organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Phenyl (benzylamido)(p-tolyl­amido)­phosphinate

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 6 August 2011; accepted 22 August 2011; online 31 August 2011)

The title compound, C20H21N2O2P, was synthesized from (RS)-(C6H5O)P(O)Cl(NHC6H4-p-CH3) and benzyl­amine. The product crystallizes as a racemate in a polar space group. The phospho­rus atom has a distorted tetra­hedral configuration: the bond angles at the P atom are in the range 103.2 (1)–118.4 (1)°. The P—N(benzyl­amido) bond [1.615 (2) Å] is slightly shorter than the P—N(p-tolyl­amido) bond [1.630 (2) Å]. Both N—H groups adopt an anti orientation relative to the phosphoryl group. In the crystal, the adjacent mol­ecules are linked via N—H⋯O hydrogen bonds, forming R22(8) rings, into a one-dimensional arrangement parallel to the x axis.

Related literature

For a related mixed-amido phosphinate derivative and its mol­ecular geometry, see: Sabbaghi et al. (2011[Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N2O2P

  • Mr = 352.36

  • Orthorhombic, P c a 21

  • a = 9.6986 (5) Å

  • b = 13.0751 (6) Å

  • c = 14.3446 (5) Å

  • V = 1819.04 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 120 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Xcalibur, Sapphire2, large Be window diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.785, Tmax = 1.000

  • 20413 measured reflections

  • 3200 independent reflections

  • 2823 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.00

  • 3200 reflections

  • 233 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1526 Friedel pairs

  • Flack parameter: 0.01 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.76 (3) 2.43 (3) 3.127 (3) 153 (3)
N2—H2N⋯O2i 0.86 (3) 1.91 (3) 2.761 (3) 176 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+2, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In continuation of the previous works on synthesis and structure determination of mixed-amido phosphinates with common formula (RO)(NR1R2)(NR3R4)P(O) (Sabbaghi et al., 2011; and the related reference cited therein), the structure of the title molecule, [C6H5O][4-CH3C6H4NH][C6H5CH2NH]PO (Fig. 1), is reported here.

Single crystals were obtained from CHCl3/CH3CN at room temperature.

The PO (1.4679 (17) Å), P—O (1.6250 (17) Å), P—N (1.615 (2) Å & 1.630 (2) Å) and C—O (1.400 (3) Å) bond lengths and the P—N—C (120.54 (18)° & 125.18 (18)°) and P—O—C (120.90 (14)°) bond angles are within the expected values (Sabbaghi et al., 2011).

The phosphorus atom has a distorted tetrahedral P(O)(O)(N)(N) environment. The bond angles at the P atom are in the range from 103.17 (9)° [for the O2—P1—O1 angle] to 118.39 (11)° [for the O2—P1—N2 angle].

In the crystal structure, neighbouring molecules are H-bonded via N—H···O(P) hydrogen bonds, building R22(8) rings (Bernstein et al., 1995), in a linear arrangement parallel to [100], Table 1, Fig. 2.

Related literature top

For a related mixed-amido phosphinate and its molecular geometry, see: Sabbaghi et al. (2011). For graph-set notations, see: Bernstein et al. (1995).

Experimental top

To a solution of (C6H5O)(4-CH3C6H4NH)P(O)Cl (2.286 mmol) in chloroform, a solution of benzylamine (4.572 mmol) in chloroform was added at 273 K. After stirring for 5 h, the solvent was removed and the obtained solid was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3CN/CHCl3 after slow evaporation at room temperature.

Refinement top

All carbon-bound H atoms were placed in calculated positions and were refined as riding with their Uiso set to be either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen-bound H atoms were located in a difference Fourier map and refined with their Uiso set to 1.2Ueq of the adjacent nitrogen atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP style plot and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of an arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound with the hydrogen bonds shown as dotted lines (the C—H hydrogen atoms are omitted for clarity).
rac-Phenyl (benzylamido)(p-tolylamido)phosphinate top
Crystal data top
C20H21N2O2PDx = 1.287 Mg m3
Mr = 352.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 10547 reflections
a = 9.6986 (5) Åθ = 3.0–27.2°
b = 13.0751 (6) ŵ = 0.17 mm1
c = 14.3446 (5) ÅT = 120 K
V = 1819.04 (14) Å3Plate, colorless
Z = 40.30 × 0.30 × 0.10 mm
F(000) = 744
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
3200 independent reflections
Radiation source: Enhance (Mo) X-ray Source2823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scanh = 119
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.785, Tmax = 1.000l = 1717
20413 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3200 reflectionsΔρmax = 0.51 e Å3
233 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 1523 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (10)
Crystal data top
C20H21N2O2PV = 1819.04 (14) Å3
Mr = 352.36Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.6986 (5) ŵ = 0.17 mm1
b = 13.0751 (6) ÅT = 120 K
c = 14.3446 (5) Å0.30 × 0.30 × 0.10 mm
Data collection top
Xcalibur, Sapphire2, large Be window
diffractometer
3200 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2823 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 1.000Rint = 0.047
20413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.51 e Å3
S = 1.00Δρmin = 0.29 e Å3
3200 reflectionsAbsolute structure: Flack (1983), 1523 Friedel pairs
233 parametersAbsolute structure parameter: 0.01 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.91905 (5)0.99930 (4)0.56899 (5)0.01847 (16)
O10.84602 (16)1.07673 (12)0.64256 (11)0.0217 (4)
O20.80162 (17)0.94641 (13)0.52605 (12)0.0247 (4)
N11.0250 (2)0.92421 (16)0.62255 (15)0.0241 (5)
H1N1.098 (3)0.944 (2)0.630 (2)0.029*
N21.0197 (2)1.06729 (15)0.50236 (15)0.0217 (5)
H2N1.107 (3)1.062 (2)0.5071 (19)0.026*
C10.9250 (2)1.1424 (2)0.69810 (16)0.0207 (6)
C20.9809 (3)1.1052 (2)0.78124 (17)0.0264 (6)
H2C0.96991.03560.79870.032*
C31.0533 (3)1.1733 (2)0.83765 (18)0.0297 (6)
H3A1.09401.14940.89380.036*
C41.0667 (3)1.2738 (2)0.81375 (18)0.0290 (6)
H4A1.11561.31920.85350.035*
C51.0088 (3)1.3098 (2)0.73111 (18)0.0283 (6)
H5A1.01821.37980.71430.034*
C60.9375 (3)1.2432 (2)0.67366 (17)0.0249 (6)
H6A0.89741.26740.61740.030*
C70.9737 (3)0.83908 (19)0.67821 (18)0.0273 (6)
H7A0.88010.85640.70060.033*
H7B1.03360.83150.73370.033*
C80.9671 (3)0.73740 (18)0.62858 (16)0.0225 (5)
C90.8580 (3)0.6727 (2)0.6440 (2)0.0360 (7)
H9A0.78400.69450.68260.043*
C100.8539 (4)0.5761 (2)0.6042 (2)0.0503 (9)
H10A0.77870.53160.61670.060*
C110.9596 (4)0.5448 (2)0.54621 (18)0.0436 (8)
H11A0.95730.47890.51840.052*
C121.0667 (3)0.6091 (2)0.52932 (19)0.0368 (7)
H12A1.13940.58760.48950.044*
C131.0716 (3)0.70547 (18)0.5693 (2)0.0282 (5)
H13A1.14670.74980.55610.034*
C140.9794 (3)1.15603 (17)0.45273 (16)0.0196 (5)
C151.0762 (3)1.23182 (19)0.43674 (17)0.0246 (5)
H15A1.16801.22390.45880.030*
C161.0383 (3)1.3201 (2)0.38799 (19)0.0296 (6)
H16A1.10611.37070.37530.036*
C170.9042 (3)1.33547 (18)0.35774 (16)0.0258 (6)
C180.8104 (3)1.25870 (19)0.37405 (16)0.0249 (6)
H18A0.71821.26700.35300.030*
C190.8467 (3)1.16882 (19)0.42071 (16)0.0229 (5)
H19A0.77991.11670.43030.027*
C200.8653 (3)1.4309 (2)0.3061 (2)0.0364 (7)
H20A0.76461.43690.30400.055*
H20B0.90171.42760.24240.055*
H20C0.90411.49050.33810.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0170 (3)0.0230 (3)0.0154 (3)0.0002 (3)0.0001 (3)0.0003 (2)
O10.0207 (9)0.0288 (9)0.0155 (8)0.0002 (7)0.0003 (7)0.0013 (7)
O20.0199 (9)0.0295 (10)0.0247 (8)0.0025 (7)0.0001 (7)0.0008 (7)
N10.0185 (11)0.0276 (12)0.0261 (12)0.0036 (10)0.0027 (10)0.0003 (9)
N20.0153 (11)0.0287 (11)0.0211 (10)0.0021 (9)0.0001 (9)0.0026 (9)
C10.0165 (13)0.0302 (14)0.0154 (12)0.0025 (10)0.0021 (9)0.0065 (10)
C20.0320 (15)0.0292 (13)0.0180 (11)0.0010 (11)0.0026 (11)0.0026 (11)
C30.0307 (15)0.0421 (16)0.0163 (12)0.0023 (13)0.0032 (11)0.0008 (12)
C40.0274 (14)0.0378 (15)0.0217 (13)0.0048 (12)0.0014 (11)0.0077 (11)
C50.0308 (16)0.0282 (14)0.0260 (15)0.0039 (12)0.0044 (12)0.0031 (12)
C60.0239 (14)0.0340 (14)0.0167 (11)0.0031 (11)0.0007 (10)0.0015 (11)
C70.0368 (17)0.0260 (14)0.0190 (13)0.0026 (12)0.0008 (12)0.0046 (11)
C80.0241 (13)0.0262 (13)0.0173 (12)0.0033 (11)0.0028 (10)0.0056 (10)
C90.0355 (16)0.0454 (16)0.0272 (14)0.0088 (13)0.0049 (12)0.0043 (13)
C100.066 (2)0.0461 (18)0.0387 (16)0.0296 (17)0.0033 (17)0.0012 (14)
C110.083 (2)0.0280 (14)0.0199 (14)0.0073 (16)0.0028 (14)0.0025 (11)
C120.054 (2)0.0357 (15)0.0201 (13)0.0115 (14)0.0042 (13)0.0011 (11)
C130.0289 (14)0.0316 (13)0.0240 (12)0.0016 (10)0.0020 (12)0.0081 (13)
C140.0214 (14)0.0257 (13)0.0118 (12)0.0031 (11)0.0044 (10)0.0037 (10)
C150.0229 (14)0.0327 (13)0.0184 (12)0.0010 (11)0.0016 (10)0.0015 (11)
C160.0361 (17)0.0274 (13)0.0254 (13)0.0051 (12)0.0057 (12)0.0009 (11)
C170.0368 (16)0.0279 (14)0.0128 (12)0.0071 (11)0.0029 (10)0.0027 (10)
C180.0252 (14)0.0341 (14)0.0154 (12)0.0058 (11)0.0008 (10)0.0026 (11)
C190.0237 (14)0.0295 (13)0.0154 (11)0.0002 (11)0.0010 (10)0.0004 (10)
C200.0481 (18)0.0310 (14)0.0302 (14)0.0037 (14)0.0008 (13)0.0023 (12)
Geometric parameters (Å, º) top
P1—O21.4679 (17)C8—C131.387 (4)
P1—N11.615 (2)C9—C101.386 (4)
P1—O11.6250 (17)C9—H9A0.9500
P1—N21.630 (2)C10—C111.382 (4)
O1—C11.400 (3)C10—H10A0.9500
N1—C71.457 (3)C11—C121.358 (4)
N1—H1N0.76 (3)C11—H11A0.9500
N2—C141.416 (3)C12—C131.385 (4)
N2—H2N0.86 (3)C12—H12A0.9500
C1—C61.369 (4)C13—H13A0.9500
C1—C21.398 (4)C14—C191.377 (4)
C2—C31.393 (4)C14—C151.385 (3)
C2—H2C0.9500C15—C161.399 (4)
C3—C41.364 (4)C15—H15A0.9500
C3—H3A0.9500C16—C171.386 (4)
C4—C51.394 (4)C16—H16A0.9500
C4—H4A0.9500C17—C181.375 (4)
C5—C61.384 (4)C17—C201.499 (3)
C5—H5A0.9500C18—C191.397 (4)
C6—H6A0.9500C18—H18A0.9500
C7—C81.510 (4)C19—H19A0.9500
C7—H7A0.9900C20—H20A0.9800
C7—H7B0.9900C20—H20B0.9800
C8—C91.373 (4)C20—H20C0.9800
O2—P1—N1114.00 (11)C8—C9—C10121.1 (3)
O2—P1—O1103.17 (9)C8—C9—H9A119.4
N1—P1—O1110.30 (11)C10—C9—H9A119.4
O2—P1—N2118.39 (11)C11—C10—C9119.8 (3)
N1—P1—N2103.28 (11)C11—C10—H10A120.1
O1—P1—N2107.58 (10)C9—C10—H10A120.1
C1—O1—P1120.90 (14)C12—C11—C10119.4 (3)
C7—N1—P1120.54 (18)C12—C11—H11A120.3
C7—N1—H1N120 (2)C10—C11—H11A120.3
P1—N1—H1N117 (2)C11—C12—C13121.0 (3)
C14—N2—P1125.18 (18)C11—C12—H12A119.5
C14—N2—H2N112.1 (18)C13—C12—H12A119.5
P1—N2—H2N120.5 (19)C12—C13—C8120.2 (2)
C6—C1—C2121.3 (2)C12—C13—H13A119.9
C6—C1—O1119.6 (2)C8—C13—H13A119.9
C2—C1—O1118.9 (2)C19—C14—C15119.5 (2)
C3—C2—C1117.9 (2)C19—C14—N2121.7 (2)
C3—C2—H2C121.1C15—C14—N2118.8 (2)
C1—C2—H2C121.1C14—C15—C16119.7 (2)
C4—C3—C2121.2 (2)C14—C15—H15A120.2
C4—C3—H3A119.4C16—C15—H15A120.2
C2—C3—H3A119.4C17—C16—C15121.5 (2)
C3—C4—C5120.1 (3)C17—C16—H16A119.2
C3—C4—H4A120.0C15—C16—H16A119.2
C5—C4—H4A120.0C18—C17—C16117.5 (2)
C6—C5—C4119.7 (2)C18—C17—C20121.7 (2)
C6—C5—H5A120.2C16—C17—C20120.8 (2)
C4—C5—H5A120.2C17—C18—C19121.9 (2)
C1—C6—C5119.8 (2)C17—C18—H18A119.0
C1—C6—H6A120.1C19—C18—H18A119.0
C5—C6—H6A120.1C14—C19—C18119.8 (2)
N1—C7—C8115.4 (2)C14—C19—H19A120.1
N1—C7—H7A108.4C18—C19—H19A120.1
C8—C7—H7A108.4C17—C20—H20A109.5
N1—C7—H7B108.4C17—C20—H20B109.5
C8—C7—H7B108.4H20A—C20—H20B109.5
H7A—C7—H7B107.5C17—C20—H20C109.5
C9—C8—C13118.5 (2)H20A—C20—H20C109.5
C9—C8—C7119.9 (2)H20B—C20—H20C109.5
C13—C8—C7121.6 (2)
O2—P1—O1—C1179.64 (16)N1—C7—C8—C1341.2 (3)
N1—P1—O1—C158.23 (19)C13—C8—C9—C102.3 (4)
N2—P1—O1—C153.74 (19)C7—C8—C9—C10175.7 (3)
O2—P1—N1—C740.2 (2)C8—C9—C10—C111.5 (5)
O1—P1—N1—C775.3 (2)C9—C10—C11—C120.3 (5)
N2—P1—N1—C7169.97 (18)C10—C11—C12—C130.0 (4)
O2—P1—N2—C1464.2 (2)C11—C12—C13—C80.8 (4)
N1—P1—N2—C14168.78 (18)C9—C8—C13—C121.9 (4)
O1—P1—N2—C1452.1 (2)C7—C8—C13—C12176.0 (2)
P1—O1—C1—C6100.9 (2)P1—N2—C14—C1930.3 (3)
P1—O1—C1—C283.8 (2)P1—N2—C14—C15149.3 (2)
C6—C1—C2—C31.6 (4)C19—C14—C15—C160.3 (4)
O1—C1—C2—C3176.8 (2)N2—C14—C15—C16179.9 (2)
C1—C2—C3—C41.4 (4)C14—C15—C16—C172.2 (4)
C2—C3—C4—C50.7 (4)C15—C16—C17—C182.6 (4)
C3—C4—C5—C60.1 (4)C15—C16—C17—C20179.6 (2)
C2—C1—C6—C51.1 (4)C16—C17—C18—C191.1 (3)
O1—C1—C6—C5176.3 (2)C20—C17—C18—C19178.9 (2)
C4—C5—C6—C10.3 (4)C15—C14—C19—C181.2 (3)
P1—N1—C7—C894.9 (3)N2—C14—C19—C18178.4 (2)
N1—C7—C8—C9140.9 (3)C17—C18—C19—C140.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.76 (3)2.43 (3)3.127 (3)153 (3)
N2—H2N···O2i0.86 (3)1.91 (3)2.761 (3)176 (3)
Symmetry code: (i) x+1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC20H21N2O2P
Mr352.36
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)120
a, b, c (Å)9.6986 (5), 13.0751 (6), 14.3446 (5)
V3)1819.04 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerXcalibur, Sapphire2, large Be window
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.785, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20413, 3200, 2823
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.00
No. of reflections3200
No. of parameters233
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.29
Absolute structureFlack (1983), 1523 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.76 (3)2.43 (3)3.127 (3)153 (3)
N2—H2N···O2i0.86 (3)1.91 (3)2.761 (3)176 (3)
Symmetry code: (i) x+1/2, y+2, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds