metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Acetato-di­acetato{μ-6,6′-di­meth­oxy-2,2′-[o-phenylenebis(nitrilomethanylyl­idene)]diphenolato}gadolinium(III)zinc

aKey Laboratory of Functional Inorganic Materials Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, People's Republic of China
*Correspondence e-mail: yanpf@vip.sina.com

(Received 11 July 2011; accepted 18 July 2011; online 2 August 2011)

In the heterodinuclear title complex, [GdZn(C22H18N2O4)(CH3COO)3], the ZnII ion is five-coordinated in a square-pyramidal environment defined by two O atoms and two N atoms from the ligand, forming the square plane, and one acetate O atom serving as the apex, while the GdIII ion is nine-coordinated in an approximate mono-capped tetra­gonal–anti­prismatic environment defined by four O atoms from the ligand and five acetate O atoms.

Related literature

For the synthesis of the ligand, see: Costes et al. (2000[Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 5994-6000.]). For similar 3d–4f complexes of similar ligands, see: Bao et al. (2010[Bao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.]); Liao et al. (2010[Liao, A., Yang, X. P., Stanley, J. M., Jones, R. A. & Holiday, B. J. (2010). J. Chem. Crystallogr. 40, 1060-1064.]); Xu et al. (2011[Xu, L., Li, H.-F., Chen, P. & Yan, P.-F. (2011). Acta Cryst. E67, m367.]).

[Scheme 1]

Experimental

Crystal data
  • [GdZn(C22H18N2O4)(C2H3O2)3]

  • Mr = 774.16

  • Monoclinic, P 21 /c

  • a = 14.012 (3) Å

  • b = 13.581 (3) Å

  • c = 15.426 (3) Å

  • β = 103.65 (3)°

  • V = 2852.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 293 K

  • 0.15 × 0.14 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.645, Tmax = 0.681

  • 26483 measured reflections

  • 6488 independent reflections

  • 4513 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.078

  • S = 1.01

  • 6488 reflections

  • 384 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.82 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Lanthanide complexes with spectroscopic and magnetic properties are currently of considerable interest. In continuation of our studies of salen-type lanthanide complexes (Bao et al., 2010, Xu et al., 2011), we present here the synthesis and the crystal structure of the title compound.

In the title compound,the Zn(II) ion is five-coordinated by two imino nitrogen atoms and two phenolate oxygen atoms from the ligand, and one oxygen from the bridging acetate group to form the pyramid coordination geometry. The Zn—N bond distances are in the range of 2.042 (4) Å—2.062 (4) Å, and the Zn—O bond distances are in the range of 1.974 (3) Å—2.004 (3) Å, which in accordance with the reported values (Liao et al. 2010). The Gd(III) ion is ligated to five oxygen atoms of three acetate groups, and four oxygen atoms from the ligand. The Gd—O bond distances are in the range of 2.365 (3)—2.626 (3) Å (Fig.1, Table 1). The Gd—Zn distance is 3.414 (1) Å. The positive charge of the Gd(III) and Zn(II) ions are balanced by the ligand L2- and three acetate groups (L = N,N'-bis(2-oxy-3-methoxybenzylidene)- 1,2-diaminobenzene).

Related literature top

For the synthesis of the ligand, see: Costes et al. (2000). For similar 3d–4f complexes of similar ligands, see: Bao et al. (2010); Liao et al. (2010); Xu et al. (2011).

Experimental top

The salen lignad was synthesized following the reference (Costes et al. 2000). To a 1:1 MeOH/CH2Cl2 solution (20 ml) of H2L (0.0748 g, 0.2 mmol) andGd(CH3COO)3˙4H2O (0.0813 g, 0.2 mmol) was added a MeOH solution (5 ml) ofZn(CH3COO)2˙2H2O (0.0438 g, 0.2 mmol) at the ambient temperature. The color of the solution immediately changed to yellow. After stirring for 8 h, the solution was filtered to remove the suspended particles. yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethylether into the filtrate in four days. ZnGd(C22H18N2O4)(CH3COO)3, Elemental Anal. Calc.: C, 43.44; H, 3.52; N, 3.62 wt%, Found: C, 43.38; H, 3.44; N, 3.27 wt%.

Refinement top

The anormal reflection data (-1 1 4) have been omitted during the refinement. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C) and Uiso(H) = 1.2Ueq(C), and with C—H = 0.96 Å (methyl C) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku 1998); cell refinement: RAPID-AUTO (Rigaku 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
µ-Acetato-diacetato{µ-6,6'-dimethoxy-2,2'-[o- phenylenebis(nitrilomethanylylidene)]diphenolato}gadolinium(III)zinc top
Crystal data top
[GdZn(C22H18N2O4)(C2H3O2)3]F(000) = 1532
Mr = 774.16Dx = 1.803 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16409 reflections
a = 14.012 (3) Åθ = 3.0–27.5°
b = 13.581 (3) ŵ = 3.21 mm1
c = 15.426 (3) ÅT = 293 K
β = 103.65 (3)°Block, yellow
V = 2852.6 (10) Å30.15 × 0.14 × 0.13 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6488 independent reflections
Radiation source: fine-focus sealed tube4513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.645, Tmax = 0.681k = 1716
26483 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0272P)2 + 1.1216P]
where P = (Fo2 + 2Fc2)/3
6488 reflections(Δ/σ)max < 0.001
384 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[GdZn(C22H18N2O4)(C2H3O2)3]V = 2852.6 (10) Å3
Mr = 774.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.012 (3) ŵ = 3.21 mm1
b = 13.581 (3) ÅT = 293 K
c = 15.426 (3) Å0.15 × 0.14 × 0.13 mm
β = 103.65 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6488 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4513 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.681Rint = 0.073
26483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
6488 reflectionsΔρmin = 0.82 e Å3
384 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.298502 (17)0.880640 (16)0.188340 (16)0.03607 (7)
Zn10.05908 (4)0.84037 (4)0.19232 (4)0.03815 (14)
O10.4228 (3)0.9767 (3)0.2964 (3)0.0660 (12)
O20.4373 (3)0.8188 (3)0.3022 (3)0.0696 (12)
O30.1371 (2)0.9446 (2)0.1482 (2)0.0457 (8)
O40.2720 (3)1.0662 (2)0.1405 (2)0.0469 (8)
O50.2482 (3)0.8884 (4)0.3247 (3)0.0844 (14)
O60.1715 (2)0.7605 (2)0.1712 (2)0.0448 (9)
O70.3403 (2)0.6960 (2)0.1719 (2)0.0459 (9)
O80.2722 (3)0.8700 (3)0.0262 (2)0.0581 (10)
O90.4224 (3)0.8956 (3)0.1017 (3)0.0594 (10)
O100.0909 (3)0.8682 (2)0.3216 (2)0.0495 (9)
N10.0301 (3)0.7181 (3)0.1660 (3)0.0426 (10)
N20.0693 (3)0.9076 (3)0.1312 (3)0.0406 (9)
C10.2061 (4)0.6805 (5)0.1540 (4)0.0594 (15)
H1A0.19190.61480.16860.071*
C20.3228 (4)0.8097 (6)0.1166 (4)0.0722 (18)
H2A0.38770.83080.10470.087*
C30.1527 (5)1.1987 (3)0.0881 (3)0.0528 (14)
H3A0.20121.24430.08470.063*
C40.0760 (4)0.9959 (3)0.0987 (3)0.0441 (12)
H4A0.13881.01900.07290.053*
C50.4366 (4)0.6643 (4)0.1674 (5)0.0705 (18)
H5A0.43290.63020.11220.106*
H5B0.46260.62080.21640.106*
H5C0.47880.72050.17070.106*
C60.5288 (6)0.9052 (5)0.4231 (4)0.095 (3)
H6A0.59240.88350.41800.142*
H6B0.50600.86340.46420.142*
H6C0.53310.97180.44450.142*
C70.3015 (5)0.7124 (5)0.1369 (4)0.0728 (18)
H7A0.35170.66830.13900.087*
C80.2713 (4)0.6248 (3)0.1765 (3)0.0399 (11)
C90.0535 (5)1.2258 (4)0.0651 (4)0.0602 (16)
H9A0.03611.28980.04660.072*
C100.1059 (4)1.0339 (3)0.1223 (3)0.0373 (11)
C110.0183 (4)1.1587 (4)0.0697 (4)0.0550 (15)
H11A0.08381.17770.05320.066*
C120.1196 (5)0.4954 (3)0.1731 (4)0.0541 (14)
H12A0.06800.45120.16910.065*
C130.3513 (4)1.1311 (4)0.1360 (4)0.0594 (15)
H13A0.34161.15670.07650.089*
H13B0.41221.09560.15130.089*
H13C0.35311.18450.17710.089*
C140.1514 (4)0.8451 (4)0.1298 (3)0.0459 (12)
C150.0052 (4)1.0620 (3)0.0987 (3)0.0426 (12)
C160.2889 (4)0.5246 (3)0.1824 (3)0.0512 (13)
H16A0.35220.50050.18800.061*
C170.2486 (4)0.8776 (5)0.1134 (4)0.0600 (14)
H17A0.26380.94350.10050.072*
C180.1774 (4)1.1038 (3)0.1156 (3)0.0395 (11)
C190.1301 (4)0.7453 (4)0.1496 (3)0.0457 (12)
C200.0996 (4)0.5986 (3)0.1719 (3)0.0424 (12)
C210.0006 (4)0.6290 (4)0.1625 (3)0.0510 (13)
H21A0.04820.57980.15310.061*
C220.3616 (4)0.8806 (4)0.0284 (4)0.0524 (13)
C230.4599 (4)0.9003 (4)0.3355 (4)0.0498 (13)
C240.2012 (5)0.8960 (5)0.4602 (4)0.0749 (18)
H24A0.24980.94660.47780.112*
H24B0.22570.83520.48860.112*
H24C0.14230.91440.47770.112*
C250.2112 (5)0.4601 (4)0.1798 (4)0.0632 (16)
H25A0.22230.39250.18270.076*
C260.1791 (4)0.8833 (4)0.3610 (3)0.0516 (13)
C270.1785 (4)0.6639 (3)0.1738 (3)0.0385 (11)
C280.3968 (5)0.8751 (5)0.0560 (4)0.084 (2)
H28A0.44230.92770.05700.125*
H28B0.34190.88110.10640.125*
H28C0.42890.81310.05860.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.02645 (12)0.03976 (12)0.04177 (14)0.00167 (10)0.00757 (9)0.00027 (11)
Zn10.0263 (3)0.0438 (3)0.0441 (3)0.0004 (2)0.0079 (2)0.0002 (2)
O10.071 (3)0.054 (2)0.065 (3)0.028 (2)0.000 (2)0.0017 (19)
O20.068 (3)0.062 (2)0.064 (3)0.008 (2)0.014 (2)0.0066 (19)
O30.030 (2)0.0417 (18)0.065 (2)0.0033 (14)0.0124 (17)0.0161 (15)
O40.041 (2)0.0432 (18)0.057 (2)0.0066 (15)0.0117 (17)0.0041 (15)
O50.045 (3)0.166 (4)0.044 (2)0.021 (3)0.014 (2)0.010 (3)
O60.034 (2)0.0337 (18)0.070 (3)0.0015 (14)0.0186 (18)0.0013 (15)
O70.0256 (19)0.0440 (18)0.066 (2)0.0072 (14)0.0074 (16)0.0030 (15)
O80.041 (2)0.090 (3)0.044 (2)0.004 (2)0.0114 (17)0.0026 (18)
O90.036 (2)0.087 (3)0.057 (3)0.0017 (19)0.0137 (19)0.001 (2)
O100.036 (2)0.070 (2)0.043 (2)0.0000 (17)0.0112 (16)0.0014 (16)
N10.031 (2)0.054 (2)0.044 (3)0.0075 (18)0.0116 (19)0.0008 (18)
N20.033 (2)0.051 (2)0.037 (2)0.0069 (17)0.0061 (18)0.0012 (17)
C10.041 (4)0.088 (4)0.051 (4)0.013 (3)0.016 (3)0.000 (3)
C20.022 (3)0.134 (6)0.061 (4)0.009 (3)0.010 (3)0.007 (4)
C30.070 (4)0.039 (3)0.047 (3)0.000 (3)0.008 (3)0.002 (2)
C40.034 (3)0.062 (3)0.036 (3)0.017 (2)0.008 (2)0.005 (2)
C50.028 (3)0.069 (4)0.112 (6)0.011 (3)0.014 (3)0.010 (3)
C60.096 (6)0.110 (5)0.064 (5)0.045 (5)0.008 (4)0.005 (4)
C70.040 (4)0.110 (5)0.068 (5)0.022 (3)0.012 (3)0.000 (4)
C80.046 (3)0.036 (2)0.036 (3)0.001 (2)0.007 (2)0.0035 (19)
C90.078 (5)0.038 (3)0.060 (4)0.014 (3)0.008 (3)0.001 (2)
C100.040 (3)0.038 (2)0.032 (3)0.006 (2)0.007 (2)0.0005 (18)
C110.050 (4)0.050 (3)0.058 (4)0.017 (3)0.000 (3)0.002 (2)
C120.067 (4)0.041 (3)0.057 (4)0.011 (3)0.020 (3)0.001 (2)
C130.051 (4)0.063 (3)0.063 (4)0.017 (3)0.010 (3)0.012 (3)
C140.028 (3)0.069 (3)0.039 (3)0.001 (2)0.005 (2)0.005 (2)
C150.042 (3)0.048 (3)0.036 (3)0.011 (2)0.005 (2)0.002 (2)
C160.058 (4)0.046 (3)0.050 (3)0.015 (3)0.014 (3)0.006 (2)
C170.038 (3)0.090 (4)0.050 (3)0.007 (3)0.007 (3)0.002 (3)
C180.045 (3)0.040 (3)0.031 (3)0.004 (2)0.006 (2)0.0037 (18)
C190.029 (3)0.066 (3)0.041 (3)0.010 (2)0.007 (2)0.004 (2)
C200.050 (3)0.041 (3)0.038 (3)0.005 (2)0.016 (2)0.0008 (19)
C210.054 (4)0.051 (3)0.051 (3)0.017 (3)0.018 (3)0.000 (2)
C220.046 (3)0.059 (3)0.056 (4)0.009 (3)0.020 (3)0.002 (3)
C230.036 (3)0.066 (4)0.047 (3)0.015 (3)0.008 (2)0.002 (3)
C240.067 (5)0.114 (5)0.043 (4)0.003 (4)0.011 (3)0.002 (3)
C250.079 (5)0.041 (3)0.071 (4)0.004 (3)0.019 (4)0.006 (3)
C260.049 (4)0.066 (3)0.038 (3)0.001 (3)0.006 (3)0.001 (2)
C270.044 (3)0.035 (2)0.038 (3)0.001 (2)0.013 (2)0.0001 (19)
C280.078 (5)0.120 (5)0.061 (4)0.023 (4)0.032 (4)0.006 (4)
Geometric parameters (Å, º) top
Gd1—O32.365 (3)C4—C151.449 (7)
Gd1—O52.373 (4)C4—H4A0.9300
Gd1—O62.382 (3)C5—H5A0.9600
Gd1—O92.436 (4)C5—H5B0.9600
Gd1—O22.441 (4)C5—H5C0.9600
Gd1—O82.445 (4)C6—C231.465 (8)
Gd1—O12.479 (4)C6—H6A0.9600
Gd1—O72.601 (3)C6—H6B0.9600
Gd1—O42.627 (3)C6—H6C0.9600
Gd1—C222.810 (6)C7—H7A0.9300
Gd1—C232.814 (5)C8—C161.382 (6)
Gd1—Zn13.4139 (9)C8—C271.395 (6)
Zn1—O101.975 (3)C9—C111.371 (8)
Zn1—O62.002 (3)C9—H9A0.9300
Zn1—O32.003 (3)C10—C181.402 (6)
Zn1—N22.039 (4)C10—C151.425 (6)
Zn1—N12.060 (4)C11—C151.401 (6)
O1—C231.250 (6)C11—H11A0.9300
O2—C231.230 (6)C12—C251.351 (8)
O3—C101.319 (5)C12—C201.429 (6)
O4—C181.387 (6)C12—H12A0.9300
O4—C131.434 (6)C13—H13A0.9600
O5—C261.230 (7)C13—H13B0.9600
O6—C271.315 (5)C13—H13C0.9600
O7—C81.382 (5)C14—C171.397 (7)
O7—C51.433 (6)C14—C191.406 (7)
O8—C221.253 (6)C16—C251.390 (8)
O9—C221.261 (6)C16—H16A0.9300
O10—C261.259 (6)C17—H17A0.9300
N1—C211.284 (6)C20—C271.413 (6)
N1—C191.413 (6)C20—C211.438 (7)
N2—C41.295 (6)C21—H21A0.9300
N2—C141.427 (6)C22—C281.499 (8)
C1—C71.370 (8)C24—C261.498 (7)
C1—C191.396 (7)C24—H24A0.9600
C1—H1A0.9300C24—H24B0.9600
C2—C71.375 (8)C24—H24C0.9600
C2—C171.398 (8)C25—H25A0.9300
C2—H2A0.9300C28—H28A0.9600
C3—C181.376 (6)C28—H28B0.9600
C3—C91.400 (8)C28—H28C0.9600
C3—H3A0.9300
O3—Gd1—O575.50 (14)C7—C1—C19120.8 (6)
O3—Gd1—O665.12 (10)C7—C1—H1A119.6
O5—Gd1—O676.04 (13)C19—C1—H1A119.6
O3—Gd1—O9125.94 (12)C7—C2—C17121.3 (6)
O5—Gd1—O9151.85 (14)C7—C2—H2A119.4
O6—Gd1—O9127.31 (12)C17—C2—H2A119.4
O3—Gd1—O2149.88 (14)C18—C3—C9119.1 (5)
O5—Gd1—O274.38 (16)C18—C3—H3A120.4
O6—Gd1—O2106.97 (12)C9—C3—H3A120.4
O9—Gd1—O282.74 (14)N2—C4—C15126.0 (4)
O3—Gd1—O881.38 (13)N2—C4—H4A117.0
O5—Gd1—O8154.78 (14)C15—C4—H4A117.0
O6—Gd1—O885.25 (12)O7—C5—H5A109.5
O9—Gd1—O853.03 (13)O7—C5—H5B109.5
O2—Gd1—O8128.15 (14)H5A—C5—H5B109.5
O3—Gd1—O1117.37 (13)O7—C5—H5C109.5
O5—Gd1—O171.90 (14)H5A—C5—H5C109.5
O6—Gd1—O1145.40 (12)H5B—C5—H5C109.5
O9—Gd1—O181.16 (13)C23—C6—H6A109.5
O2—Gd1—O151.91 (13)C23—C6—H6B109.5
O8—Gd1—O1129.16 (13)H6A—C6—H6B109.5
O3—Gd1—O7123.52 (10)C23—C6—H6C109.5
O5—Gd1—O7104.50 (14)H6A—C6—H6C109.5
O6—Gd1—O760.56 (10)H6B—C6—H6C109.5
O9—Gd1—O779.67 (12)C1—C7—C2119.8 (6)
O2—Gd1—O765.11 (11)C1—C7—H7A120.1
O8—Gd1—O779.98 (11)C2—C7—H7A120.1
O1—Gd1—O7115.73 (12)O7—C8—C16125.2 (5)
O3—Gd1—O460.72 (10)O7—C8—C27113.0 (4)
O5—Gd1—O498.87 (14)C16—C8—C27121.8 (5)
O6—Gd1—O4124.96 (11)C11—C9—C3120.6 (5)
O9—Gd1—O480.67 (12)C11—C9—H9A119.7
O2—Gd1—O4124.60 (12)C3—C9—H9A119.7
O8—Gd1—O478.02 (11)O3—C10—C18117.0 (4)
O1—Gd1—O473.41 (12)O3—C10—C15124.1 (4)
O7—Gd1—O4156.55 (11)C18—C10—C15118.8 (4)
O3—Gd1—C22104.47 (14)C9—C11—C15121.3 (5)
O5—Gd1—C22177.28 (16)C9—C11—H11A119.3
O6—Gd1—C22106.46 (15)C15—C11—H11A119.3
O9—Gd1—C2226.62 (14)C25—C12—C20121.9 (5)
O2—Gd1—C22105.62 (16)C25—C12—H12A119.0
O8—Gd1—C2226.43 (14)C20—C12—H12A119.0
O1—Gd1—C22105.89 (16)O4—C13—H13A109.5
O7—Gd1—C2277.82 (13)O4—C13—H13B109.5
O4—Gd1—C2278.86 (13)H13A—C13—H13B109.5
O3—Gd1—C23135.50 (14)O4—C13—H13C109.5
O5—Gd1—C2368.36 (15)H13A—C13—H13C109.5
O6—Gd1—C23126.30 (13)H13B—C13—H13C109.5
O9—Gd1—C2383.90 (14)C17—C14—C19119.5 (5)
O2—Gd1—C2325.85 (13)C17—C14—N2124.3 (5)
O8—Gd1—C23136.84 (14)C19—C14—N2116.2 (4)
O1—Gd1—C2326.35 (12)C11—C15—C10118.4 (5)
O7—Gd1—C2390.78 (13)C11—C15—C4117.1 (5)
O4—Gd1—C2399.73 (13)C10—C15—C4124.4 (4)
C22—Gd1—C23110.42 (16)C8—C16—C25119.5 (5)
O3—Gd1—Zn134.95 (7)C8—C16—H16A120.3
O5—Gd1—Zn159.49 (10)C25—C16—H16A120.3
O6—Gd1—Zn135.01 (7)C14—C17—C2119.1 (6)
O9—Gd1—Zn1148.60 (9)C14—C17—H17A120.5
O2—Gd1—Zn1123.47 (11)C2—C17—H17A120.5
O8—Gd1—Zn195.59 (10)C3—C18—O4125.9 (5)
O1—Gd1—Zn1127.58 (10)C3—C18—C10121.7 (5)
O7—Gd1—Zn195.30 (7)O4—C18—C10112.5 (4)
O4—Gd1—Zn194.82 (8)C1—C19—C14119.5 (5)
C22—Gd1—Zn1121.98 (13)C1—C19—N1124.2 (5)
C23—Gd1—Zn1127.37 (11)C14—C19—N1116.2 (4)
O10—Zn1—O6105.65 (14)C27—C20—C12117.8 (5)
O10—Zn1—O3101.36 (14)C27—C20—C21124.3 (4)
O6—Zn1—O379.28 (13)C12—C20—C21117.8 (5)
O10—Zn1—N2110.22 (15)N1—C21—C20125.6 (5)
O6—Zn1—N2144.04 (15)N1—C21—H21A117.2
O3—Zn1—N291.09 (15)C20—C21—H21A117.2
O10—Zn1—N1109.55 (15)O8—C22—O9120.1 (5)
O6—Zn1—N189.71 (14)O8—C22—C28120.2 (5)
O3—Zn1—N1148.98 (15)O9—C22—C28119.7 (5)
N2—Zn1—N180.92 (16)O8—C22—Gd160.3 (3)
O10—Zn1—Gd189.96 (10)O9—C22—Gd159.9 (3)
O6—Zn1—Gd143.06 (9)C28—C22—Gd1177.1 (4)
O3—Zn1—Gd142.55 (9)O2—C23—O1120.5 (5)
N2—Zn1—Gd1133.10 (12)O2—C23—C6118.3 (5)
N1—Zn1—Gd1132.72 (12)O1—C23—C6121.1 (5)
C23—O1—Gd192.0 (3)O2—C23—Gd159.9 (3)
C23—O2—Gd194.3 (3)O1—C23—Gd161.7 (3)
C10—O3—Zn1125.8 (3)C6—C23—Gd1167.8 (5)
C10—O3—Gd1130.2 (3)C26—C24—H24A109.5
Zn1—O3—Gd1102.50 (12)C26—C24—H24B109.5
C18—O4—C13117.4 (4)H24A—C24—H24B109.5
C18—O4—Gd1119.6 (3)C26—C24—H24C109.5
C13—O4—Gd1122.9 (3)H24A—C24—H24C109.5
C26—O5—Gd1146.3 (4)H24B—C24—H24C109.5
C27—O6—Zn1126.2 (3)C12—C25—C16120.1 (5)
C27—O6—Gd1129.1 (3)C12—C25—H25A119.9
Zn1—O6—Gd1101.93 (12)C16—C25—H25A119.9
C8—O7—C5118.1 (4)O5—C26—O10125.3 (5)
C8—O7—Gd1119.5 (3)O5—C26—C24117.6 (5)
C5—O7—Gd1122.1 (3)O10—C26—C24117.0 (5)
C22—O8—Gd193.3 (3)O6—C27—C8116.3 (4)
C22—O9—Gd193.5 (3)O6—C27—C20125.0 (4)
C26—O10—Zn1118.7 (3)C8—C27—C20118.7 (4)
C21—N1—C19123.6 (4)C22—C28—H28A109.5
C21—N1—Zn1125.6 (4)C22—C28—H28B109.5
C19—N1—Zn1110.7 (3)H28A—C28—H28B109.5
C4—N2—C14124.1 (4)C22—C28—H28C109.5
C4—N2—Zn1124.7 (3)H28A—C28—H28C109.5
C14—N2—Zn1111.2 (3)H28B—C28—H28C109.5

Experimental details

Crystal data
Chemical formula[GdZn(C22H18N2O4)(C2H3O2)3]
Mr774.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.012 (3), 13.581 (3), 15.426 (3)
β (°) 103.65 (3)
V3)2852.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.15 × 0.14 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.645, 0.681
No. of measured, independent and
observed [I > 2σ(I)] reflections
26483, 6488, 4513
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.078, 1.01
No. of reflections6488
No. of parameters384
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.82

Computer programs: RAPID-AUTO (Rigaku 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

References

First citationBao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCostes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 5994–6000.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiao, A., Yang, X. P., Stanley, J. M., Jones, R. A. & Holiday, B. J. (2010). J. Chem. Crystallogr. 40, 1060–1064.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Li, H.-F., Chen, P. & Yan, P.-F. (2011). Acta Cryst. E67, m367.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds