organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Ethane-1,2-di­yl)bis­­(4-chloro­benzene­sulfonamide)

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 July 2011; accepted 15 July 2011; online 2 August 2011)

The title mol­ecule, C14H14Cl2N2O4S2, lies on an inversion center. The mol­ecule is twisted in the region of the sulfonamide group with a C—S—N—C torsion angle of −67.49 (16)°. In the crystal, mol­ecules are connected via inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds, forming layers parallel to (100).

Related literature

For details of the chemistry of sulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.], 2007[Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245.]). For related structures, see: O'Connor & Maslen (1965[O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363-366.]); Kumar et al. (1992[Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1-6.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1401.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14Cl2N2O4S2

  • Mr = 409.29

  • Monoclinic, P 21 /c

  • a = 13.2640 (5) Å

  • b = 5.3390 (2) Å

  • c = 13.1792 (5) Å

  • β = 110.270 (1)°

  • V = 875.51 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 296 K

  • 0.86 × 0.42 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.925

  • 25142 measured reflections

  • 3689 independent reflections

  • 2869 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.175

  • S = 1.03

  • 3689 reflections

  • 114 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.79 (3) 2.13 (3) 2.903 (2) 167 (3)
C4—H4A⋯O1ii 0.93 2.50 3.157 (2) 127
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides and their N-halo compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. 2-chlorobenzenesulfonamide has been used to explore the substituent effects on the solid state structures of sulfonamides and N-haloarylsulfonamides (Gowda et al., 2003, 2007). The crystal structures of 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965) and 4-methylbenzenesulfonamide (Kumar et al., 1992) have been reported in the literature. In this paper, we present the X-ray single-crystal structure of N,N'-(ethane-1,2-diyl)bis(4-chlorobenzenesulfonamide) (I).

The asymmetric unit of the title compound, (I), consists of a half molecule of N,N'-(ethane-1,2-diyl)bis(4-chlorobenzenesulfonamide). The other half is generated by a crystallographic inversion center, as shown in Fig. 1. The molecule is twisted at the S atom with an C-S-N-C torsion angle of -67.49 (16)°. This value agrees with that previously reported for the crystal structure of 4-Chloro-N-(2,6-dimethylphenyl)benzene sulfonamide (Shakuntala et al., 2011). In the crystal, molecules are connected via N1—H1N1···O2ii and C4—H4A···O1iii (Table 1) hydrogen bonds (Fig. 2) forming layers parallel to (100).

Related literature top

For details of the chemistry of sulfonamides, see: Gowda et al. (2003, 2007). For related structures, see: O'Connor & Maslen (1965); Kumar et al. (1992); Shakuntala et al. (2011).

Experimental top

In a round bottom flask, 25ml of toluene was mixed with 4-chlorobenzenesulfonyl chloride (0.02 mol, 3.5 g) with stirring. Drops of ethylenediamine (0.01mol, 0.5 g ) were added and the mixture was refluxed for 30 min. The yellow gum formed was dissolved in hot water and sodium bicarbonate was added. The yellow precipitate formed was dissolved in methanol at 333K, yielding colourless crystals.

Refinement top

Atom H1N1 was located from a difference Fourier maps and refined freely [N–H = 0.78 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids (symmetry code: (A) -x+1, -y+2, -z).
[Figure 2] Fig. 2. The crystal packing of (I) with dashed lines representing hydrogen bonds.
4-chloro-N-[2-(4-chlorobenzenesulfonamido)ethyl]benzenesulfonamide top
Crystal data top
C14H14Cl2N2O4S2F(000) = 420
Mr = 409.29Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9471 reflections
a = 13.2640 (5) Åθ = 3.3–33.5°
b = 5.3390 (2) ŵ = 0.63 mm1
c = 13.1792 (5) ÅT = 296 K
β = 110.270 (1)°Plate, colourless
V = 875.51 (6) Å30.86 × 0.42 × 0.13 mm
Z = 2
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3689 independent reflections
Radiation source: fine-focus sealed tube2869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 34.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.613, Tmax = 0.925k = 88
25142 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.221P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3689 reflectionsΔρmax = 0.84 e Å3
114 parametersΔρmin = 0.71 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (6)
Crystal data top
C14H14Cl2N2O4S2V = 875.51 (6) Å3
Mr = 409.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.2640 (5) ŵ = 0.63 mm1
b = 5.3390 (2) ÅT = 296 K
c = 13.1792 (5) Å0.86 × 0.42 × 0.13 mm
β = 110.270 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3689 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2869 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.925Rint = 0.032
25142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.84 e Å3
3689 reflectionsΔρmin = 0.71 e Å3
114 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05348 (6)1.46054 (14)0.19657 (6)0.0881 (2)
S10.35715 (3)0.67863 (7)0.09928 (3)0.04701 (14)
O10.30882 (14)0.5925 (3)0.00946 (11)0.0722 (4)
O20.39055 (12)0.5017 (2)0.18611 (12)0.0615 (3)
N10.46306 (13)0.8326 (3)0.10557 (14)0.0537 (3)
C10.18737 (14)1.0017 (4)0.04025 (13)0.0572 (4)
H1A0.17840.95920.03080.069*
C20.12110 (16)1.1788 (4)0.06200 (16)0.0648 (5)
H2A0.06801.25810.00560.078*
C30.13465 (14)1.2362 (4)0.16811 (17)0.0564 (4)
C40.21201 (17)1.1220 (4)0.25315 (15)0.0602 (4)
H4A0.21911.16120.32400.072*
C50.27916 (15)0.9482 (4)0.23194 (12)0.0543 (4)
H5A0.33250.87070.28880.065*
C60.26714 (11)0.8888 (3)0.12547 (11)0.0428 (3)
C70.45903 (17)1.0240 (4)0.02466 (18)0.0635 (5)
H7A0.47101.18770.05870.076*
H7B0.38841.02410.03110.076*
H1N10.496 (2)0.868 (6)0.166 (2)0.076 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0889 (4)0.0823 (4)0.1081 (5)0.0331 (3)0.0532 (4)0.0217 (3)
S10.0555 (2)0.0437 (2)0.03914 (19)0.00060 (14)0.01292 (15)0.00090 (12)
O10.0873 (10)0.0712 (9)0.0468 (6)0.0035 (8)0.0090 (6)0.0168 (6)
O20.0717 (8)0.0495 (7)0.0620 (7)0.0049 (6)0.0214 (6)0.0146 (5)
N10.0538 (7)0.0590 (8)0.0516 (7)0.0028 (6)0.0226 (6)0.0065 (6)
C10.0508 (8)0.0756 (12)0.0390 (7)0.0038 (7)0.0079 (6)0.0079 (7)
C20.0524 (9)0.0799 (13)0.0563 (9)0.0152 (8)0.0113 (7)0.0193 (9)
C30.0522 (8)0.0566 (9)0.0653 (10)0.0068 (7)0.0265 (7)0.0122 (8)
C40.0711 (11)0.0637 (10)0.0484 (8)0.0112 (9)0.0241 (8)0.0060 (7)
C50.0620 (9)0.0605 (9)0.0374 (6)0.0110 (7)0.0135 (6)0.0078 (6)
C60.0431 (6)0.0460 (7)0.0366 (5)0.0031 (5)0.0104 (5)0.0047 (5)
C70.0724 (11)0.0577 (10)0.0775 (12)0.0207 (8)0.0477 (10)0.0202 (9)
Geometric parameters (Å, º) top
Cl1—C31.7359 (19)C2—C31.381 (3)
S1—O11.4282 (14)C2—H2A0.9300
S1—O21.4308 (13)C3—C41.373 (3)
S1—N11.6048 (16)C4—C51.380 (3)
S1—C61.7574 (16)C4—H4A0.9300
N1—C71.465 (2)C5—C61.393 (2)
N1—H1N10.78 (3)C5—H5A0.9300
C1—C61.386 (2)C7—C7i1.469 (3)
C1—C21.387 (3)C7—H7A0.9700
C1—H1A0.9300C7—H7B0.9700
O1—S1—O2119.79 (10)C2—C3—Cl1119.94 (14)
O1—S1—N1107.30 (10)C3—C4—C5119.05 (17)
O2—S1—N1105.90 (9)C3—C4—H4A120.5
O1—S1—C6107.66 (8)C5—C4—H4A120.5
O2—S1—C6107.92 (8)C4—C5—C6120.03 (15)
N1—S1—C6107.76 (8)C4—C5—H5A120.0
C7—N1—S1120.62 (14)C6—C5—H5A120.0
C7—N1—H1N1116 (2)C1—C6—C5120.40 (16)
S1—N1—H1N1110 (2)C1—C6—S1119.90 (12)
C6—C1—C2119.32 (16)C5—C6—S1119.66 (11)
C6—C1—H1A120.3N1—C7—C7i110.75 (19)
C2—C1—H1A120.3N1—C7—H7A109.5
C3—C2—C1119.42 (16)C7i—C7—H7A109.5
C3—C2—H2A120.3N1—C7—H7B109.5
C1—C2—H2A120.3C7i—C7—H7B109.5
C4—C3—C2121.75 (18)H7A—C7—H7B108.1
C4—C3—Cl1118.31 (16)
O1—S1—N1—C748.19 (17)C2—C1—C6—S1176.04 (15)
O2—S1—N1—C7177.22 (15)C4—C5—C6—C10.5 (3)
C6—S1—N1—C767.49 (16)C4—C5—C6—S1176.93 (15)
C6—C1—C2—C31.0 (3)O1—S1—C6—C120.18 (17)
C1—C2—C3—C40.2 (3)O2—S1—C6—C1150.79 (14)
C1—C2—C3—Cl1179.13 (16)N1—S1—C6—C195.26 (15)
C2—C3—C4—C51.1 (3)O1—S1—C6—C5162.35 (16)
Cl1—C3—C4—C5178.26 (16)O2—S1—C6—C531.74 (16)
C3—C4—C5—C60.7 (3)N1—S1—C6—C582.21 (15)
C2—C1—C6—C51.4 (3)S1—N1—C7—C7i126.2 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2ii0.79 (3)2.13 (3)2.903 (2)167 (3)
C4—H4A···O1iii0.932.503.157 (2)127
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14Cl2N2O4S2
Mr409.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.2640 (5), 5.3390 (2), 13.1792 (5)
β (°) 110.270 (1)
V3)875.51 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.86 × 0.42 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.613, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
25142, 3689, 2869
Rint0.032
(sin θ/λ)max1)0.796
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.175, 1.03
No. of reflections3689
No. of parameters114
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.71

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.79 (3)2.13 (3)2.903 (2)167 (3)
C4—H4A···O1ii0.932.503.157 (2)127
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SS and HAW gratefully acknowledge funding from the Ministry of Science, Technology and Innovation and Universiti Sains Malaysia (USM) under the University Research Grant (Nos. 09-05-lfn-meb-004 and 304/PPSK/6150107/I 121, respectively). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationKumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1–6.  Google Scholar
First citationO'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1401.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds