organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(Pent-4-en­yl)anthracene

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 19 July 2011; accepted 29 July 2011; online 6 August 2011)

In the title compound, C19H18, the anthracene system is almost planar, with a maximum deviation of −0.039 (1) Å. The structure is stabilized by C—H⋯π inter­actions. The pentene moiety is not planar and is twisted away from the attached anthracene system with a maximum torsion angle of 91.2 (1)°.

Related literature

For background to anthracene, see: de Silva et al. (1997[Silva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891-7892.]); Klarner et al. (1998[Klarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993-997.]); Han et al. (2009[Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671-1680.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18

  • Mr = 246.33

  • Monoclinic, P 21 /c

  • a = 11.1555 (2) Å

  • b = 7.2678 (1) Å

  • c = 19.7129 (3) Å

  • β = 119.096 (1)°

  • V = 1396.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.73 × 0.38 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.983

  • 20185 measured reflections

  • 5271 independent reflections

  • 3948 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.151

  • S = 1.05

  • 5271 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
C—H⋯π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C8/C13/C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg2i 0.95 2.63 3.5729 (9) 175
C7—H7ACg1i 0.95 2.74 3.6851 (9) 177
C17—H17ACg2ii 0.99 2.58 3.4643 (9) 149
C18—H18ACg1ii 0.95 2.90 3.6553 (11) 138
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthracene is an attractive material in its photochemical and electrochemical properties as well as used as a potential medium for photoconductive (de Silva et al., 1997) and electroluminescence (Klarner et al., 1998) devices. Furthermore, anthracene derivatives exhibited anticancer activity has also been reported recently (Han et al., 2009). As part of an ongoing study on such compounds, in this paper, we present the crystal structure of the title compound, which was synthesized as an intermediate.

All parameters in (I) within normal ranges. The anthracene is planar with maximum deviation of -0.039 (1)Å from atom C11. In the crystal, C—H···π (Table 1) interactions contribute in stabilizing the crystal structure involving Cg1 = C1—C6 and Cg2 = C1/C6–8/C13—C14.

Related literature top

For background to anthracene, see: de Silva et al. (1997); Klarner et al. (1998); Han et al. (2009).

Experimental top

A solution of anthrone (1 g, 5.1 mmol) in anhydrous THF (20 ml) was slowly added to pent-4-enylmagnesium bromide (0.47 g, 6.5 mmol). The mixture was stirred for 8 h at room temperature. The reaction mixture was subsequently acidified with 10% HCl, the organic layer was separated, and the aqueous layer was extracted with ether (2 X 10 ml). The combined organic layer was washed with water, dried over MgSO4 and the solvent was evaporated under reduced pressure and the crude product was added 5 ml benzene, 1.2 g P2O5 and stirred for 6 h at room temperature. The P2O5 was filtered off and the benzene was removed under vacuum. The crude product was purified by column chromatography (hexane-dichloromethene 1:1). The product was recrystallized from EtOAc to yield title compound as colourless crystals.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.99 Å, and with Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
9-(Pent-4-enyl)anthracene top
Crystal data top
C19H18F(000) = 528
Mr = 246.33Dx = 1.172 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5794 reflections
a = 11.1555 (2) Åθ = 2.4–33.0°
b = 7.2678 (1) ŵ = 0.07 mm1
c = 19.7129 (3) ÅT = 100 K
β = 119.096 (1)°Block, colourless
V = 1396.55 (4) Å30.73 × 0.38 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5271 independent reflections
Radiation source: fine-focus sealed tube3948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 33.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1716
Tmin = 0.953, Tmax = 0.983k = 911
20185 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.1778P]
where P = (Fo2 + 2Fc2)/3
5271 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H18V = 1396.55 (4) Å3
Mr = 246.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1555 (2) ŵ = 0.07 mm1
b = 7.2678 (1) ÅT = 100 K
c = 19.7129 (3) Å0.73 × 0.38 × 0.26 mm
β = 119.096 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5271 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3948 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.983Rint = 0.028
20185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
5271 reflectionsΔρmin = 0.23 e Å3
172 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12149 (8)0.51562 (11)0.87949 (5)0.01455 (16)
C20.03754 (9)0.45215 (12)0.91135 (5)0.01904 (17)
H2A0.06930.35400.94780.023*
C30.08723 (9)0.53006 (14)0.89033 (5)0.02260 (19)
H3A0.14050.48600.91260.027*
C40.13826 (9)0.67610 (14)0.83556 (6)0.02333 (19)
H4A0.22500.72940.82160.028*
C50.06301 (9)0.73990 (12)0.80296 (5)0.01996 (18)
H5A0.09810.83720.76620.024*
C60.06813 (8)0.66222 (11)0.82341 (5)0.01545 (16)
C70.14534 (8)0.72875 (11)0.79022 (5)0.01635 (16)
H7A0.11010.82630.75360.020*
C80.27345 (8)0.65400 (11)0.81012 (5)0.01535 (16)
C90.35206 (9)0.72202 (13)0.77582 (5)0.02136 (18)
H9A0.31780.82210.74040.026*
C100.47518 (9)0.64570 (14)0.79301 (6)0.0248 (2)
H10A0.52580.69190.76950.030*
C110.52754 (9)0.49685 (14)0.84623 (6)0.02274 (19)
H11A0.61290.44300.85750.027*
C120.45707 (8)0.43008 (12)0.88137 (5)0.01865 (17)
H12A0.49480.33120.91720.022*
C130.32723 (8)0.50604 (11)0.86544 (5)0.01458 (15)
C140.25201 (8)0.43960 (11)0.90096 (5)0.01431 (15)
C150.30778 (9)0.28354 (11)0.95877 (5)0.01744 (17)
H15A0.27110.29410.99530.021*
H15B0.40890.29430.98910.021*
C160.27031 (9)0.09379 (11)0.91969 (5)0.01856 (17)
H16A0.31800.07570.88900.022*
H16B0.17030.08870.88360.022*
C170.31046 (9)0.06170 (12)0.97964 (5)0.01997 (18)
H17A0.31540.17890.95550.024*
H17B0.40280.03611.02380.024*
C180.21099 (11)0.08229 (13)1.00944 (6)0.0254 (2)
H18A0.12040.11980.97340.031*
C190.23850 (14)0.05277 (16)1.08162 (7)0.0363 (3)
H19A0.32790.01511.11950.044*
H19C0.16890.06921.09570.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (3)0.0131 (3)0.0142 (3)0.0012 (2)0.0068 (3)0.0018 (3)
C20.0204 (4)0.0205 (4)0.0175 (4)0.0032 (3)0.0101 (3)0.0017 (3)
C30.0200 (4)0.0287 (4)0.0226 (4)0.0048 (3)0.0131 (3)0.0049 (4)
C40.0156 (4)0.0283 (4)0.0260 (4)0.0005 (3)0.0100 (3)0.0056 (4)
C50.0165 (3)0.0199 (4)0.0207 (4)0.0034 (3)0.0069 (3)0.0005 (3)
C60.0146 (3)0.0147 (3)0.0157 (3)0.0005 (3)0.0063 (3)0.0014 (3)
C70.0170 (3)0.0144 (3)0.0164 (4)0.0015 (3)0.0071 (3)0.0018 (3)
C80.0159 (3)0.0150 (3)0.0151 (3)0.0003 (3)0.0075 (3)0.0001 (3)
C90.0208 (4)0.0235 (4)0.0215 (4)0.0012 (3)0.0116 (3)0.0027 (3)
C100.0209 (4)0.0321 (5)0.0253 (4)0.0029 (3)0.0144 (4)0.0003 (4)
C110.0165 (4)0.0276 (4)0.0245 (4)0.0010 (3)0.0103 (3)0.0046 (4)
C120.0162 (3)0.0173 (4)0.0203 (4)0.0020 (3)0.0071 (3)0.0017 (3)
C130.0141 (3)0.0132 (3)0.0152 (3)0.0003 (2)0.0061 (3)0.0022 (3)
C140.0159 (3)0.0115 (3)0.0139 (3)0.0000 (2)0.0060 (3)0.0008 (3)
C150.0201 (4)0.0139 (3)0.0155 (3)0.0004 (3)0.0065 (3)0.0009 (3)
C160.0220 (4)0.0140 (3)0.0171 (4)0.0002 (3)0.0074 (3)0.0004 (3)
C170.0230 (4)0.0135 (3)0.0200 (4)0.0013 (3)0.0078 (3)0.0019 (3)
C180.0320 (5)0.0180 (4)0.0272 (5)0.0009 (3)0.0151 (4)0.0021 (3)
C190.0531 (7)0.0295 (5)0.0336 (6)0.0003 (5)0.0267 (5)0.0015 (5)
Geometric parameters (Å, º) top
C1—C141.4159 (11)C11—C121.3650 (13)
C1—C21.4340 (11)C11—H11A0.9500
C1—C61.4393 (11)C12—C131.4349 (11)
C2—C31.3670 (12)C12—H12A0.9500
C2—H2A0.9500C13—C141.4139 (11)
C3—C41.4208 (14)C14—C151.5108 (11)
C3—H3A0.9500C15—C161.5352 (11)
C4—C51.3628 (13)C15—H15A0.9900
C4—H4A0.9500C15—H15B0.9900
C5—C61.4311 (11)C16—C171.5361 (12)
C5—H5A0.9500C16—H16A0.9900
C6—C71.3971 (12)C16—H16B0.9900
C7—C81.3950 (11)C17—C181.4941 (14)
C7—H7A0.9500C17—H17A0.9900
C8—C91.4309 (12)C17—H17B0.9900
C8—C131.4385 (11)C18—C191.3193 (15)
C9—C101.3625 (13)C18—H18A0.9500
C9—H9A0.9500C19—H19A0.9500
C10—C111.4199 (14)C19—H19C0.9500
C10—H10A0.9500
C14—C1—C2122.63 (7)C11—C12—C13121.42 (8)
C14—C1—C6119.97 (7)C11—C12—H12A119.3
C2—C1—C6117.40 (7)C13—C12—H12A119.3
C3—C2—C1121.30 (8)C14—C13—C12122.63 (7)
C3—C2—H2A119.3C14—C13—C8120.10 (7)
C1—C2—H2A119.3C12—C13—C8117.26 (7)
C2—C3—C4120.83 (8)C13—C14—C1119.36 (7)
C2—C3—H3A119.6C13—C14—C15120.27 (7)
C4—C3—H3A119.6C1—C14—C15120.32 (7)
C5—C4—C3120.09 (8)C14—C15—C16112.59 (7)
C5—C4—H4A120.0C14—C15—H15A109.1
C3—C4—H4A120.0C16—C15—H15A109.1
C4—C5—C6120.84 (8)C14—C15—H15B109.1
C4—C5—H5A119.6C16—C15—H15B109.1
C6—C5—H5A119.6H15A—C15—H15B107.8
C7—C6—C5120.67 (8)C15—C16—C17111.62 (7)
C7—C6—C1119.80 (7)C15—C16—H16A109.3
C5—C6—C1119.52 (8)C17—C16—H16A109.3
C8—C7—C6120.93 (7)C15—C16—H16B109.3
C8—C7—H7A119.5C17—C16—H16B109.3
C6—C7—H7A119.5H16A—C16—H16B108.0
C7—C8—C9120.79 (8)C18—C17—C16112.44 (7)
C7—C8—C13119.79 (7)C18—C17—H17A109.1
C9—C8—C13119.41 (7)C16—C17—H17A109.1
C10—C9—C8121.14 (8)C18—C17—H17B109.1
C10—C9—H9A119.4C16—C17—H17B109.1
C8—C9—H9A119.4H17A—C17—H17B107.8
C9—C10—C11119.78 (8)C19—C18—C17125.45 (10)
C9—C10—H10A120.1C19—C18—H18A117.3
C11—C10—H10A120.1C17—C18—H18A117.3
C12—C11—C10120.96 (8)C18—C19—H19A120.0
C12—C11—H11A119.5C18—C19—H19C120.0
C10—C11—H11A119.5H19A—C19—H19C120.0
C14—C1—C2—C3179.04 (8)C11—C12—C13—C14179.98 (8)
C6—C1—C2—C31.14 (12)C11—C12—C13—C80.79 (12)
C1—C2—C3—C40.48 (14)C7—C8—C13—C141.54 (12)
C2—C3—C4—C50.28 (14)C9—C8—C13—C14178.80 (8)
C3—C4—C5—C60.31 (14)C7—C8—C13—C12177.67 (7)
C4—C5—C6—C7179.61 (8)C9—C8—C13—C121.98 (11)
C4—C5—C6—C10.39 (13)C12—C13—C14—C1176.95 (7)
C14—C1—C6—C70.14 (12)C8—C13—C14—C12.22 (12)
C2—C1—C6—C7179.68 (7)C12—C13—C14—C150.50 (12)
C14—C1—C6—C5179.09 (7)C8—C13—C14—C15179.67 (7)
C2—C1—C6—C51.09 (12)C2—C1—C14—C13178.29 (7)
C5—C6—C7—C8179.78 (8)C6—C1—C14—C131.52 (12)
C1—C6—C7—C80.56 (12)C2—C1—C14—C150.84 (12)
C6—C7—C8—C9179.78 (8)C6—C1—C14—C15178.97 (7)
C6—C7—C8—C130.13 (12)C13—C14—C15—C1686.19 (9)
C7—C8—C9—C10177.80 (8)C1—C14—C15—C1691.23 (9)
C13—C8—C9—C101.85 (13)C14—C15—C16—C17172.08 (7)
C8—C9—C10—C110.43 (14)C15—C16—C17—C1878.26 (9)
C9—C10—C11—C120.83 (15)C16—C17—C18—C19114.87 (11)
C10—C11—C12—C130.63 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C8/C13/C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg2i0.952.633.5729 (9)175
C7—H7A···Cg1i0.952.743.6851 (9)177
C17—H17A···Cg2ii0.992.583.4643 (9)149
C18—H18A···Cg1ii0.952.903.6553 (11)138
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H18
Mr246.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.1555 (2), 7.2678 (1), 19.7129 (3)
β (°) 119.096 (1)
V3)1396.55 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.73 × 0.38 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.953, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
20185, 5271, 3948
Rint0.028
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.05
No. of reflections5271
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C1/C6–C8/C13/C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg2i0.952.633.5729 (9)175
C7—H7A···Cg1i0.952.743.6851 (9)177
C17—H17A···Cg2ii0.992.583.4643 (9)149
C18—H18A···Cg1ii0.952.903.6553 (11)138
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: anatarajan@ksu.edu.sa.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

NA, AIM and UK gratefully acknowledge the Deanship of Scientific Research, College of Science, King Saud University (KSU) for funding the synthesis work under Research Grant RGP-VPP-026.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlarner, G., Davey, M. H., Chen, W.-D., Scott, J. C. & Miller, R. D. (1998). Adv. Mater. 10, 993–997.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. P. de, Gunaratne, H. Q. N. & Mc Coy, C. P. (1997). J. Am. Chem. Soc. 119, 7891–7892.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds