organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phenyl­sulfon­yl)-2-methyl­propanamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 26 July 2011; accepted 3 August 2011; online 6 August 2011)

In the crystal structure of the title compound, C10H12ClNO3S, the N—C bond in the C—SO2—NH—C segment has a gauche torsion with respect to the S=O bonds. The mol­ecule is twisted at the S atom with a C—S—N—C torsion angle of −62.3 (3)°. The benzene ring and the SO2—NH—CO—C segment form a dihedral angle of 89.3 (1)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds into inversion dimers.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see: Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.]). For its ability to form hydrogen bonds in the solid state, see: Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]). For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141-1159.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]), on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kožíšek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.]) and on N-(aryl­sulfon­yl)-amides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1521.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o595.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO3S

  • Mr = 261.72

  • Triclinic, [P \overline 1]

  • a = 6.207 (1) Å

  • b = 10.395 (3) Å

  • c = 10.497 (3) Å

  • α = 70.150 (2)°

  • β = 79.160 (2)°

  • γ = 86.010 (2)°

  • V = 625.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.46 × 0.20 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.815, Tmax = 0.964

  • 3846 measured reflections

  • 2476 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.126

  • S = 1.19

  • 2476 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.08 (2) 2.912 (4) 169 (3)
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors gives rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides has also been studied (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of this class of compounds. As part of our work on the effects of substituents on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Gowda et al., 2003) and N-(arylsulfonyl)-acetamides (Gowda et al., 2008, Shakuntala et al., 2011), in the present work, the crystal structure of N-(4-chlorophenylsulfonyl)-2,2-dimethylacetamide (I) has been determined. The N—C bond in the C—SO2—NH—C segment has gauche torsion with respect to the SO bonds. The molecule is twisted at the S-atom with a C—S—N—C torsion angle of -62.3 (3)°, compared to the values of -72.5 (2)° in N-(4-chlorophenylsulfonyl)-2,2-dichloroacetamide (II) (Gowda et al., 2008) and N-(2-chlorophenylsulfonyl)- 2,2-dimethylacetamide (III)(Shakuntala et al., 2011).

Further, the dihedral angle between the benzene ring and the SO2—NH—CO—C segment in (I) is 89.3 (1)°, compared to the values of 79.7 (1)° in (II) and 87.4 (1)° in (III).

In the crystal structure, the moleucles are connected into centrosymmetrically dimers by intermolecular N–H···O hydrogen bonding (Table 1). Part of the crystal structure is shown in Fig. 2.

Related literature top

For the sulfanilamide moiety in sulfonamide drugs, see: Maren (1976). For its ability to form hydrogen bonds in the solid state, see: Yang & Guillory (1972). For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Gowda et al. (2003) and on N-(arylsulfonyl)-amides, see: Gowda et al. (2008); Shakuntala et al. (2011).

Experimental top

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide (0.10 mole) with an excess of 2,2-dimethylacetyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Plate like colorless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96Å and methyne C—H = 0.98 Å.

All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound showing the dimers. Hydrogen bonds are shown as dashed lines.
N-(4-Chlorophenylsulfonyl)-2-methylpropanamide top
Crystal data top
C10H12ClNO3SZ = 2
Mr = 261.72F(000) = 272
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.207 (1) ÅCell parameters from 1240 reflections
b = 10.395 (3) Åθ = 3.3–27.8°
c = 10.497 (3) ŵ = 0.46 mm1
α = 70.150 (2)°T = 293 K
β = 79.160 (2)°Plate, colourless
γ = 86.010 (2)°0.46 × 0.20 × 0.08 mm
V = 625.7 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2476 independent reflections
Radiation source: fine-focus sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
h = 77
Tmin = 0.815, Tmax = 0.964k = 1212
3846 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0233P)2 + 0.632P]
where P = (Fo2 + 2Fc2)/3
2476 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C10H12ClNO3Sγ = 86.010 (2)°
Mr = 261.72V = 625.7 (3) Å3
Triclinic, P1Z = 2
a = 6.207 (1) ÅMo Kα radiation
b = 10.395 (3) ŵ = 0.46 mm1
c = 10.497 (3) ÅT = 293 K
α = 70.150 (2)°0.46 × 0.20 × 0.08 mm
β = 79.160 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2476 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
1842 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.964Rint = 0.014
3846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.28 e Å3
2476 reflectionsΔρmin = 0.31 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1905 (5)0.2375 (3)0.9043 (3)0.0475 (7)
C20.0001 (6)0.2717 (4)0.8506 (4)0.0610 (9)
H20.08180.34770.85930.073*
C30.0683 (6)0.1930 (4)0.7844 (4)0.0670 (10)
H30.19570.21560.74680.080*
C40.0535 (7)0.0805 (3)0.7742 (4)0.0638 (10)
C50.2423 (7)0.0456 (4)0.8278 (4)0.0709 (11)
H50.32210.03150.82070.085*
C60.3124 (6)0.1255 (3)0.8920 (4)0.0612 (9)
H60.44210.10400.92710.073*
C70.4540 (6)0.5278 (4)0.7543 (4)0.0578 (9)
C80.4194 (7)0.6715 (4)0.6608 (4)0.0716 (11)
H80.35610.72630.71870.086*
C90.2542 (9)0.6652 (6)0.5756 (5)0.1190 (19)
H9A0.12020.62710.63500.143*
H9B0.31030.60890.52080.143*
H9C0.22650.75580.51650.143*
C100.6291 (10)0.7353 (6)0.5780 (6)0.151 (3)
H10A0.69590.68220.52190.182*
H10B0.72580.73860.63830.182*
H10C0.60150.82650.52020.182*
N10.3069 (5)0.4914 (3)0.8767 (3)0.0560 (7)
H1N0.200 (4)0.541 (3)0.892 (4)0.067*
O10.0960 (4)0.3525 (3)1.0924 (2)0.0729 (7)
O20.4794 (4)0.2850 (3)1.0314 (3)0.0714 (7)
O30.5885 (4)0.4482 (3)0.7273 (3)0.0863 (9)
Cl10.0354 (3)0.01843 (12)0.69033 (14)0.1076 (5)
S10.27563 (15)0.33738 (9)0.99054 (9)0.0559 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0524 (18)0.0386 (16)0.0429 (17)0.0085 (14)0.0084 (14)0.0043 (13)
C20.055 (2)0.056 (2)0.074 (2)0.0148 (16)0.0162 (18)0.0244 (18)
C30.063 (2)0.063 (2)0.072 (2)0.0024 (18)0.0210 (19)0.014 (2)
C40.090 (3)0.0428 (19)0.053 (2)0.0118 (18)0.0140 (19)0.0066 (16)
C50.095 (3)0.0419 (19)0.077 (3)0.0201 (19)0.026 (2)0.0180 (18)
C60.068 (2)0.0471 (19)0.070 (2)0.0184 (17)0.0255 (19)0.0175 (17)
C70.052 (2)0.059 (2)0.059 (2)0.0048 (17)0.0146 (17)0.0148 (17)
C80.086 (3)0.062 (2)0.057 (2)0.007 (2)0.012 (2)0.0084 (18)
C90.146 (5)0.114 (4)0.095 (4)0.039 (4)0.060 (4)0.020 (3)
C100.123 (5)0.128 (5)0.133 (5)0.026 (4)0.001 (4)0.041 (4)
N10.0637 (19)0.0447 (16)0.0567 (17)0.0105 (13)0.0102 (15)0.0155 (13)
O10.0929 (19)0.0657 (16)0.0489 (14)0.0221 (14)0.0029 (13)0.0142 (12)
O20.0769 (17)0.0681 (16)0.0755 (17)0.0171 (13)0.0381 (14)0.0221 (13)
O30.0719 (18)0.087 (2)0.0815 (19)0.0296 (15)0.0026 (15)0.0156 (16)
Cl10.1677 (13)0.0641 (7)0.1053 (9)0.0180 (7)0.0502 (9)0.0294 (6)
S10.0676 (6)0.0489 (5)0.0494 (5)0.0139 (4)0.0159 (4)0.0140 (4)
Geometric parameters (Å, º) top
C1—C61.374 (4)C7—C81.510 (5)
C1—C21.378 (4)C8—C101.481 (6)
C1—S11.753 (3)C8—C91.500 (6)
C2—C31.370 (5)C8—H80.9800
C2—H20.9300C9—H9A0.9600
C3—C41.372 (5)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.368 (5)C10—H10A0.9600
C4—Cl11.736 (4)C10—H10B0.9600
C5—C61.368 (5)C10—H10C0.9600
C5—H50.9300N1—S11.639 (3)
C6—H60.9300N1—H1N0.840 (18)
C7—O31.199 (4)O1—S11.433 (2)
C7—N11.380 (4)O2—S11.425 (2)
C6—C1—C2120.7 (3)C10—C8—H8107.9
C6—C1—S1119.9 (3)C9—C8—H8107.9
C2—C1—S1119.4 (2)C7—C8—H8107.9
C3—C2—C1119.5 (3)C8—C9—H9A109.5
C3—C2—H2120.2C8—C9—H9B109.5
C1—C2—H2120.2H9A—C9—H9B109.5
C2—C3—C4119.2 (3)C8—C9—H9C109.5
C2—C3—H3120.4H9A—C9—H9C109.5
C4—C3—H3120.4H9B—C9—H9C109.5
C5—C4—C3121.5 (3)C8—C10—H10A109.5
C5—C4—Cl1119.8 (3)C8—C10—H10B109.5
C3—C4—Cl1118.7 (3)H10A—C10—H10B109.5
C6—C5—C4119.2 (3)C8—C10—H10C109.5
C6—C5—H5120.4H10A—C10—H10C109.5
C4—C5—H5120.4H10B—C10—H10C109.5
C5—C6—C1119.8 (3)C7—N1—S1125.8 (2)
C5—C6—H6120.1C7—N1—H1N122 (3)
C1—C6—H6120.1S1—N1—H1N110 (3)
O3—C7—N1121.2 (3)O2—S1—O1119.07 (16)
O3—C7—C8125.4 (3)O2—S1—N1110.56 (16)
N1—C7—C8113.3 (3)O1—S1—N1103.75 (15)
C10—C8—C9113.5 (4)O2—S1—C1108.79 (15)
C10—C8—C7111.6 (4)O1—S1—C1108.78 (17)
C9—C8—C7107.7 (4)N1—S1—C1104.95 (15)
C6—C1—C2—C30.0 (5)N1—C7—C8—C987.3 (4)
S1—C1—C2—C3179.3 (3)O3—C7—N1—S17.0 (5)
C1—C2—C3—C40.7 (6)C8—C7—N1—S1170.6 (3)
C2—C3—C4—C50.5 (6)C7—N1—S1—O254.8 (3)
C2—C3—C4—Cl1179.9 (3)C7—N1—S1—O1176.4 (3)
C3—C4—C5—C60.6 (6)C7—N1—S1—C162.3 (3)
Cl1—C4—C5—C6179.1 (3)C6—C1—S1—O22.9 (3)
C4—C5—C6—C11.4 (6)C2—C1—S1—O2177.8 (3)
C2—C1—C6—C51.1 (5)C6—C1—S1—O1128.3 (3)
S1—C1—C6—C5178.3 (3)C2—C1—S1—O151.1 (3)
O3—C7—C8—C1035.0 (6)C6—C1—S1—N1121.2 (3)
N1—C7—C8—C10147.5 (4)C2—C1—S1—N159.4 (3)
O3—C7—C8—C990.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.08 (2)2.912 (4)169 (3)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H12ClNO3S
Mr261.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.207 (1), 10.395 (3), 10.497 (3)
α, β, γ (°)70.150 (2), 79.160 (2), 86.010 (2)
V3)625.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.46 × 0.20 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
CrysAlis RED (Oxford Diffraction, 2009)
Tmin, Tmax0.815, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3846, 2476, 1842
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.126, 1.19
No. of reflections2476
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.840 (18)2.083 (19)2.912 (4)169 (3)
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a one time grant under its BSR scheme.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159.  CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1521.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kožíšek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o595.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds