metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1312-m1313

Poly[μ-aqua-di­aqua(μ3-1H-benzimid­azole-5-carboxylato-κ3N3:O,O′)(μ2-1H-benzimidazole-5-carboxylato-κ3N3:O:O′)-μ5-sulfato-μ4-sulfato-tri­cadmium]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 11 August 2011; accepted 22 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, [Cd3(C8H5N2O2)2(SO4)2(H2O)3]n, contains three CdII ions, two sulfate anions, two 1H-benzimidazole-5-carboxyl­ate (H2bic) ligands and three coordinated water mol­ecules. One CdII ion is six-coordinated and exhibits a distorted octa­hedral geometry, while the other two CdII ions are seven-coordinated, displaying a distorted penta­gonal–bipyramidal geometry. The CdII ions are bridged by two types of sulfate anions, producing inorganic chains along [100]. These chains are further connected by the H2bic ligands, leading to a three-dimensional framework. N—H⋯O and O—H⋯O hydrogen bonds and ππ inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.953 (2), 3.507 (2), 3.407 (2) and 3.561 (2) Å] further stabilize the crystal structure.

Related literature

For background to 1H-benzimidazole-5-carboxyl­ate com­plexes, see: Gao et al. (2011[Gao, J., Wang, J. & Dai, C. (2011). Acta Cryst. E67, m75.]); Guo et al. (2007[Guo, Z.-G., Li, X.-J., Gao, S.-Y., Li, Y.-F. & Cao, R. (2007). J. Mol. Struct. 846, 123-127.]); Peng, Ma et al. (2010[Peng, G., Ma, L., Liu, B., Cai, J.-B. & Deng, H. (2010). Inorg. Chem. Commun. 13, 599-602.]); Peng, Qiu et al. (2010[Peng, G., Qiu, Y.-C., Liu, Z.-H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114-121.]); Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Inorg. Chem. Commun. 11, 883-885.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd3(C8H5N2O2)2(SO4)2(H2O)3]

  • Mr = 905.65

  • Triclinic, [P \overline 1]

  • a = 6.5932 (8) Å

  • b = 13.0463 (16) Å

  • c = 13.5933 (16) Å

  • α = 104.313 (1)°

  • β = 96.662 (1)°

  • γ = 97.646 (1)°

  • V = 1109.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 298 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.454, Tmax = 0.508

  • 5772 measured reflections

  • 3935 independent reflections

  • 3593 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.06

  • 3935 reflections

  • 361 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O10i 0.86 1.98 2.836 (4) 176
N4—H4A⋯O7ii 0.86 1.98 2.716 (4) 143
O1W—H1W⋯O3iii 0.85 1.91 2.736 (4) 163
O1W—H2W⋯O2iv 0.85 1.91 2.734 (4) 165
O2W—H3W⋯O3v 0.85 1.99 2.770 (4) 153
O2W—H4W⋯O10v 0.85 2.01 2.687 (4) 136
O3W—H5W⋯O8i 0.85 2.23 2.925 (4) 139
O3W—H6W⋯O4vi 0.85 2.09 2.918 (4) 166
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z; (v) -x+2, -y+1, -z+1; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is currently much interest in employing N-heterocyclic carboxylic acids as multidentate ligands to design metal coordination polymers. This is because they have versatile coordination modes and can form high-dimensional polymers through hydrogen-bonding interactions in the process of self-assembly. 1H-Benzimidazole-5-carboxylic acid (H2bic), having two N atoms of an aromatic group and one carboxylate group, is a good candidate for preparing novel coordination polymers. Up to now, one-, two- and three-dimensional coordination polymers constructed from the H2bic ligand have been reported (Gao et al., 2011; Guo et al., 2007; Peng et al., 2010a,b; Yao et al., 2008). Herein we report the synthesis and crystal structure of the title complex.

As is shown in Fig. 1, the asymmetric unit of the title compound consists of three crystallographically independent CdII ions, two SO42- anions, two H2bic ligands and three coordinated water molecules. The Cd2 atom is six-coordinated by one O atom and one N atom from two different H2bic ligands, two O atoms from two SO42- anions and two water molecules, forming a distorted octahedral geometry. Both Cd1 and Cd3 atoms are seven-coordinated, displaying a distorted pentagonal-bipyramidal geometry. The Cd1 atom is coordinated by two O atoms from one H2bic ligand, four O atoms from four SO42- anions and one water molecule, while Cd3 atom is surrounded by one O atom and one N atom from two H2bic ligands, four O atoms from three SO42- anions and one water molecule. The Cd—O bond lengths range from 2.266 (3) to 2.532 (3) Å and the Cd—N distances vary from 2.230 (3) to 2.272 (3) Å.

In the title compound, the SO42- anions adopt two coordination modes. One is a µ4-mode, bridging four CdII ions and the other is a µ5-mode, bridging five CdII ions. As is described in Fig. 2, the CdII ions are bridged by the two types of SO42- anions, producing a one-dimensional inorganic chain along [1 0 0]. These chains are further bridged by the carboxylate and imidazole groups of the H2bic ligands, resulting in a three-dimensional framework (Fig. 3). To the best of our knowledge, the title compound is the first three-dimensional transition metal coordination polymer based on H2bic ligand. N—H···O and O—H···O hydrogen bonds (Table 1) and ππ interactions between the imidazole and benzene rings [centroid–centroid distances = 3.953 (2), 3.507 (2), 3.407 (2) and 3.561 (2) Å] further stabilize the crystal structure.

Related literature top

For background to 1H-benzimidazole-5-carboxylate complexes, see: Gao et al. (2011); Guo et al. (2007); Peng et al. (2010a,b); Yao et al. (2008).

Experimental top

A mixture of CdSO4 (0.208 g, 1 mmol), H2bic (0.162 g, 1 mmol) and water (10 ml) was stirred vigorously for 30 min and then sealed in a 20 ml Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h-1. Colorless block crystals were obtained.

Refinement top

H atoms of the H2bic ligands were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). The water H atoms were located in a difference Fourier map and refined as riding, with a distance restraint of O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+2, -y, -z; (v) x+1, y, z.]
[Figure 2] Fig. 2. The one-dimensional chain extending along [1 0 0], formed by Cd atoms and sulfate anions.
[Figure 3] Fig. 3. A view of the three-dimensional structure of the title compound.
Poly[µ-aqua-diaqua(µ3-1H-benzimidazole-5-carboxylato- κ3N3:O,O')(µ2-1H-benzimidazole-5- carboxylato-κ3N3:O:O')-µ5-sulfato-µ4-sulfato- tricadmium] top
Crystal data top
[Cd3(C8H5N2O2)2(SO4)2(H2O)3]Z = 2
Mr = 905.65F(000) = 872
Triclinic, P1Dx = 2.711 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5932 (8) ÅCell parameters from 3917 reflections
b = 13.0463 (16) Åθ = 2.5–25.2°
c = 13.5933 (16) ŵ = 3.13 mm1
α = 104.313 (1)°T = 298 K
β = 96.662 (1)°Block, colorless
γ = 97.646 (1)°0.30 × 0.27 × 0.25 mm
V = 1109.3 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3935 independent reflections
Radiation source: fine-focus sealed tube3593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.454, Tmax = 0.508k = 1315
5772 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0305P)2 + 1.2679P]
where P = (Fo2 + 2Fc2)/3
3935 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.56 e Å3
1 restraintΔρmin = 0.71 e Å3
Crystal data top
[Cd3(C8H5N2O2)2(SO4)2(H2O)3]γ = 97.646 (1)°
Mr = 905.65V = 1109.3 (2) Å3
Triclinic, P1Z = 2
a = 6.5932 (8) ÅMo Kα radiation
b = 13.0463 (16) ŵ = 3.13 mm1
c = 13.5933 (16) ÅT = 298 K
α = 104.313 (1)°0.30 × 0.27 × 0.25 mm
β = 96.662 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3935 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3593 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.508Rint = 0.020
5772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.067H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
3935 reflectionsΔρmin = 0.71 e Å3
361 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.61304 (4)0.48371 (2)0.37140 (2)0.01777 (9)
Cd20.84093 (4)0.24373 (2)0.30872 (2)0.01851 (9)
Cd31.17453 (4)0.31863 (2)0.10959 (2)0.01829 (9)
S10.66513 (14)0.33480 (8)0.11673 (7)0.0152 (2)
S21.12894 (14)0.49174 (7)0.36347 (7)0.0135 (2)
N11.0207 (5)0.2733 (3)0.0571 (2)0.0197 (7)
C61.0162 (6)0.3440 (3)0.1108 (3)0.0225 (9)
H61.05200.41770.08210.027*
C80.9189 (6)0.0704 (3)0.1153 (3)0.0154 (8)
H80.93610.05890.05020.018*
C70.9513 (6)0.1732 (3)0.1279 (3)0.0156 (8)
C30.8338 (6)0.0033 (3)0.3013 (3)0.0218 (9)
H30.80020.05530.35890.026*
C40.8563 (7)0.1046 (4)0.3146 (3)0.0246 (9)
H40.83380.11580.37970.030*
C50.9148 (6)0.1906 (3)0.2263 (3)0.0191 (8)
C20.8598 (6)0.0150 (3)0.2030 (3)0.0161 (8)
C160.6557 (7)0.8881 (3)0.4017 (3)0.0226 (9)
H160.67140.88410.46950.027*
C90.6064 (6)0.6877 (3)0.3474 (3)0.0195 (9)
C100.6106 (6)0.7927 (3)0.3226 (3)0.0183 (8)
C150.6775 (7)0.9878 (3)0.3828 (3)0.0240 (9)
H150.70641.05060.43610.029*
O60.8233 (4)0.2704 (2)0.1470 (2)0.0239 (6)
O50.5458 (5)0.3615 (2)0.2041 (2)0.0259 (7)
O80.7711 (5)0.4300 (2)0.0964 (2)0.0303 (7)
O40.5783 (5)0.6023 (2)0.2762 (2)0.0275 (7)
O30.6395 (5)0.6846 (2)0.4412 (2)0.0257 (6)
O90.9346 (4)0.4272 (2)0.3769 (2)0.0198 (6)
O101.0948 (5)0.6016 (2)0.3744 (2)0.0238 (6)
O121.1865 (5)0.4465 (2)0.2640 (2)0.0276 (7)
O70.5172 (5)0.2693 (2)0.0280 (2)0.0295 (7)
C110.5815 (6)0.7939 (3)0.2201 (3)0.0182 (8)
H110.54930.73110.16680.022*
C120.6033 (6)0.8950 (3)0.2021 (3)0.0170 (8)
C140.6545 (6)0.9901 (3)0.2807 (3)0.0190 (8)
O111.2984 (4)0.4879 (2)0.4437 (2)0.0231 (6)
N20.9543 (5)0.2985 (3)0.2121 (3)0.0234 (8)
H20.94200.33180.25910.028*
N40.5920 (5)0.9255 (3)0.1113 (2)0.0188 (7)
H4A0.56110.88340.05010.023*
C10.8336 (6)0.1274 (3)0.1935 (3)0.0188 (9)
O10.8145 (5)0.1439 (2)0.1085 (2)0.0266 (7)
N30.6749 (5)1.0765 (3)0.2371 (2)0.0191 (7)
C130.6382 (6)1.0324 (3)0.1363 (3)0.0222 (9)
H130.64411.07190.08810.027*
O20.8337 (4)0.2035 (2)0.2739 (2)0.0245 (7)
O2W0.9522 (5)0.2349 (2)0.4699 (2)0.0254 (7)
H3W1.07900.23740.49260.030*
H4W0.89200.25730.52120.030*
O3W1.3093 (5)0.4879 (2)0.0835 (2)0.0305 (7)
H5W1.35440.51970.04090.037*
H6W1.36850.52380.14340.037*
O1W0.5431 (4)0.3032 (2)0.3864 (2)0.0199 (6)
H1W0.51140.30530.44570.024*
H2W0.43860.26930.34220.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01897 (17)0.01555 (16)0.02043 (16)0.00466 (12)0.00520 (12)0.00592 (12)
Cd20.02124 (17)0.01475 (16)0.01756 (16)0.00124 (12)0.00324 (12)0.00147 (12)
Cd30.02241 (17)0.01492 (16)0.01583 (16)0.00122 (12)0.00240 (12)0.00221 (12)
S10.0164 (5)0.0140 (5)0.0139 (5)0.0007 (4)0.0021 (4)0.0026 (4)
S20.0122 (5)0.0131 (5)0.0142 (5)0.0008 (4)0.0014 (4)0.0027 (4)
N10.0241 (19)0.0117 (17)0.0215 (18)0.0023 (14)0.0020 (14)0.0019 (14)
C60.025 (2)0.017 (2)0.025 (2)0.0022 (17)0.0028 (17)0.0066 (17)
C80.020 (2)0.0149 (19)0.0127 (18)0.0044 (16)0.0034 (15)0.0046 (15)
C70.0140 (19)0.016 (2)0.0164 (19)0.0009 (15)0.0028 (15)0.0039 (16)
C30.025 (2)0.025 (2)0.013 (2)0.0055 (18)0.0035 (16)0.0011 (17)
C40.028 (2)0.030 (2)0.016 (2)0.0043 (19)0.0018 (17)0.0100 (18)
C50.014 (2)0.023 (2)0.023 (2)0.0033 (16)0.0021 (16)0.0121 (18)
C20.0133 (19)0.017 (2)0.019 (2)0.0032 (15)0.0044 (15)0.0044 (16)
C160.028 (2)0.024 (2)0.015 (2)0.0016 (18)0.0019 (17)0.0057 (17)
C90.012 (2)0.022 (2)0.028 (2)0.0039 (16)0.0050 (16)0.0122 (18)
C100.016 (2)0.020 (2)0.020 (2)0.0022 (16)0.0036 (16)0.0070 (17)
C150.029 (2)0.018 (2)0.021 (2)0.0003 (18)0.0004 (18)0.0010 (17)
O60.0229 (16)0.0247 (16)0.0279 (16)0.0078 (13)0.0035 (12)0.0120 (13)
O50.0269 (17)0.0300 (17)0.0221 (15)0.0058 (13)0.0104 (12)0.0059 (13)
O80.0300 (18)0.0241 (17)0.0386 (18)0.0016 (14)0.0098 (14)0.0131 (14)
O40.0368 (18)0.0162 (16)0.0282 (16)0.0029 (13)0.0001 (13)0.0069 (13)
O30.0304 (17)0.0252 (13)0.0252 (16)0.0019 (13)0.0018 (13)0.0162 (12)
O90.0146 (14)0.0201 (15)0.0229 (15)0.0000 (11)0.0066 (11)0.0023 (12)
O100.0342 (17)0.0156 (15)0.0225 (15)0.0078 (13)0.0019 (12)0.0056 (12)
O120.0308 (17)0.0274 (17)0.0192 (15)0.0008 (13)0.0144 (13)0.0055 (13)
O70.0321 (18)0.0283 (17)0.0203 (15)0.0002 (14)0.0061 (13)0.0002 (13)
C110.020 (2)0.016 (2)0.0157 (19)0.0039 (16)0.0024 (15)0.0004 (16)
C120.016 (2)0.015 (2)0.019 (2)0.0006 (16)0.0027 (15)0.0063 (16)
C140.018 (2)0.015 (2)0.024 (2)0.0021 (16)0.0027 (16)0.0072 (17)
O110.0161 (14)0.0306 (17)0.0241 (15)0.0053 (12)0.0008 (12)0.0112 (13)
N20.030 (2)0.0241 (19)0.0231 (19)0.0060 (16)0.0047 (15)0.0174 (16)
N40.0263 (19)0.0163 (17)0.0121 (16)0.0033 (14)0.0012 (13)0.0018 (13)
C10.012 (2)0.016 (2)0.025 (2)0.0006 (15)0.0027 (16)0.0043 (17)
O10.0368 (18)0.0158 (15)0.0251 (16)0.0014 (13)0.0025 (13)0.0067 (12)
N30.0206 (18)0.0134 (17)0.0201 (17)0.0015 (14)0.0009 (14)0.0030 (14)
C130.025 (2)0.022 (2)0.021 (2)0.0019 (18)0.0012 (17)0.0124 (18)
O20.0189 (15)0.0184 (15)0.0302 (16)0.0021 (12)0.0015 (12)0.0032 (13)
O2W0.0279 (17)0.0284 (17)0.0182 (14)0.0057 (13)0.0020 (12)0.0035 (13)
O3W0.0418 (19)0.0237 (16)0.0221 (16)0.0005 (14)0.0026 (13)0.0057 (13)
O1W0.0180 (15)0.0215 (15)0.0164 (14)0.0008 (12)0.0041 (11)0.0001 (11)
Geometric parameters (Å, º) top
Cd1—O42.266 (3)C3—C41.368 (6)
Cd1—O92.335 (3)C3—C21.410 (5)
Cd1—O52.386 (3)C3—H30.9300
Cd1—O11i2.398 (3)C4—C51.401 (6)
Cd1—O1W2.403 (3)C4—H40.9300
Cd1—O11ii2.437 (3)C5—N21.358 (5)
Cd1—O32.532 (3)C2—C11.494 (5)
Cd2—N3iii2.229 (3)C16—C151.380 (6)
Cd2—O2W2.264 (3)C16—C101.399 (6)
Cd2—O62.301 (3)C16—H160.9300
Cd2—O92.312 (3)C9—O41.259 (5)
Cd2—O2iv2.349 (3)C9—O31.280 (5)
Cd2—O1W2.461 (3)C9—C101.487 (5)
Cd3—N12.271 (3)C10—C111.390 (5)
Cd3—O1iv2.287 (3)C15—C141.388 (6)
Cd3—O122.321 (3)C15—H150.9300
Cd3—O3W2.394 (3)C11—C121.392 (5)
Cd3—O62.462 (3)C11—H110.9300
Cd3—O5v2.551 (3)C12—N41.384 (5)
S1—O81.445 (3)C12—C141.394 (6)
S1—O71.460 (3)C14—N31.396 (5)
S1—O51.495 (3)N2—H20.8600
S1—O61.506 (3)N4—C131.335 (5)
S2—O121.451 (3)N4—H4A0.8600
S2—O101.454 (3)C1—O11.243 (5)
S2—O111.483 (3)C1—O21.282 (5)
S2—O91.493 (3)N3—C131.328 (5)
N1—C61.312 (5)C13—H130.9300
N1—C71.399 (5)O2W—H3W0.8500
C6—N21.347 (5)O2W—H4W0.8500
C6—H60.9300O3W—H5W0.8500
C8—C71.386 (5)O3W—H6W0.8501
C8—C21.391 (5)O1W—H1W0.8501
C8—H80.9300O1W—H2W0.8500
C7—C51.410 (5)
O4—Cd1—O9113.71 (10)C4—C3—H3119.0
O4—Cd1—O580.91 (10)C2—C3—H3119.0
O9—Cd1—O583.30 (10)C3—C4—C5117.3 (4)
O4—Cd1—O11i99.81 (10)C3—C4—H4121.3
O9—Cd1—O11i145.80 (9)C5—C4—H4121.3
O5—Cd1—O11i109.59 (10)N2—C5—C4132.6 (4)
O4—Cd1—O1W149.15 (10)N2—C5—C7106.2 (3)
O9—Cd1—O1W75.24 (9)C4—C5—C7121.2 (4)
O5—Cd1—O1W70.61 (10)C8—C2—C3120.7 (4)
O11i—Cd1—O1W79.48 (9)C8—C2—C1119.8 (3)
O4—Cd1—O11ii130.86 (10)C3—C2—C1119.5 (3)
O9—Cd1—O11ii80.54 (9)C15—C16—C10122.4 (4)
O5—Cd1—O11ii148.10 (10)C15—C16—H16118.8
O11i—Cd1—O11ii72.16 (10)C10—C16—H16118.8
O1W—Cd1—O11ii78.73 (9)O4—C9—O3120.0 (4)
O4—Cd1—O354.20 (9)O4—C9—C10120.0 (4)
O9—Cd1—O3113.17 (10)O3—C9—C10119.9 (4)
O5—Cd1—O3135.11 (9)C11—C10—C16121.2 (4)
O11i—Cd1—O380.54 (10)C11—C10—C9118.7 (4)
O1W—Cd1—O3152.12 (9)C16—C10—C9120.0 (3)
O11ii—Cd1—O376.75 (9)C16—C15—C14116.9 (4)
N3iii—Cd2—O2W101.12 (11)C16—C15—H15121.5
N3iii—Cd2—O688.53 (11)C14—C15—H15121.5
O2W—Cd2—O6164.12 (11)S1—O6—Cd2117.49 (16)
N3iii—Cd2—O9166.27 (11)S1—O6—Cd3116.06 (15)
O2W—Cd2—O984.74 (10)Cd2—O6—Cd3110.03 (11)
O6—Cd2—O988.70 (10)S1—O5—Cd1135.31 (18)
N3iii—Cd2—O2iv94.34 (11)S1—O5—Cd3i101.40 (14)
O2W—Cd2—O2iv85.19 (10)Cd1—O5—Cd3i117.53 (11)
O6—Cd2—O2iv81.50 (10)C9—O4—Cd199.4 (2)
O9—Cd2—O2iv98.54 (10)C9—O3—Cd186.4 (2)
N3iii—Cd2—O1W93.74 (11)S2—O9—Cd2124.43 (15)
O2W—Cd2—O1W82.80 (10)S2—O9—Cd1124.10 (16)
O6—Cd2—O1W109.37 (9)Cd2—O9—Cd1101.86 (10)
O9—Cd2—O1W74.54 (9)S2—O12—Cd3156.42 (19)
O2iv—Cd2—O1W166.62 (10)C10—C11—C12115.8 (4)
N1—Cd3—O1iv92.82 (11)C10—C11—H11122.1
N1—Cd3—O12140.73 (11)C12—C11—H11122.1
O1iv—Cd3—O12119.93 (11)N4—C12—C11131.1 (4)
N1—Cd3—O3W86.41 (11)N4—C12—C14105.8 (3)
O1iv—Cd3—O3W153.63 (11)C11—C12—C14123.1 (4)
O12—Cd3—O3W73.50 (10)C15—C14—C12120.5 (4)
N1—Cd3—O685.14 (11)C15—C14—N3130.6 (4)
O1iv—Cd3—O681.41 (10)C12—C14—N3108.9 (3)
O12—Cd3—O679.61 (10)S2—O11—Cd1v108.68 (15)
O3W—Cd3—O6124.68 (10)S2—O11—Cd1ii142.21 (17)
N1—Cd3—O5v135.91 (11)Cd1v—O11—Cd1ii107.84 (10)
O1iv—Cd3—O5v86.67 (10)C6—N2—C5107.6 (3)
O12—Cd3—O5v71.83 (10)C6—N2—H2126.2
O3W—Cd3—O5v75.92 (10)C5—N2—H2126.2
O6—Cd3—O5v137.90 (9)C13—N4—C12107.3 (3)
O8—S1—O7112.03 (19)C13—N4—H4A126.4
O8—S1—O5112.00 (18)C12—N4—H4A126.4
O7—S1—O5106.71 (18)O1—C1—O2122.5 (4)
O8—S1—O6108.93 (18)O1—C1—C2119.3 (3)
O7—S1—O6110.12 (18)O2—C1—C2118.2 (4)
O5—S1—O6106.92 (16)C1—O1—Cd3iv112.1 (2)
O12—S2—O10111.20 (18)C13—N3—C14104.9 (3)
O12—S2—O11107.91 (18)C13—N3—Cd2vi123.2 (3)
O10—S2—O11110.38 (17)C14—N3—Cd2vi128.5 (3)
O12—S2—O9110.49 (17)N3—C13—N4113.1 (3)
O10—S2—O9108.24 (17)N3—C13—H13123.4
O11—S2—O9108.60 (16)N4—C13—H13123.4
C6—N1—C7105.7 (3)C1—O2—Cd2iv116.4 (2)
C6—N1—Cd3122.0 (3)Cd2—O2W—H3W123.0
C7—N1—Cd3131.4 (2)Cd2—O2W—H4W123.8
N1—C6—N2112.8 (4)H3W—O2W—H4W107.7
N1—C6—H6123.6Cd3—O3W—H5W145.3
N2—C6—H6123.6Cd3—O3W—H6W102.8
C7—C8—C2117.9 (3)H5W—O3W—H6W107.7
C7—C8—H8121.1Cd1—O1W—Cd295.76 (9)
C2—C8—H8121.1Cd1—O1W—H1W108.5
C8—C7—N1131.6 (3)Cd2—O1W—H1W130.5
C8—C7—C5120.8 (4)Cd1—O1W—H2W108.6
N1—C7—C5107.6 (3)Cd2—O1W—H2W104.1
C4—C3—C2122.0 (4)H1W—O1W—H2W107.7
O1iv—Cd3—N1—C6163.5 (3)O4—Cd1—O3—C90.5 (2)
O12—Cd3—N1—C648.4 (4)O9—Cd1—O3—C9102.9 (2)
O3W—Cd3—N1—C69.9 (3)O5—Cd1—O3—C91.6 (3)
O6—Cd3—N1—C6115.4 (3)O11i—Cd1—O3—C9109.9 (2)
O5v—Cd3—N1—C675.3 (4)O1W—Cd1—O3—C9154.6 (2)
O1iv—Cd3—N1—C73.3 (3)O11ii—Cd1—O3—C9176.3 (2)
O12—Cd3—N1—C7144.9 (3)O12—S2—O9—Cd232.9 (2)
O3W—Cd3—N1—C7156.9 (4)O10—S2—O9—Cd2154.85 (17)
O6—Cd3—N1—C777.9 (3)O11—S2—O9—Cd285.3 (2)
O5v—Cd3—N1—C791.4 (4)O12—S2—O9—Cd1107.1 (2)
C7—N1—C6—N21.6 (5)O10—S2—O9—Cd114.9 (2)
Cd3—N1—C6—N2168.1 (3)O11—S2—O9—Cd1134.77 (18)
C2—C8—C7—N1176.2 (4)N3iii—Cd2—O9—S2142.1 (4)
C2—C8—C7—C53.3 (6)O2W—Cd2—O9—S2101.78 (19)
C6—N1—C7—C8178.1 (4)O6—Cd2—O9—S263.74 (19)
Cd3—N1—C7—C813.5 (6)O2iv—Cd2—O9—S217.5 (2)
C6—N1—C7—C52.4 (4)O1W—Cd2—O9—S2174.3 (2)
Cd3—N1—C7—C5166.0 (3)N3iii—Cd2—O9—Cd14.9 (5)
C2—C3—C4—C52.4 (6)O2W—Cd2—O9—Cd1111.23 (11)
C3—C4—C5—N2178.4 (4)O6—Cd2—O9—Cd183.25 (11)
C3—C4—C5—C70.8 (6)O2iv—Cd2—O9—Cd1164.46 (10)
C8—C7—C5—N2178.1 (3)O1W—Cd2—O9—Cd127.26 (9)
N1—C7—C5—N22.3 (4)O4—Cd1—O9—S226.4 (2)
C8—C7—C5—C43.7 (6)O5—Cd1—O9—S2103.35 (19)
N1—C7—C5—C4175.8 (4)O11i—Cd1—O9—S2141.33 (17)
C7—C8—C2—C30.1 (6)O1W—Cd1—O9—S2175.0 (2)
C7—C8—C2—C1176.9 (3)O11ii—Cd1—O9—S2104.26 (19)
C4—C3—C2—C82.8 (6)O3—Cd1—O9—S233.2 (2)
C4—C3—C2—C1179.9 (4)O4—Cd1—O9—Cd2120.77 (11)
C15—C16—C10—C111.3 (6)O5—Cd1—O9—Cd243.79 (10)
C15—C16—C10—C9174.8 (4)O11i—Cd1—O9—Cd271.53 (19)
O4—C9—C10—C110.5 (6)O1W—Cd1—O9—Cd227.87 (10)
O3—C9—C10—C11177.8 (4)O11ii—Cd1—O9—Cd2108.61 (11)
O4—C9—C10—C16175.7 (4)O3—Cd1—O9—Cd2179.70 (8)
O3—C9—C10—C161.6 (6)O10—S2—O12—Cd3132.4 (5)
C10—C16—C15—C140.5 (6)O11—S2—O12—Cd3106.4 (5)
O8—S1—O6—Cd2118.20 (19)O9—S2—O12—Cd312.2 (6)
O7—S1—O6—Cd2118.58 (19)N1—Cd3—O12—S293.6 (5)
O5—S1—O6—Cd23.0 (2)O1iv—Cd3—O12—S248.9 (5)
O8—S1—O6—Cd315.0 (2)O3W—Cd3—O12—S2155.9 (5)
O7—S1—O6—Cd3108.25 (19)O6—Cd3—O12—S224.8 (5)
O5—S1—O6—Cd3136.19 (17)O5v—Cd3—O12—S2123.9 (5)
N3iii—Cd2—O6—S1103.62 (19)C16—C10—C11—C121.0 (6)
O2W—Cd2—O6—S1128.4 (3)C9—C10—C11—C12175.1 (3)
O9—Cd2—O6—S162.93 (18)C10—C11—C12—N4177.6 (4)
O2iv—Cd2—O6—S1161.77 (19)C10—C11—C12—C141.0 (6)
O1W—Cd2—O6—S110.2 (2)C16—C15—C14—C122.5 (6)
N3iii—Cd2—O6—Cd3120.60 (13)C16—C15—C14—N3177.2 (4)
O2W—Cd2—O6—Cd37.4 (4)N4—C12—C14—C15179.8 (4)
O9—Cd2—O6—Cd372.85 (12)C11—C12—C14—C152.8 (6)
O2iv—Cd2—O6—Cd325.99 (11)N4—C12—C14—N30.4 (4)
O1W—Cd2—O6—Cd3145.96 (10)C11—C12—C14—N3176.9 (4)
N1—Cd3—O6—S160.98 (18)O12—S2—O11—Cd1v24.1 (2)
O1iv—Cd3—O6—S1154.58 (19)O10—S2—O11—Cd1v97.64 (18)
O12—Cd3—O6—S182.68 (18)O9—S2—O11—Cd1v143.85 (14)
O3W—Cd3—O6—S121.2 (2)O12—S2—O11—Cd1ii171.4 (3)
O5v—Cd3—O6—S1130.18 (16)O10—S2—O11—Cd1ii66.9 (3)
N1—Cd3—O6—Cd2162.54 (14)O9—S2—O11—Cd1ii51.6 (3)
O1iv—Cd3—O6—Cd268.94 (12)N1—C6—N2—C50.1 (5)
O12—Cd3—O6—Cd253.79 (12)C4—C5—N2—C6176.5 (4)
O3W—Cd3—O6—Cd2115.24 (12)C7—C5—N2—C61.4 (4)
O5v—Cd3—O6—Cd26.3 (2)C11—C12—N4—C13175.9 (4)
O8—S1—O5—Cd144.7 (3)C14—C12—N4—C131.1 (4)
O7—S1—O5—Cd1167.6 (2)C8—C2—C1—O117.5 (5)
O6—S1—O5—Cd174.6 (3)C3—C2—C1—O1165.4 (4)
O8—S1—O5—Cd3i106.28 (17)C8—C2—C1—O2161.8 (3)
O7—S1—O5—Cd3i16.65 (19)C3—C2—C1—O215.2 (5)
O6—S1—O5—Cd3i134.47 (15)O2—C1—O1—Cd3iv7.8 (5)
O4—Cd1—O5—S172.8 (2)C2—C1—O1—Cd3iv171.5 (3)
O9—Cd1—O5—S142.5 (2)C15—C14—N3—C13179.3 (4)
O11i—Cd1—O5—S1170.1 (2)C12—C14—N3—C130.5 (4)
O1W—Cd1—O5—S1119.2 (3)C15—C14—N3—Cd2vi19.9 (6)
O11ii—Cd1—O5—S1102.4 (3)C12—C14—N3—Cd2vi159.9 (3)
O3—Cd1—O5—S173.8 (3)C14—N3—C13—N41.3 (5)
O4—Cd1—O5—Cd3i74.72 (14)Cd2vi—N3—C13—N4162.0 (3)
O9—Cd1—O5—Cd3i169.89 (14)C12—N4—C13—N31.5 (5)
O11i—Cd1—O5—Cd3i22.53 (15)O1—C1—O2—Cd2iv93.2 (4)
O1W—Cd1—O5—Cd3i93.22 (14)C2—C1—O2—Cd2iv86.1 (4)
O11ii—Cd1—O5—Cd3i110.02 (18)O4—Cd1—O1W—Cd286.1 (2)
O3—Cd1—O5—Cd3i73.80 (18)O9—Cd1—O1W—Cd225.60 (9)
O3—C9—O4—Cd10.9 (4)O5—Cd1—O1W—Cd262.39 (10)
C10—C9—O4—Cd1176.4 (3)O11i—Cd1—O1W—Cd2177.65 (10)
O9—Cd1—O4—C9101.8 (2)O11ii—Cd1—O1W—Cd2108.66 (10)
O5—Cd1—O4—C9179.7 (3)O3—Cd1—O1W—Cd2137.43 (17)
O11i—Cd1—O4—C971.2 (3)N3iii—Cd2—O1W—Cd1146.77 (11)
O1W—Cd1—O4—C9157.1 (2)O2W—Cd2—O1W—Cd1112.47 (11)
O11ii—Cd1—O4—C93.6 (3)O6—Cd2—O1W—Cd157.02 (12)
O3—Cd1—O4—C90.5 (2)O9—Cd2—O1W—Cd125.96 (9)
O4—C9—O3—Cd10.8 (4)O2iv—Cd2—O1W—Cd186.2 (4)
C10—C9—O3—Cd1176.5 (3)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x+2, y, z; (v) x+1, y, z; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10vii0.861.982.836 (4)176
N4—H4A···O7viii0.861.982.716 (4)143
O1W—H1W···O3ix0.851.912.736 (4)163
O1W—H2W···O2x0.851.912.734 (4)165
O2W—H3W···O3ii0.851.992.770 (4)153
O2W—H4W···O10ii0.852.012.687 (4)136
O3W—H5W···O8vii0.852.232.925 (4)139
O3W—H6W···O4v0.852.092.918 (4)166
Symmetry codes: (ii) x+2, y+1, z+1; (v) x+1, y, z; (vii) x+2, y+1, z; (viii) x+1, y+1, z; (ix) x+1, y+1, z+1; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd3(C8H5N2O2)2(SO4)2(H2O)3]
Mr905.65
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.5932 (8), 13.0463 (16), 13.5933 (16)
α, β, γ (°)104.313 (1), 96.662 (1), 97.646 (1)
V3)1109.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.454, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
5772, 3935, 3593
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.06
No. of reflections3935
No. of parameters361
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.71

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10i0.861.982.836 (4)176
N4—H4A···O7ii0.861.982.716 (4)143
O1W—H1W···O3iii0.851.912.736 (4)163
O1W—H2W···O2iv0.851.912.734 (4)165
O2W—H3W···O3v0.851.992.770 (4)153
O2W—H4W···O10v0.852.012.687 (4)136
O3W—H5W···O8i0.852.232.925 (4)139
O3W—H6W···O4vi0.852.092.918 (4)166
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Undergraduates' Innovating Experimentation Project of Guangdong Province, the Undergraduates' Innovating Experimentation Project of South China Normal University and the Students' Extracurricular Scientific Research Project of South China Normal University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGao, J., Wang, J. & Dai, C. (2011). Acta Cryst. E67, m75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Z.-G., Li, X.-J., Gao, S.-Y., Li, Y.-F. & Cao, R. (2007). J. Mol. Struct. 846, 123–127.  CrossRef CAS Google Scholar
First citationPeng, G., Ma, L., Liu, B., Cai, J.-B. & Deng, H. (2010). Inorg. Chem. Commun. 13, 599–602.  CrossRef CAS Google Scholar
First citationPeng, G., Qiu, Y.-C., Liu, Z.-H., Liu, B. & Deng, H. (2010). Cryst. Growth Des. 10, 114–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Inorg. Chem. Commun. 11, 883–885.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1312-m1313
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds