metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1260-m1261

cyclo-Tetra­kis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxyl­ato-κ4N2,O3:N1,O5)tetra­kis[aqua­copper(II)] tetra­deca­hydrate

aKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01601 Kiev, Ukraine, and bUniversity of Joensuu, Department of Chemistry, PO Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: malinachem@mail.ru

(Received 26 July 2011; accepted 1 August 2011; online 17 August 2011)

The title compound, [Cu4(C7H6N2O3)4(H2O)4]·14H2O, a tetra­nuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazole­carboxyl­ate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxyl­ate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carb­oxy­lic acid and one O atom of a water mol­ecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H⋯O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

Related literature

For the use of pyrazolate ligands in the preparation of polynuclear supra­molecular compounds, see: Piguet et al. (1997[Piguet, C., Bernardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005-2057.]); Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Zhang et al. (1996[Zhang, H., Fu, D., Ji, F., Wang, G., Yu, K. & Yao, T. (1996). J. Chem. Soc. Dalton Trans. pp. 3799-3805.]); Van der Vlugt et al. (2008[Van der Vlugt, J. I., Demeshko, S., Dechert, S. & Meyer, F. (2008). Inorg. Chem. 47, 1576-1585.]); Klingele et al. (2007[Klingele, J., Prikhodko, A. I., Leibeling, G., Demeshko, S., Dechert, S. & Meyer, F. (2007). Dalton Trans. pp. 2003-2008.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]); Pons et al. (2003[Pons, J., Sanchez, F. J., Casaby, J., Alvarez-Larena, A., Piniella, J. F. & Ros, J. (2003). Inorg. Chem. Commun. 6, 833-836.]). For the use of asymmetric ligands in the preparation of heterometallic complexes, see: Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]). For related structures, see: Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Wörl et al. (2005a[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27-29.],b[Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759-765.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]). For the preparation of related ligands, see: Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800-806.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4(C7H6N2O3)4(H2O)4]·14H2O

  • Mr = 1243.00

  • Tetragonal, I 41 /a

  • a = 13.8502 (7) Å

  • c = 26.280 (3) Å

  • V = 5041.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.578, Tmax = 0.778

  • 37816 measured reflections

  • 3993 independent reflections

  • 3254 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.06

  • 3993 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N2 1.9495 (16)
Cu1—O2 1.9519 (14)
Cu1—O4 1.9676 (15)
Cu1—N1 1.9682 (16)
Cu1—O1 2.3938 (15)
N2—Cu1—O2 82.06 (6)
O2—Cu1—O4 89.18 (6)
N2—Cu1—N1 97.49 (7)
O4—Cu1—N1 91.15 (7)
N1—Cu1—O1 74.28 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O5 0.84 1.84 2.680 (3) 173
O4—H4P⋯O3iv 0.84 2.03 2.868 (2) 177
O5—H5O⋯O5v 0.88 2.22 2.808 (4) 124
O5—H5P⋯O7 0.80 1.97 2.766 (3) 171
O6—H6O⋯O7vi 0.92 1.84 2.752 (2) 177
O6—H6P⋯O1 0.90 1.99 2.863 (2) 163
O7—H7O⋯O6vii 0.83 1.92 2.707 (2) 157
O7—H7P⋯O3 0.83 2.21 3.016 (2) 166
O7—H7P⋯O2 0.83 2.33 2.951 (2) 132
O8—H8O⋯O5 0.85 1.81 2.644 (5) 167
O8—H8P⋯O6 0.81 2.01 2.815 (4) 174
Symmetry codes: (iv) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}]; (v) [-x+1, -y+{\script{1\over 2}}, z]; (vi) [x, y+{\script{1\over 2}}, -z]; (vii) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted pyrazolate ligands have found widespread use as building blocks for the formation of self-assembled supramolecular coordination complexes with an array of transition metal ions and a variety of different structures, e.g., helical polymers (Piguet et al., 1997; Krämer et al., 2002), so-called [2 × 2] grids (Zhang et al., 1996; Van der Vlugt et al., 2008; Klingele et al., 2007) and other polynuclear structures (Kovbasyuk et al., 2004; Pons et al., 2003). Introduction of different donor substituents in 3- and 5-positions of the pyrazole ring is still rare, and such ligands can be successully used for the obtaining of oligonuclear heterometallic species (Moroz et al., 2010). Reported here is a new copper(II) complex with [2 × 2] grid-structure based on a novel asymmetric pyrazolate ligand having different substituents (the carboxylic and acetyl gropus) in 3- and 5-positions.

In the title compound, (I), the tetranuclear [2 × 2] grid-type complex with S4 symmetry are composed of four CuII ions, four ligands and four metal-bound water molecules (Fig. 1).

Each copper ion is nested in a square-pyramidal environment that is composed of the pyrazolate-N2, deprotonated carboxyl-O2 from a compartment of one ligand molecule and acetyl-O1 atoms, the pyrazolate-N1 from another ligand and one water-O4.

The intermetallic separations pyrazolate-bridged CuII ions is 4.0600 (4) Å which is similar to that seen in the structures reported by Zhang et al., 1996 (4.098 – 4.115 Å), while the distance between diagonal copper atoms is 5.0814 (5) Å, which is more longer to that observed in the structures reported by Klingele et al., 2007 (4.7091 (5) Å) and Van der Vlugt et al., 2008 (4.2308 (6) Å).

The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Sliva et al., 1997; Świątek-Kozłowska et al., 2000; Mokhir et al., 2002). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) ) which is typical for monodentately coordinated carboxylates (Wörl et al., 2005a,b).

A part of the crystal packing of (I) is presented in Fig.2. In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds that involve the O—H interactions between the coordinated and the solvate water molecules and the non-coordinating carboxylate-O atoms. Thus, the tetranuclear molecules are stacked along the crystallographic x and y axises, forming the columns. The columns bisect one another at right angles to give a layer-like structure.

Related literature top

For the use of pyrazolate ligands in the preparation of polynuclear supramolecular compounds, see: Piguet et al. (1997); Krämer et al. (2002); Zhang et al. (1996); Van der Vlugt et al. (2008); Klingele et al. (2007); Kovbasyuk et al. (2004); Pons et al. (2003). For the use of asymmetric ligands in the preparation of heterometallic complexes, see: Moroz et al. (2010). For related structures, see: Mokhir et al. (2002); Sliva et al. (1997); Wörl et al. (2005a,b); Świątek-Kozłowska et al. (2000). For the preparation of related ligands, see: Sachse et al. (2008).

Experimental top

The ligand 5-acetyl-4-methyl-1H-pyrazole-3-carboxylic acid (Sachse et al., 2008) (0.25 g, 1.5 mmol) was added to a solution of Cu(Ac)2.H2O (0.30 g, 1.5 mmol) in H2O–CH3OH (50 mL) [80:20 v/v]. The reaction mixture was heated for 30 min with constant stirring at 80 °C until completedissolution of the ligand occurred. The resulting deep blue solution was filtered to remove any undissolved ligand and left at room temperature. Square block dark blue crystals suitable for X-ray diffraction were isolated after standing for several days (yield 0.32 g, 80%). Elemental analysis calc. (%) for C28H40Cu4N8O20: C 31.64; H 3.79; N 10.54; found: C 31.22; H 3.47; N 10.34.

Refinement top

The O—H and N—H hydrogen atoms were located from the difference Fourier map, and refined with Uiso = 1.5 Ueq(parent atom). The remaining H atoms were positioned geometrically and were constrained to ride on their parent atoms with C—H = 0.96–0.97 Å, and with Uiso = 1.2–1.5 Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. H atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for the title compound, showing the columns along the y-axis direction. Copper atoms and water molecules are depicted as the big and the small balls, respectively.
cyclo-Tetrakis(µ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato- κ4N2,O3:N1,O5)tetrakis[aquacopper(II)] tetradecahydrate top
Crystal data top
[Cu4(C7H6N2O3)4(H2O)4]·14H2ODx = 1.638 Mg m3
Mr = 1243.00Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9905 reflections
Hall symbol: -I 4adθ = 2.6–30.3°
a = 13.8502 (7) ŵ = 1.76 mm1
c = 26.280 (3) ÅT = 100 K
V = 5041.1 (6) Å3Block, blue
Z = 40.35 × 0.25 × 0.15 mm
F(000) = 2560
Data collection top
Bruker SMART APEXII CCD
diffractometer
3993 independent reflections
Radiation source: fine-focus sealed tube3254 reflections with I > 2σ(I)
Flat graphite crystal monochromatorRint = 0.037
Detector resolution: 16 pixels mm-1θmax = 30.9°, θmin = 1.7°
ϕ scans and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1919
Tmin = 0.578, Tmax = 0.778l = 3738
37816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0463P)2 + 11.3899P]
where P = (Fo2 + 2Fc2)/3
3993 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu4(C7H6N2O3)4(H2O)4]·14H2OZ = 4
Mr = 1243.00Mo Kα radiation
Tetragonal, I41/aµ = 1.76 mm1
a = 13.8502 (7) ÅT = 100 K
c = 26.280 (3) Å0.35 × 0.25 × 0.15 mm
V = 5041.1 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3993 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3254 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.778Rint = 0.037
37816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0463P)2 + 11.3899P]
where P = (Fo2 + 2Fc2)/3
3993 reflectionsΔρmax = 1.20 e Å3
165 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.164669 (16)0.330841 (17)0.089037 (8)0.01628 (8)
O10.19490 (11)0.47600 (11)0.13584 (6)0.0220 (3)
O20.18857 (10)0.33808 (11)0.01594 (5)0.0191 (3)
O30.11824 (11)0.36118 (11)0.05924 (5)0.0207 (3)
O40.30114 (11)0.29660 (13)0.09939 (6)0.0290 (4)
H4O0.33900.29830.07450.044*
H4P0.32830.31610.12590.044*
O50.42451 (14)0.31765 (18)0.02160 (7)0.0496 (6)
H5O0.48770.31620.02290.074*
H5P0.39940.30420.00490.074*
O60.34700 (12)0.60006 (12)0.10161 (6)0.0300 (3)
H6O0.33630.66190.09040.045*
H6P0.29160.56940.10890.045*
O70.32202 (12)0.28601 (12)0.06718 (6)0.0275 (3)
H7O0.34300.31070.09390.041*
H7P0.26510.29970.06060.041*
O80.4789 (2)0.4970 (4)0.04080 (17)0.0610 (16)0.50
H8O0.45610.44290.03100.092*0.50
H8P0.43900.52780.05640.092*0.50
N10.13450 (12)0.30012 (11)0.16041 (6)0.0161 (3)
N20.03441 (11)0.36571 (11)0.06776 (6)0.0152 (3)
C10.17729 (14)0.46349 (14)0.18133 (8)0.0191 (4)
C20.18659 (19)0.54292 (15)0.21907 (9)0.0284 (5)
H2A0.24080.52930.24190.043*
H2B0.12690.54780.23890.043*
H2C0.19820.60400.20120.043*
C30.14765 (13)0.36668 (13)0.19793 (7)0.0159 (3)
C40.07281 (13)0.38673 (13)0.00422 (7)0.0161 (3)
C50.11564 (15)0.39273 (16)0.04787 (7)0.0218 (4)
H5A0.06530.38070.07330.033*
H5B0.14300.45720.05310.033*
H5C0.16670.34420.05130.033*
C60.02326 (13)0.36773 (13)0.01655 (7)0.0145 (3)
C70.11406 (13)0.35477 (13)0.01228 (7)0.0159 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01545 (12)0.02178 (13)0.01160 (11)0.00004 (8)0.00341 (8)0.00135 (8)
O10.0244 (7)0.0211 (7)0.0207 (7)0.0033 (5)0.0084 (5)0.0037 (5)
O20.0159 (6)0.0270 (7)0.0145 (6)0.0023 (5)0.0004 (5)0.0028 (5)
O30.0246 (7)0.0253 (7)0.0122 (6)0.0018 (6)0.0017 (5)0.0031 (5)
O40.0222 (7)0.0459 (10)0.0190 (7)0.0079 (7)0.0080 (6)0.0070 (7)
O50.0298 (9)0.0881 (17)0.0307 (9)0.0203 (10)0.0046 (8)0.0200 (10)
O60.0302 (8)0.0300 (8)0.0297 (8)0.0047 (7)0.0066 (7)0.0033 (7)
O70.0244 (7)0.0294 (8)0.0288 (8)0.0005 (6)0.0089 (6)0.0036 (6)
O80.0102 (14)0.102 (4)0.071 (3)0.0179 (18)0.0138 (16)0.068 (3)
N10.0212 (8)0.0149 (7)0.0121 (7)0.0011 (6)0.0041 (6)0.0001 (5)
N20.0158 (7)0.0197 (7)0.0102 (6)0.0028 (5)0.0003 (5)0.0028 (5)
C10.0199 (8)0.0157 (8)0.0216 (9)0.0016 (6)0.0083 (7)0.0002 (7)
C20.0416 (13)0.0164 (9)0.0270 (10)0.0008 (8)0.0070 (9)0.0035 (8)
C30.0188 (8)0.0150 (8)0.0138 (8)0.0031 (6)0.0046 (6)0.0008 (6)
C40.0172 (8)0.0170 (8)0.0140 (8)0.0046 (6)0.0030 (6)0.0045 (6)
C50.0218 (9)0.0284 (10)0.0152 (8)0.0034 (8)0.0070 (7)0.0038 (7)
C60.0164 (8)0.0158 (8)0.0112 (7)0.0037 (6)0.0017 (6)0.0029 (6)
C70.0184 (8)0.0155 (8)0.0138 (8)0.0037 (6)0.0009 (6)0.0025 (6)
Geometric parameters (Å, º) top
Cu1—N21.9495 (16)O8—H8O0.8529
Cu1—O21.9519 (14)O8—H8P0.8080
Cu1—O41.9676 (15)N1—N2i1.329 (2)
Cu1—N11.9682 (16)N1—C31.362 (2)
Cu1—O12.3938 (15)N2—N1ii1.329 (2)
Cu1—Cu1i4.0600 (4)N2—C61.355 (2)
Cu1—Cu1ii4.0600 (4)C1—C31.469 (3)
Cu1—Cu1iii5.0814 (5)C1—C21.487 (3)
O1—C11.232 (3)C2—H2A0.9800
O2—C71.292 (2)C2—H2B0.9800
O3—C71.239 (2)C2—H2C0.9800
O4—H4O0.8400C3—C4i1.405 (3)
O4—H4P0.8355C4—C61.394 (2)
O5—H5O0.8760C4—C3ii1.405 (3)
O5—H5P0.7998C4—C51.494 (3)
O6—H6O0.9174C5—H5A0.9800
O6—H6P0.8985C5—H5B0.9800
O7—H7O0.8324C5—H5C0.9800
O7—H7P0.8289C6—C71.479 (3)
N2—Cu1—O282.06 (6)H7O—O7—H7P114.5
N2—Cu1—O4171.24 (6)H8O—O8—H8P111.3
O2—Cu1—O489.18 (6)N2i—N1—C3108.05 (15)
N2—Cu1—N197.49 (7)N2i—N1—Cu1130.03 (12)
O2—Cu1—N1170.07 (6)C3—N1—Cu1121.00 (13)
O4—Cu1—N191.15 (7)N1ii—N2—C6108.91 (15)
N2—Cu1—O195.81 (6)N1ii—N2—Cu1137.70 (12)
O2—Cu1—O1115.65 (6)C6—N2—Cu1113.30 (12)
O4—Cu1—O187.90 (6)O1—C1—C3118.16 (17)
N1—Cu1—O174.28 (6)O1—C1—C2121.73 (18)
N2—Cu1—Cu1i94.38 (5)C3—C1—C2120.11 (18)
O2—Cu1—Cu1i123.35 (4)C1—C2—H2A109.5
O4—Cu1—Cu1i90.48 (5)C1—C2—H2B109.5
N1—Cu1—Cu1i46.73 (5)H2A—C2—H2B109.5
O1—Cu1—Cu1i120.95 (4)C1—C2—H2C109.5
N2—Cu1—Cu1ii44.57 (5)H2A—C2—H2C109.5
O2—Cu1—Cu1ii125.84 (4)H2B—C2—H2C109.5
O4—Cu1—Cu1ii144.00 (5)N1—C3—C4i109.93 (16)
N1—Cu1—Cu1ii55.97 (5)N1—C3—C1116.13 (16)
O1—Cu1—Cu1ii70.56 (4)C4i—C3—C1133.70 (17)
Cu1i—Cu1—Cu1ii77.482 (5)C6—C4—C3ii103.01 (15)
N2—Cu1—Cu1iii43.82 (5)C6—C4—C5127.02 (18)
O2—Cu1—Cu1iii100.07 (4)C3ii—C4—C5129.97 (17)
O4—Cu1—Cu1iii139.12 (6)C4—C5—H5A109.5
N1—Cu1—Cu1iii73.39 (5)C4—C5—H5B109.5
O1—Cu1—Cu1iii121.81 (4)H5A—C5—H5B109.5
Cu1i—Cu1—Cu1iii51.259 (3)C4—C5—H5C109.5
Cu1ii—Cu1—Cu1iii51.259 (3)H5A—C5—H5C109.5
C1—O1—Cu1110.22 (12)H5B—C5—H5C109.5
C7—O2—Cu1116.03 (12)N2—C6—C4110.08 (16)
Cu1—O4—H4O119.0N2—C6—C7114.16 (15)
Cu1—O4—H4P118.0C4—C6—C7135.66 (17)
H4O—O4—H4P111.1O3—C7—O2123.20 (17)
H5O—O5—H5P117.6O3—C7—C6122.78 (17)
H6O—O6—H6P111.8O2—C7—C6114.02 (15)
Symmetry codes: (i) y1/4, x+1/4, z+1/4; (ii) y+1/4, x+1/4, z+1/4; (iii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O50.841.842.680 (3)173
O4—H4P···O3iv0.842.032.868 (2)177
O5—H5O···O5v0.882.222.808 (4)124
O5—H5P···O70.801.972.766 (3)171
O6—H6O···O7vi0.921.842.752 (2)177
O6—H6P···O10.901.992.863 (2)163
O7—H7O···O6vii0.831.922.707 (2)157
O7—H7P···O30.832.213.016 (2)166
O7—H7P···O20.832.332.951 (2)132
O8—H8O···O50.851.812.644 (5)167
O8—H8P···O60.812.012.815 (4)174
Symmetry codes: (iv) y+3/4, x+1/4, z+1/4; (v) x+1, y+1/2, z; (vi) x, y+1/2, z; (vii) y1/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formula[Cu4(C7H6N2O3)4(H2O)4]·14H2O
Mr1243.00
Crystal system, space groupTetragonal, I41/a
Temperature (K)100
a, c (Å)13.8502 (7), 26.280 (3)
V3)5041.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.578, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
37816, 3993, 3254
Rint0.037
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.06
No. of reflections3993
No. of parameters165
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0463P)2 + 11.3899P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.20, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected geometric parameters (Å, º) top
Cu1—N21.9495 (16)Cu1—O12.3938 (15)
Cu1—O21.9519 (14)Cu1—Cu1i4.0600 (4)
Cu1—O41.9676 (15)Cu1—Cu1ii4.0600 (4)
Cu1—N11.9682 (16)Cu1—Cu1iii5.0814 (5)
N2—Cu1—O282.06 (6)O4—Cu1—N191.15 (7)
O2—Cu1—O489.18 (6)N1—Cu1—O174.28 (6)
N2—Cu1—N197.49 (7)
Symmetry codes: (i) y1/4, x+1/4, z+1/4; (ii) y+1/4, x+1/4, z+1/4; (iii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O50.841.842.680 (3)173.0
O4—H4P···O3iv0.842.032.868 (2)177.2
O5—H5O···O5v0.882.222.808 (4)124.4
O5—H5P···O70.801.972.766 (3)171.1
O6—H6O···O7vi0.921.842.752 (2)176.8
O6—H6P···O10.901.992.863 (2)163.3
O7—H7O···O6vii0.831.922.707 (2)156.7
O7—H7P···O30.832.213.016 (2)165.5
O7—H7P···O20.832.332.951 (2)131.6
O8—H8O···O50.851.812.644 (5)167.1
O8—H8P···O60.812.012.815 (4)174.1
Symmetry codes: (iv) y+3/4, x+1/4, z+1/4; (v) x+1, y+1/2, z; (vi) x, y+1/2, z; (vii) y1/4, x+3/4, z1/4.
 

Acknowledgements

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlingele, J., Prikhodko, A. I., Leibeling, G., Demeshko, S., Dechert, S. & Meyer, F. (2007). Dalton Trans. pp. 2003–2008.  Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPiguet, C., Bernardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005–2057.  Google Scholar
First citationPons, J., Sanchez, F. J., Casaby, J., Alvarez-Larena, A., Piniella, J. F. & Ros, J. (2003). Inorg. Chem. Commun. 6, 833–836.  Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationVan der Vlugt, J. I., Demeshko, S., Dechert, S. & Meyer, F. (2008). Inorg. Chem. 47, 1576–1585.  Google Scholar
First citationWörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29.  Google Scholar
First citationZhang, H., Fu, D., Ji, F., Wang, G., Yu, K. & Yao, T. (1996). J. Chem. Soc. Dalton Trans. pp. 3799–3805.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1260-m1261
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds