organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2287-o2288

(E)-1-(2-Hy­dr­oxy­phen­yl)-3-(2,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cExcellence Center, Mae Fah Luang University, Thasud, Muang, Chaing Rai 57100, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2011; accepted 3 August 2011; online 11 August 2011)

In the title chalcone derivative, C18H18O5, the dihedral angle between the hy­droxy-substituted benzene ring and the trimeth­oxy-substituted benzene ring is 16.3 (1)°. The three meth­oxy groups are essentially coplanar with the benzene ring to which they are attached, with an r.m.s. deviation of 0.0208 Å. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, weak C—H⋯O inter­actions link mol­ecules into helical chains along the b axis. These chains are connected into sheets parallel to the bc plane by further weak C—H⋯O inter­actions.

Related literature

For background to and applications of chalcones, see: Boeck et al. (2006[Boeck, P., Falcão, C. A. B., Leal, P. C., Yunes, R. A., Filho, V. C., Torres-Santos, E. C. & Rossi-Bergmann, B. (2006). Bioorg. Med. Chem. 14, 1538-1545.]); Cheng et al. (2008[Cheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270-7276.]); Hatayama et al. (2010[Hatayama, M., Unno, H., Kusunoki, M., Takahashi, S., Nishino, T. & Nakayama, T. (2010). J. Biosci. Bioeng. 110, 158-164.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]); Lee et al. (2006[Lee, S. H., Seo, G. S., Kim, J. Y., Jin, X. Y., Kim, H.-D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178-186.]); Liu et al. (2011[Liu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469-3473.]); Nerya et al. (2004[Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389-1395.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Saydam et al. (2003[Saydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omaya, S. B. (2003). Leuk. Res. 27, 57-64.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For related structures, see: Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.]); Fun et al. (2010[Fun, H.-K., Kobkeatthawin, T., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o1973-o1974.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O5

  • Mr = 314.32

  • Orthorhombic, P 21 21 21

  • a = 4.2891 (2) Å

  • b = 17.3341 (9) Å

  • c = 20.5732 (10) Å

  • V = 1529.57 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.56 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.986

  • 16077 measured reflections

  • 2392 independent reflections

  • 1946 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.08

  • 2392 reflections

  • 280 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.89 (3) 1.73 (3) 2.541 (2) 152 (2)
C5—H5A⋯O5i 0.96 (2) 2.57 (2) 3.254 (3) 129.0 (18)
C16—H16C⋯O1ii 1.04 (3) 2.42 (3) 3.446 (3) 167.5 (18)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones or 1,3-diphenyl-2-propen-1-ones are commonly found in the natural products (Hatayama et al., 2010). They have a wide range of applications including non-linear optical effects (Patil & Dharmaprakash, 2008) in fluorescent materials (Jung et al., 2008) and have biological activities such as antibacterial (Liu et al., 2011), anti-inflammatory (Lee et al., 2006), antileishmanial (Boeck et al., 2006), cytotoxic (Saydam et al., 2003), anti-oxidant (Cheng et al., 2008), HIV-1 protease inhibitory (Tewtrakul et al., 2003) as well as anti-tyrosinase activities (Nerya et al., 2004). The various interesting applications of chalcones lead us to synthesize the title chalcone derivative in order to study its tyrosinase inhibitory activity and also to compare its properies with the previously published related compounds (Suwunwong et al., 2009; Fun et al., 2010). Our experiment shows that (I) exhibits tyrosinase inhibitory activity with the IC50 value of 0.075 ± 0.000 mg ml-1. Its tyrosinase inhibitory activity is therefore about 0.08 times that of the standard anti-tyrosinase kojic acid. Herein the crystal structure of (I) is reported.

The molecule of (I) in Fig. 1 exists in an E configuration with respect to the C8C9 double bond [1.343 (3) Å]. The molecule is twisted with the dihedral angle between the 2-hydroxyphenyl and the 2,4,5-trimethoxyphenyl benzene rings being 16.3 (1)°. The middle prop-2-en-1-one unit (O2/C7–C9) is slightly twisted with the torsion angle O2–C7–C8–C9 = -8.8 (3)°. The mean plane through this unit makes dihedral angles of 13.48 (14)° and 2.85 (14)° with the 2-hydroxyphenyl and the 2,4,5-trimethoxyphenyl benzene rings, respectively. The three methoxy groups of 2,4,5-trimethoxyphenyl unit are essentially co-planar with the attached benzene ring with torsion angles C16–O3–C11–C12 = -1.0 (3)°, C17–O4–C13–C12 = -2.5 (3)° and C18–O5–C14–C15 = 3.1 (3)°. An O1—H1O1···O2 intramolecular hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) (Table 1). The bond distances have of normal values (Allen et al., 1987) and are comparable with closely related structures (Suwunwong et al., 2009; Fun et al., 2010).

In the crystal packing (Fig. 2), weak C16—H16C···O1ii interactions (Table 1) link the molecules into helical chains along the b axis. These chains are further connected by weak C5—H5A···O5i interactions (Table 1) into supramolecular sheets parallel to the bc plane and stacked along the a axis.

Related literature top

For background to and applications of chalcones, see: Boeck et al. (2006); Cheng et al. (2008); Hatayama et al. (2010); Jung et al. (2008); Lee et al. (2006); Liu et al. (2011); Nerya et al. (2004); Patil & Dharmaprakash (2008); Saydam et al. (2003); Tewtrakul et al. (2003). For related structures, see: Suwunwong et al. (2009); Fun et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by stirring the mixed solution of 2-hydroxyacetophenone (0.24 ml, 2 mmol) and 2,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) in ethanol (30 ml) in the presence of 10% NaOH(aq) (5 ml). After 4 h of stirring at room temperature, the orange solid was obtained and was then collected by filtration, washed with distilled water, dried and purified by recrystallization from hot acetone. Yellow block-shaped single crystals suitable for x-ray structure determination were grown over a period of several days by slow evaporation of the acetone/ethanol (1:1 v/v) solvent at room temperature, Mp. 404–405 K.

Refinement top

All H atoms were located in difference Fourier maps and refined isotropically. The highest residual electron density peak is located at 0.78 Å from C14 and the deepest hole is located at 0.71 Å from C12. A total of 1662 Friedel pairs were merged before final refinement as there are no significant anomalous dispersion effects to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. An intramolecular O—H···O hydrogen bonds is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing supramolecular sheets. Hydrogen bonds are shown as dashed lines.
(E)-1-(2-Hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O5Dx = 1.365 Mg m3
Mr = 314.32Melting point = 404–405 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2392 reflections
a = 4.2891 (2) Åθ = 2.0–29.0°
b = 17.3341 (9) ŵ = 0.10 mm1
c = 20.5732 (10) ÅT = 100 K
V = 1529.57 (13) Å3Block, yellow
Z = 40.56 × 0.16 × 0.14 mm
F(000) = 664
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2392 independent reflections
Radiation source: sealed tube1946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 55
Tmin = 0.946, Tmax = 0.986k = 2317
16077 measured reflectionsl = 2427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2277P]
where P = (Fo2 + 2Fc2)/3
2392 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H18O5V = 1529.57 (13) Å3
Mr = 314.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.2891 (2) ŵ = 0.10 mm1
b = 17.3341 (9) ÅT = 100 K
c = 20.5732 (10) Å0.56 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1946 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.986Rint = 0.045
16077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.095All H-atom parameters refined
S = 1.08Δρmax = 0.25 e Å3
2392 reflectionsΔρmin = 0.20 e Å3
280 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2483 (4)0.67956 (9)0.11729 (7)0.0294 (4)
O20.0456 (4)0.56059 (8)0.15537 (6)0.0277 (4)
O30.5147 (4)0.34185 (8)0.25185 (6)0.0239 (4)
O40.3357 (4)0.08107 (8)0.17331 (7)0.0241 (4)
O50.0186 (4)0.13159 (7)0.08358 (6)0.0228 (4)
C10.3401 (5)0.63667 (11)0.06566 (9)0.0205 (5)
C20.5266 (6)0.67134 (12)0.01880 (10)0.0245 (5)
C30.6134 (6)0.63167 (13)0.03616 (11)0.0267 (5)
C40.5151 (6)0.55587 (12)0.04557 (10)0.0254 (5)
C50.3396 (5)0.52027 (12)0.00162 (10)0.0214 (5)
C60.2498 (5)0.55849 (11)0.05878 (9)0.0181 (4)
C70.0708 (5)0.52102 (11)0.11099 (9)0.0194 (4)
C80.0393 (6)0.43673 (11)0.11163 (9)0.0189 (4)
C90.1472 (5)0.40085 (12)0.15445 (10)0.0197 (5)
C100.1985 (5)0.31843 (11)0.16063 (9)0.0178 (4)
C110.3882 (5)0.28887 (11)0.21024 (9)0.0188 (4)
C120.4385 (5)0.20945 (12)0.21658 (9)0.0197 (5)
C130.3018 (5)0.15894 (11)0.17306 (9)0.0183 (4)
C140.1069 (5)0.18730 (11)0.12307 (9)0.0178 (4)
C150.0587 (5)0.26522 (11)0.11777 (9)0.0174 (4)
C160.7030 (6)0.31494 (14)0.30485 (10)0.0256 (5)
C170.5405 (6)0.04847 (13)0.22131 (12)0.0267 (5)
C180.2027 (6)0.15760 (14)0.03089 (11)0.0236 (5)
H2A0.586 (6)0.7230 (14)0.0249 (10)0.033 (7)*
H3A0.739 (7)0.6549 (13)0.0687 (10)0.029 (6)*
H4A0.557 (6)0.5303 (12)0.0823 (10)0.021 (6)*
H5A0.280 (6)0.4677 (13)0.0057 (10)0.029 (6)*
H8A0.163 (6)0.4083 (11)0.0806 (9)0.015 (5)*
H9A0.258 (6)0.4335 (12)0.1827 (9)0.022 (6)*
H12A0.568 (6)0.1911 (12)0.2488 (9)0.019 (6)*
H15A0.079 (6)0.2835 (12)0.0829 (9)0.020 (6)*
H16A0.766 (7)0.3640 (14)0.3280 (10)0.036 (7)*
H16B0.890 (6)0.2889 (13)0.2889 (10)0.028 (6)*
H16C0.574 (7)0.2787 (14)0.3348 (10)0.033 (6)*
H17A0.467 (7)0.0620 (13)0.2662 (11)0.040 (7)*
H17B0.757 (7)0.0676 (13)0.2147 (11)0.031 (7)*
H17C0.539 (6)0.0083 (13)0.2145 (9)0.027 (6)*
H18A0.274 (6)0.1128 (13)0.0074 (9)0.023 (6)*
H18B0.088 (6)0.1914 (12)0.0019 (10)0.021 (6)*
H18C0.394 (7)0.1848 (14)0.0468 (10)0.032 (7)*
H1O10.123 (7)0.6493 (15)0.1401 (11)0.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (10)0.0179 (8)0.0286 (8)0.0059 (8)0.0036 (9)0.0062 (7)
O20.0388 (10)0.0186 (7)0.0257 (7)0.0033 (8)0.0077 (8)0.0047 (6)
O30.0308 (9)0.0202 (7)0.0207 (7)0.0013 (8)0.0069 (7)0.0022 (6)
O40.0311 (9)0.0154 (7)0.0256 (7)0.0029 (7)0.0058 (7)0.0032 (6)
O50.0307 (9)0.0168 (7)0.0208 (7)0.0004 (7)0.0068 (7)0.0008 (5)
C10.0220 (11)0.0172 (10)0.0222 (10)0.0009 (9)0.0066 (9)0.0001 (8)
C20.0265 (12)0.0155 (10)0.0316 (11)0.0015 (10)0.0039 (10)0.0023 (9)
C30.0269 (13)0.0248 (12)0.0283 (12)0.0010 (10)0.0028 (11)0.0085 (9)
C40.0311 (13)0.0229 (11)0.0221 (10)0.0027 (11)0.0029 (11)0.0003 (9)
C50.0263 (12)0.0151 (10)0.0226 (10)0.0002 (10)0.0029 (10)0.0003 (8)
C60.0188 (11)0.0149 (10)0.0206 (9)0.0012 (9)0.0045 (9)0.0019 (8)
C70.0211 (11)0.0182 (10)0.0189 (9)0.0001 (9)0.0050 (9)0.0012 (8)
C80.0225 (11)0.0167 (10)0.0176 (9)0.0014 (9)0.0023 (9)0.0011 (8)
C90.0223 (11)0.0189 (10)0.0178 (9)0.0022 (9)0.0045 (9)0.0028 (8)
C100.0207 (10)0.0181 (10)0.0146 (9)0.0022 (9)0.0026 (9)0.0001 (8)
C110.0204 (11)0.0195 (10)0.0164 (9)0.0009 (9)0.0036 (9)0.0020 (8)
C120.0206 (11)0.0228 (11)0.0156 (9)0.0023 (9)0.0003 (9)0.0030 (8)
C130.0208 (11)0.0153 (10)0.0188 (9)0.0013 (9)0.0037 (9)0.0034 (8)
C140.0205 (11)0.0168 (10)0.0162 (9)0.0006 (9)0.0027 (9)0.0014 (8)
C150.0190 (10)0.0193 (10)0.0139 (9)0.0015 (9)0.0008 (9)0.0021 (8)
C160.0287 (13)0.0278 (13)0.0202 (11)0.0017 (11)0.0052 (10)0.0018 (9)
C170.0314 (14)0.0196 (12)0.0291 (12)0.0059 (11)0.0038 (12)0.0066 (9)
C180.0266 (13)0.0217 (12)0.0226 (11)0.0003 (11)0.0066 (11)0.0003 (9)
Geometric parameters (Å, º) top
O1—C11.355 (2)C8—C91.343 (3)
O1—H1O10.89 (3)C8—H8A0.96 (2)
O2—C71.246 (2)C9—C101.451 (3)
O3—C111.368 (2)C9—H9A0.94 (2)
O3—C161.435 (3)C10—C111.402 (3)
O4—C131.358 (2)C10—C151.410 (3)
O4—C171.437 (3)C11—C121.400 (3)
O5—C141.372 (2)C12—C131.383 (3)
O5—C181.415 (3)C12—H12A0.92 (2)
C1—C21.389 (3)C13—C141.413 (3)
C1—C61.417 (3)C14—C151.371 (3)
C2—C31.375 (3)C15—H15A0.98 (2)
C2—H2A0.94 (2)C16—H16A1.01 (2)
C3—C41.394 (3)C16—H16B0.98 (3)
C3—H3A0.95 (2)C16—H16C1.04 (2)
C4—C51.375 (3)C17—H17A1.00 (2)
C4—H4A0.89 (2)C17—H17B1.00 (3)
C5—C61.404 (3)C17—H17C0.99 (2)
C5—H5A0.96 (2)C18—H18A0.96 (2)
C6—C71.471 (3)C18—H18B0.97 (2)
C7—C81.467 (3)C18—H18C1.00 (3)
C1—O1—H1O1105.5 (16)O3—C11—C12122.76 (18)
C11—O3—C16118.72 (16)O3—C11—C10116.12 (17)
C13—O4—C17117.32 (16)C12—C11—C10121.11 (19)
C14—O5—C18116.65 (16)C13—C12—C11119.82 (19)
O1—C1—C2118.27 (18)C13—C12—H12A120.2 (13)
O1—C1—C6121.59 (19)C11—C12—H12A119.9 (13)
C2—C1—C6120.13 (19)O4—C13—C12125.57 (18)
C3—C2—C1120.7 (2)O4—C13—C14114.32 (17)
C3—C2—H2A120.9 (14)C12—C13—C14120.11 (17)
C1—C2—H2A118.4 (14)C15—C14—O5125.95 (18)
C2—C3—C4120.3 (2)C15—C14—C13119.32 (18)
C2—C3—H3A121.4 (14)O5—C14—C13114.72 (17)
C4—C3—H3A118.3 (14)C14—C15—C10122.06 (19)
C5—C4—C3119.4 (2)C14—C15—H15A117.9 (12)
C5—C4—H4A118.9 (15)C10—C15—H15A120.1 (12)
C3—C4—H4A121.6 (14)O3—C16—H16A103.7 (14)
C4—C5—C6122.0 (2)O3—C16—H16B111.0 (13)
C4—C5—H5A117.5 (13)H16A—C16—H16B109 (2)
C6—C5—H5A120.5 (13)O3—C16—H16C110.3 (14)
C5—C6—C1117.40 (18)H16A—C16—H16C111.9 (18)
C5—C6—C7123.12 (18)H16B—C16—H16C111 (2)
C1—C6—C7119.48 (17)O4—C17—H17A110.4 (16)
O2—C7—C8120.31 (18)O4—C17—H17B110.2 (14)
O2—C7—C6120.05 (17)H17A—C17—H17B110 (2)
C8—C7—C6119.61 (18)O4—C17—H17C106.8 (14)
C9—C8—C7121.5 (2)H17A—C17—H17C111.1 (18)
C9—C8—H8A121.7 (12)H17B—C17—H17C108 (2)
C7—C8—H8A116.9 (12)O5—C18—H18A107.7 (13)
C8—C9—C10127.1 (2)O5—C18—H18B112.3 (14)
C8—C9—H9A115.3 (13)H18A—C18—H18B109.8 (17)
C10—C9—H9A117.5 (13)O5—C18—H18C110.9 (13)
C11—C10—C15117.57 (18)H18A—C18—H18C107 (2)
C11—C10—C9120.77 (18)H18B—C18—H18C109.4 (19)
C15—C10—C9121.66 (18)
O1—C1—C2—C3176.7 (2)C16—O3—C11—C10178.07 (19)
C6—C1—C2—C33.1 (3)C15—C10—C11—O3178.60 (18)
C1—C2—C3—C40.0 (3)C9—C10—C11—O30.9 (3)
C2—C3—C4—C52.2 (3)C15—C10—C11—C120.5 (3)
C3—C4—C5—C61.4 (3)C9—C10—C11—C12179.9 (2)
C4—C5—C6—C11.6 (3)O3—C11—C12—C13179.56 (19)
C4—C5—C6—C7177.9 (2)C10—C11—C12—C130.6 (3)
O1—C1—C6—C5176.0 (2)C17—O4—C13—C122.5 (3)
C2—C1—C6—C53.9 (3)C17—O4—C13—C14177.65 (18)
O1—C1—C6—C74.4 (3)C11—C12—C13—O4179.0 (2)
C2—C1—C6—C7175.7 (2)C11—C12—C13—C141.2 (3)
C5—C6—C7—O2168.3 (2)C18—O5—C14—C153.1 (3)
C1—C6—C7—O212.2 (3)C18—O5—C14—C13176.94 (19)
C5—C6—C7—C813.8 (3)O4—C13—C14—C15179.32 (19)
C1—C6—C7—C8165.8 (2)C12—C13—C14—C150.9 (3)
O2—C7—C8—C98.8 (3)O4—C13—C14—O50.7 (3)
C6—C7—C8—C9173.2 (2)C12—C13—C14—O5179.08 (19)
C7—C8—C9—C10179.7 (2)O5—C14—C15—C10179.87 (19)
C8—C9—C10—C11176.5 (2)C13—C14—C15—C100.2 (3)
C8—C9—C10—C152.9 (3)C11—C10—C15—C140.8 (3)
C16—O3—C11—C121.0 (3)C9—C10—C15—C14179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.89 (3)1.73 (3)2.541 (2)152 (2)
C5—H5A···O5i0.96 (2)2.57 (2)3.254 (3)129.0 (18)
C16—H16C···O1ii1.04 (3)2.42 (3)3.446 (3)167.5 (18)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18O5
Mr314.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.2891 (2), 17.3341 (9), 20.5732 (10)
V3)1529.57 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.946, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
16077, 2392, 1946
Rint0.045
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.08
No. of reflections2392
No. of parameters280
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.89 (3)1.73 (3)2.541 (2)152 (2)
C5—H5A···O5i0.96 (2)2.57 (2)3.254 (3)129.0 (18)
C16—H16C···O1ii1.04 (3)2.42 (3)3.446 (3)167.5 (18)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (grant No. RSA5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. KC thanks the Crystal Materials Research Unit, Prince of Songkla University, for a Research Assistance fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeck, P., Falcão, C. A. B., Leal, P. C., Yunes, R. A., Filho, V. C., Torres-Santos, E. C. & Rossi-Bergmann, B. (2006). Bioorg. Med. Chem. 14, 1538–1545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270–7276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kobkeatthawin, T., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o1973–o1974.  CrossRef IUCr Journals Google Scholar
First citationHatayama, M., Unno, H., Kusunoki, M., Takahashi, S., Nishino, T. & Nakayama, T. (2010). J. Biosci. Bioeng. 110, 158–164.  CrossRef CAS Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. H., Seo, G. S., Kim, J. Y., Jin, X. Y., Kim, H.-D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469–3473.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSaydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omaya, S. B. (2003). Leuk. Res. 27, 57–64.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2287-o2288
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds