metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(8-hy­dr­oxy­quinoline-κ2N,O)(quinolin-8-olato-κ2N,O)zinc methanol monosolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 August 2011; accepted 16 August 2011; online 27 August 2011)

In the title compound, [Zn(C9H6NO)Cl(C9H7NO)]·CH3OH, the ZnII ion is N,O-chelated by both a neutral and a deprotonated quinolin-8-ol ligand, with a chloride ligand in the apical site completing the square-pyramidal coordination geometry. The ZnII ion is displaced by 0.586 Å in the direction of the chloride ligand from the atoms forming the square plane. In the crystal, the components are linked by inter­molecular O—H⋯O hydrogen bonds, generating chains along the b axis.

Related literature

For the crystal structure of 8-hy­droxy-2-methyl­quinolinium dichlorido(2-methyl­quinolin-8-olato-κ2N,O)zincate(II) aceto­nitrile disolvate, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1280.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H6NO)Cl(C9H7NO)]·CH4O

  • Mr = 422.17

  • Triclinic, [P \overline 1]

  • a = 8.4110 (4) Å

  • b = 8.4692 (4) Å

  • c = 13.2667 (7) Å

  • α = 99.905 (4)°

  • β = 95.341 (4)°

  • γ = 110.549 (5)°

  • V = 859.58 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 100 K

  • 0.15 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.795, Tmax = 0.795

  • 6878 measured reflections

  • 3806 independent reflections

  • 3258 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.05

  • 3806 reflections

  • 244 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 (1) 1.71 (1) 2.547 (2) 170 (3)
O3—H3⋯O1i 0.84 (1) 1.76 (1) 2.592 (2) 176 (3)
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have previously determined the structure of 8-Hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-κ2N,O)zincate(II) acetonitrile disolvate (Najafi et al., 2011). In the present study, the corresponding reaction of zinc chloride and the parent 8-hydroxyquinoline homolog in methanol yielded a neutral mono-solvated compound. The ZnII atom in ZnCl(C9H6NO)(C9H7NO)].CH3OH is N,O-chelated by a neutral as well as by a deprotonated 8-hydroxyquinoline ligand and it exists in a square-pyramidal geometry (Fig. 1). Adjacent molecules are linked by O–H···O hydrogen bonds through the solvent molecule to generate a linear chain running along the b-axis of the triclinic unit cell (Fig. 2).

Related literature top

For the crystal structure of 8-hydroxy-2-methylquinolinium dichlorido(2-methylquinolin-8-olato-κ2N,O)zincate(II) acetonitrile disolvate, see: Najafi et al. (2011).

Experimental top

Zinc chloride (0.13 g, 1 mmol) and 8-hydroxyquinoline (0.29 g, 2 mmol) were loaded into a convection tube and the tube was filled with methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint O–H 0.84±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of ZnCl(C9H6NO)(C9H7NO)].CH3OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Chlorido(8-hydroxyquinoline-κ2N,O)(quinolin-8-olato- κ2N,O)zincate methanol monosolvate top
Crystal data top
[Zn(C9H6NO)Cl(C9H7NO)]·CH4OZ = 2
Mr = 422.17F(000) = 432
Triclinic, P1Dx = 1.631 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4110 (4) ÅCell parameters from 3680 reflections
b = 8.4692 (4) Åθ = 2.6–29.3°
c = 13.2667 (7) ŵ = 1.61 mm1
α = 99.905 (4)°T = 100 K
β = 95.341 (4)°Cuboid, yellow
γ = 110.549 (5)°0.15 × 0.15 × 0.15 mm
V = 859.58 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3806 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3258 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1010
Tmin = 0.795, Tmax = 0.795l = 1717
6878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.2331P]
where P = (Fo2 + 2Fc2)/3
3806 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Zn(C9H6NO)Cl(C9H7NO)]·CH4Oγ = 110.549 (5)°
Mr = 422.17V = 859.58 (7) Å3
Triclinic, P1Z = 2
a = 8.4110 (4) ÅMo Kα radiation
b = 8.4692 (4) ŵ = 1.61 mm1
c = 13.2667 (7) ÅT = 100 K
α = 99.905 (4)°0.15 × 0.15 × 0.15 mm
β = 95.341 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3806 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3258 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.795Rint = 0.045
6878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
3806 reflectionsΔρmin = 0.42 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.64683 (4)0.45465 (3)0.717891 (19)0.01236 (9)
Cl10.91659 (8)0.57790 (8)0.80776 (4)0.01774 (14)
O10.5263 (2)0.2082 (2)0.73472 (12)0.0148 (4)
O20.6496 (2)0.6842 (2)0.64293 (12)0.0156 (4)
O30.6795 (2)0.9898 (2)0.72616 (12)0.0196 (4)
N10.4816 (3)0.5009 (2)0.81134 (14)0.0121 (4)
N20.6744 (3)0.3866 (2)0.56612 (14)0.0121 (4)
C10.3948 (3)0.3574 (3)0.84634 (16)0.0118 (5)
C20.4213 (3)0.2018 (3)0.80397 (16)0.0123 (5)
C30.3344 (3)0.0553 (3)0.83838 (17)0.0153 (5)
H3A0.34740.04990.81090.018*
C40.2270 (3)0.0585 (3)0.91326 (17)0.0163 (5)
H40.16890.04500.93500.020*
C50.2039 (3)0.2065 (3)0.95567 (17)0.0157 (5)
H50.13280.20641.00730.019*
C60.2873 (3)0.3594 (3)0.92149 (17)0.0131 (5)
C70.2700 (3)0.5192 (3)0.95927 (17)0.0143 (5)
H70.19770.52691.00930.017*
C80.3578 (3)0.6616 (3)0.92317 (17)0.0149 (5)
H80.34700.76890.94810.018*
C90.4638 (3)0.6488 (3)0.84925 (17)0.0142 (5)
H90.52500.74900.82530.017*
C100.7339 (3)0.5164 (3)0.51453 (16)0.0121 (5)
C110.7243 (3)0.6787 (3)0.55646 (17)0.0131 (5)
C120.7850 (3)0.8125 (3)0.50826 (18)0.0159 (5)
H120.78080.92160.53680.019*
C130.8537 (3)0.7903 (3)0.41679 (18)0.0163 (5)
H130.89460.88490.38410.020*
C140.8633 (3)0.6356 (3)0.37360 (17)0.0149 (5)
H140.91100.62330.31190.018*
C150.8012 (3)0.4946 (3)0.42191 (17)0.0130 (5)
C160.7985 (3)0.3275 (3)0.38085 (17)0.0150 (5)
H160.84390.30670.31920.018*
C170.7302 (3)0.1966 (3)0.43052 (17)0.0167 (5)
H170.72240.08290.40170.020*
C180.6719 (3)0.2314 (3)0.52412 (17)0.0146 (5)
H180.62870.14020.55910.018*
C190.8321 (4)1.0712 (3)0.8018 (2)0.0255 (6)
H19A0.89041.19060.79520.038*
H19B0.90901.00790.79070.038*
H19C0.80201.07110.87140.038*
H20.653 (4)0.785 (2)0.664 (2)0.033 (9)*
H30.626 (4)1.056 (4)0.727 (2)0.040 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01352 (17)0.01182 (15)0.01295 (15)0.00472 (12)0.00608 (11)0.00385 (11)
Cl10.0132 (3)0.0223 (3)0.0164 (3)0.0050 (3)0.0049 (2)0.0030 (2)
O10.0179 (10)0.0128 (8)0.0163 (8)0.0067 (7)0.0085 (7)0.0049 (7)
O20.0220 (10)0.0138 (9)0.0148 (8)0.0091 (8)0.0096 (7)0.0039 (7)
O30.0210 (11)0.0166 (9)0.0222 (9)0.0101 (8)0.0017 (8)0.0016 (7)
N10.0120 (11)0.0112 (9)0.0134 (9)0.0046 (8)0.0023 (8)0.0029 (8)
N20.0129 (11)0.0119 (9)0.0136 (9)0.0057 (9)0.0040 (8)0.0049 (8)
C10.0091 (12)0.0139 (11)0.0117 (10)0.0029 (10)0.0005 (9)0.0046 (9)
C20.0127 (12)0.0127 (11)0.0114 (11)0.0046 (10)0.0023 (9)0.0031 (9)
C30.0161 (13)0.0126 (11)0.0159 (12)0.0042 (10)0.0034 (10)0.0023 (9)
C40.0154 (13)0.0160 (12)0.0156 (12)0.0016 (10)0.0028 (10)0.0072 (10)
C50.0120 (13)0.0191 (12)0.0155 (11)0.0038 (10)0.0055 (9)0.0049 (10)
C60.0092 (12)0.0158 (12)0.0130 (11)0.0032 (10)0.0015 (9)0.0033 (9)
C70.0147 (13)0.0186 (12)0.0121 (11)0.0079 (11)0.0053 (9)0.0044 (9)
C80.0174 (14)0.0145 (12)0.0158 (11)0.0094 (11)0.0044 (10)0.0025 (9)
C90.0148 (13)0.0136 (11)0.0153 (11)0.0057 (10)0.0031 (10)0.0048 (9)
C100.0125 (13)0.0101 (11)0.0132 (11)0.0033 (10)0.0015 (9)0.0037 (9)
C110.0110 (12)0.0148 (11)0.0154 (11)0.0058 (10)0.0037 (9)0.0049 (9)
C120.0158 (13)0.0128 (12)0.0193 (12)0.0063 (10)0.0030 (10)0.0022 (10)
C130.0164 (14)0.0152 (12)0.0180 (12)0.0038 (11)0.0049 (10)0.0089 (10)
C140.0153 (13)0.0180 (12)0.0119 (11)0.0050 (11)0.0042 (9)0.0061 (9)
C150.0112 (12)0.0145 (11)0.0120 (11)0.0039 (10)0.0006 (9)0.0025 (9)
C160.0167 (13)0.0166 (12)0.0118 (11)0.0061 (11)0.0040 (9)0.0028 (9)
C170.0203 (14)0.0120 (11)0.0174 (12)0.0070 (11)0.0049 (10)0.0008 (9)
C180.0157 (13)0.0122 (11)0.0153 (11)0.0038 (10)0.0037 (9)0.0038 (9)
C190.0260 (16)0.0225 (14)0.0262 (14)0.0086 (13)0.0004 (12)0.0042 (11)
Geometric parameters (Å, º) top
Zn1—O12.0377 (16)C7—C81.367 (3)
Zn1—N12.0392 (18)C7—H70.9500
Zn1—N22.0547 (17)C8—C91.401 (3)
Zn1—Cl12.2505 (7)C8—H80.9500
Zn1—O22.3257 (16)C9—H90.9500
O1—C21.327 (3)C10—C151.410 (3)
O2—C111.360 (3)C10—C111.424 (3)
O2—H20.842 (10)C11—C121.363 (3)
O3—C191.425 (3)C12—C131.404 (3)
O3—H30.836 (10)C12—H120.9500
N1—C91.332 (3)C13—C141.369 (3)
N1—C11.364 (3)C13—H130.9500
N2—C181.328 (3)C14—C151.414 (3)
N2—C101.366 (3)C14—H140.9500
C1—C61.409 (3)C15—C161.417 (3)
C1—C21.441 (3)C16—C171.367 (3)
C2—C31.379 (3)C16—H160.9500
C3—C41.407 (3)C17—C181.399 (3)
C3—H3A0.9500C17—H170.9500
C4—C51.369 (3)C18—H180.9500
C4—H40.9500C19—H19A0.9800
C5—C61.414 (3)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—C71.422 (3)
O1—Zn1—N182.18 (7)C6—C7—H7120.2
O1—Zn1—N295.64 (7)C7—C8—C9119.7 (2)
N1—Zn1—N2143.92 (8)C7—C8—H8120.1
O1—Zn1—Cl1112.11 (5)C9—C8—H8120.1
N1—Zn1—Cl1108.81 (6)N1—C9—C8122.2 (2)
N2—Zn1—Cl1105.34 (6)N1—C9—H9118.9
O1—Zn1—O2150.43 (7)C8—C9—H9118.9
N1—Zn1—O290.44 (6)N2—C10—C15122.63 (19)
N2—Zn1—O273.80 (6)N2—C10—C11117.76 (19)
Cl1—Zn1—O297.40 (5)C15—C10—C11119.6 (2)
C2—O1—Zn1111.33 (13)O2—C11—C12125.2 (2)
C11—O2—Zn1109.79 (12)O2—C11—C10115.16 (19)
C11—O2—H2109 (2)C12—C11—C10119.6 (2)
Zn1—O2—H2136 (2)C11—C12—C13120.4 (2)
C19—O3—H3109 (2)C11—C12—H12119.8
C9—N1—C1118.9 (2)C13—C12—H12119.8
C9—N1—Zn1129.73 (17)C14—C13—C12121.6 (2)
C1—N1—Zn1110.92 (14)C14—C13—H13119.2
C18—N2—C10118.31 (19)C12—C13—H13119.2
C18—N2—Zn1122.72 (15)C13—C14—C15119.2 (2)
C10—N2—Zn1117.44 (14)C13—C14—H14120.4
N1—C1—C6122.56 (19)C15—C14—H14120.4
N1—C1—C2116.5 (2)C10—C15—C14119.6 (2)
C6—C1—C2121.0 (2)C10—C15—C16117.0 (2)
O1—C2—C3124.4 (2)C14—C15—C16123.4 (2)
O1—C2—C1118.4 (2)C17—C16—C15119.6 (2)
C3—C2—C1117.3 (2)C17—C16—H16120.2
C2—C3—C4121.4 (2)C15—C16—H16120.2
C2—C3—H3A119.3C16—C17—C18119.5 (2)
C4—C3—H3A119.3C16—C17—H17120.2
C5—C4—C3121.8 (2)C18—C17—H17120.2
C5—C4—H4119.1N2—C18—C17122.8 (2)
C3—C4—H4119.1N2—C18—H18118.6
C4—C5—C6119.0 (2)C17—C18—H18118.6
C4—C5—H5120.5O3—C19—H19A109.5
C6—C5—H5120.5O3—C19—H19B109.5
C1—C6—C5119.5 (2)H19A—C19—H19B109.5
C1—C6—C7116.9 (2)O3—C19—H19C109.5
C5—C6—C7123.6 (2)H19A—C19—H19C109.5
C8—C7—C6119.7 (2)H19B—C19—H19C109.5
C8—C7—H7120.2
N1—Zn1—O1—C27.37 (15)N1—C1—C6—C5178.8 (2)
N2—Zn1—O1—C2151.09 (15)C2—C1—C6—C50.1 (3)
Cl1—Zn1—O1—C299.82 (15)N1—C1—C6—C70.9 (3)
O2—Zn1—O1—C284.30 (18)C2—C1—C6—C7179.6 (2)
O1—Zn1—O2—C1192.97 (18)C4—C5—C6—C11.3 (3)
N1—Zn1—O2—C11167.77 (16)C4—C5—C6—C7179.1 (2)
N2—Zn1—O2—C1120.70 (15)C1—C6—C7—C80.8 (3)
Cl1—Zn1—O2—C1183.19 (15)C5—C6—C7—C8178.9 (2)
O1—Zn1—N1—C9179.1 (2)C6—C7—C8—C90.1 (3)
N2—Zn1—N1—C992.0 (2)C1—N1—C9—C80.5 (3)
Cl1—Zn1—N1—C968.3 (2)Zn1—N1—C9—C8171.85 (17)
O2—Zn1—N1—C929.6 (2)C7—C8—C9—N10.6 (4)
O1—Zn1—N1—C17.27 (15)C18—N2—C10—C153.6 (3)
N2—Zn1—N1—C196.13 (18)Zn1—N2—C10—C15162.71 (18)
Cl1—Zn1—N1—C1103.50 (15)C18—N2—C10—C11175.6 (2)
O2—Zn1—N1—C1158.53 (15)Zn1—N2—C10—C1118.1 (3)
O1—Zn1—N2—C1822.1 (2)Zn1—O2—C11—C12163.1 (2)
N1—Zn1—N2—C18106.6 (2)Zn1—O2—C11—C1018.3 (2)
Cl1—Zn1—N2—C1892.65 (19)N2—C10—C11—O22.4 (3)
O2—Zn1—N2—C18173.9 (2)C15—C10—C11—O2176.8 (2)
O1—Zn1—N2—C10172.22 (17)N2—C10—C11—C12178.9 (2)
N1—Zn1—N2—C1087.8 (2)C15—C10—C11—C121.9 (4)
Cl1—Zn1—N2—C1073.00 (17)O2—C11—C12—C13177.4 (2)
O2—Zn1—N2—C1020.40 (16)C10—C11—C12—C131.2 (4)
C9—N1—C1—C60.3 (3)C11—C12—C13—C140.5 (4)
Zn1—N1—C1—C6172.59 (18)C12—C13—C14—C150.5 (4)
C9—N1—C1—C2179.0 (2)N2—C10—C15—C14178.9 (2)
Zn1—N1—C1—C26.1 (2)C11—C10—C15—C142.0 (3)
Zn1—O1—C2—C3173.89 (19)N2—C10—C15—C162.6 (3)
Zn1—O1—C2—C16.3 (3)C11—C10—C15—C16176.6 (2)
N1—C1—C2—O10.1 (3)C13—C14—C15—C101.3 (4)
C6—C1—C2—O1178.8 (2)C13—C14—C15—C16177.2 (2)
N1—C1—C2—C3179.9 (2)C10—C15—C16—C170.9 (3)
C6—C1—C2—C31.3 (3)C14—C15—C16—C17177.5 (2)
O1—C2—C3—C4179.0 (2)C15—C16—C17—C183.2 (4)
C1—C2—C3—C41.2 (3)C10—N2—C18—C171.1 (4)
C2—C3—C4—C50.2 (4)Zn1—N2—C18—C17164.42 (19)
C3—C4—C5—C61.4 (4)C16—C17—C18—N22.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.84 (1)1.71 (1)2.547 (2)170 (3)
O3—H3···O1i0.84 (1)1.76 (1)2.592 (2)176 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H6NO)Cl(C9H7NO)]·CH4O
Mr422.17
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.4110 (4), 8.4692 (4), 13.2667 (7)
α, β, γ (°)99.905 (4), 95.341 (4), 110.549 (5)
V3)859.58 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.795, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
6878, 3806, 3258
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.05
No. of reflections3806
No. of parameters244
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.42

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.84 (1)1.71 (1)2.547 (2)170 (3)
O3—H3···O1i0.84 (1)1.76 (1)2.592 (2)176 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m1280.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds