0175 (19)0.026 (2)0.0116 (18)0.0000.0030 (15)0.000
C30.0141 (18)0.023 (2)0.0166 (18)0.0000.0064 (15)0.000
C40.0189 (18)0.0116 (17)0.0118 (18)0.0000.0071 (15)0.000
C50.019 (2)0.053 (3)0.0076 (18)0.0000.0021 (15)0.000
C60.0142 (19)0.051 (3)0.020 (2)0.0000.0059 (16)0.000
C70.0224 (19)0.0125 (18)0.0121 (18)0.0000.0092 (15)0.000
C80.0221 (13)0.0154 (13)0.0172 (13)0.0008 (11)0.0096 (11)0.0004 (11)
N10.0174 (16)0.0186 (16)0.0121 (15)0.0000.0090 (12)0.000
N20.0193 (11)0.0134 (11)0.0140 (10)0.0011 (9)0.0073 (9)0.0003 (9)
O10.0196 (14)0.0210 (14)0.0178 (14)0.0000.0110 (11)0.000
O20.0230 (15)0.0456 (19)0.0098 (13)0.0000.0046 (11)0.000
Cu10.0197 (3)0.0131 (3)0.0117 (2)0.00017 (17)0.00825 (18)0.00091 (17)
O30.0205 (14)0.0146 (13)0.0095 (12)0.0000.0056 (10)0.000
O40.0300 (11)0.0221 (11)0.0270 (11)0.0001 (10)0.0124 (9)0.0014 (9)
Geometric parameters (Å, º) top
C1—C21.371 (5)C7—O21.272 (4)
C1—C61.383 (5)C8—N21.306 (3)
C1—N11.452 (4)C8—N11.354 (3)
C2—C31.388 (5)C8—H80.9300
C2—H20.9300N2—N2i1.381 (4)
C3—C41.389 (5)Cu1—O31.9397 (16)
C3—H30.9300Cu1—N2ii2.016 (2)
C4—C51.376 (6)Cu1—O42.558 (3)
C4—C71.508 (5)O3—H90.839 (10)
C5—C61.388 (5)O4—H10A0.836 (10)
C5—H50.9300O4—H100.846 (10)
C6—H60.9300O4—H10'0.844 (10)
C7—O11.239 (5)
C2—C1—C6121.5 (3)N2—C8—N1109.6 (2)
C2—C1—N1119.5 (3)N2—C8—H8125.2
C6—C1—N1119.0 (3)N1—C8—H8125.2
C1—C2—C3119.2 (3)C8—N1—C8i105.9 (3)
C1—C2—H2120.4C8—N1—C1127.03 (15)
C3—C2—H2120.4C8i—N1—C1127.03 (15)
C2—C3—C4120.6 (3)C8—N2—N2i107.42 (16)
C2—C3—H3119.7C8—N2—Cu1132.01 (19)
C4—C3—H3119.7N2i—N2—Cu1119.72 (6)
C5—C4—C3118.9 (3)O3—Cu1—N288.58 (10)
C5—C4—C7120.7 (3)O3—Cu1—N2ii91.42 (10)
C3—C4—C7120.4 (3)N2—Cu1—N2ii180.00 (11)
C4—C5—C6121.4 (4)O3—Cu1—O489.42 (9)
C4—C5—H5119.3O3—Cu1—O4ii90.58 (9)
C6—C5—H5119.3N2—Cu1—O4ii88.14 (8)
C1—C6—C5118.4 (4)O4—Cu1—N291.86 (8)
C1—C6—H6120.8Cu1—O3—Cu1iii121.15 (13)
C5—C6—H6120.8Cu1—O3—H9106.6 (15)
O1—C7—O2124.7 (3)H10A—O4—H1096 (5)
O1—C7—C4118.4 (3)H10A—O4—H10'126 (5)
O2—C7—C4116.9 (3)H10—O4—H10'113 (7)
N2—C8—N1—C8i0.2 (4)N1—C8—N2—Cu1169.2 (2)
N2—C8—N1—C1179.1 (3)C8—N2—Cu1—O3ii20.5 (3)
C2—C1—N1—C889.3 (3)N2i—N2—Cu1—O3ii171.53 (8)
C6—C1—N1—C890.7 (3)C8—N2—Cu1—O3159.5 (3)
C2—C1—N1—C8i89.3 (3)N2i—N2—Cu1—O38.47 (8)
C6—C1—N1—C8i90.7 (3)N2—Cu1—O3—Cu1iii15.10 (15)
N1—C8—N2—N2i0.2 (2)N2ii—Cu1—O3—Cu1iii164.90 (15)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y, z; (iii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O2iv0.84 (3)2.07 (3)2.907 (4)172 (3)
O4—H10A···O2v0.83 (3)1.94 (3)2.746 (3)164 (3)
O4—H10···O4vi0.85 (6)1.94 (6)2.762 (4)165 (6)
O4—H10···O4i0.85 (2)1.93 (2)2.759 (4)165 (7)
C6—H6···O1vii0.932.443.172 (5)135
C8—H8···O1viii0.932.233.052 (4)147
Symmetry codes: (i) x, y+1/2, z; (iv) x, y, z+1; (v) x, y1/2, z1; (vi) x1, y, z; (vii) x1, y, z; (viii) x+1, y1/2, z1.

Experimental details

Crystal data
Chemical formula[Cu(C9H6N3O2)(OH)(H2O)2]
Mr304.75
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)6.787 (5), 6.758 (5), 12.036 (5)
β (°) 102.919 (5)
V3)538.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.21 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.64, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
3021, 1165, 1010
Rint0.022
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.083, 1.12
No. of reflections1165
No. of parameters111
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O2i0.84 (3)2.07 (3)2.907 (4)172 (3)
O4—H10A···O2ii0.83 (3)1.94 (3)2.746 (3)164 (3)
O4—H10···O4iii0.85 (6)1.94 (6)2.762 (4)165 (6)
O4—H10'···O4iv0.85 (2)1.93 (2)2.759 (4)165 (7)
C6—H6···O1v0.932.443.172 (5)135
C8—H8···O1vi0.932.233.052 (4)147
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z1; (iii) x1, y, z; (iv) x, y+1/2, z; (v) x1, y, z; (vi) x+1, y1/2, z1.
 

Acknowledgements

The authors thank Jilin University for supporting this work.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, M.-H., Zhou, J.-F., Liu, B.-B. & Lin, J.-L. (2011). Acta Cryst. E67, m352.  Google Scholar
First citationLiu, D., Ren, Z.-G., Li, H.-X., Chen, Y., Wang, J., Zhang, Y. & Lang, J.-P. (2010). CrystEngComm, 12, 1912–1919.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. E65, m1568–m1569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Li, Z.-J., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Inorg. Chem. 43, 8085–8091.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1255-m1256
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds