organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­bromo-2,2′-[octane-1,8-diylbis(nitrilo­methanylyl­­idene)]diphenol

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 27 July 2011; accepted 31 July 2011; online 6 August 2011)

The title compound, C22H26Br2N2O2, has a centre of inversion that is located in the middle of the octyl chain; the chain displays an extended zigzag conformation. A short intra­molecular O—H⋯N hydrogen bond occurs.

Related literature

For related structures, see: Elerman et al. (1998[Elerman, Y., Elmali, A., Kabak, M. & Svoboda, I. (1998). Acta Cryst. C54, 1701-1703.]); Ünaleroğlu & Hökelek (2002[Ünaleroğlu, C. & Hökelek, T. (2002). Spectrosc. Lett. 35, 317-326.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26Br2N2O2

  • Mr = 510.27

  • Triclinic, [P \overline 1]

  • a = 8.253 (3) Å

  • b = 8.363 (3) Å

  • c = 9.571 (3) Å

  • α = 64.431 (6)°

  • β = 65.839 (7)°

  • γ = 87.403 (7)°

  • V = 536.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.80 mm−1

  • T = 200 K

  • 0.24 × 0.23 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 1.000

  • 3910 measured reflections

  • 2557 independent reflections

  • 1445 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.176

  • S = 1.04

  • 2557 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (7) 1.86 (7) 2.581 (7) 144 (7)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C22H26Br2N2O2, can act as a dibasic tetradentate ligand, that is, the N2O2 donor atoms can coordinate one or two metal ions (Fig. 1). The compound crystallized in the triclinic space group P1, whereas the related Schiff base with ethylene group (C16H14Br2N2O2) (Ünaleroğlu & Hökelek, 2002) and propylene chain (C17H16Br2N2O2) (Elerman et al., 1998) crystallized in the monoclinic space groups P21/a and P21/n, respectively.

A centre of inversion is located at the centroid of the title molecule, and therefore the asymmetric unit contains one half of the formula unit and the two benzene rings are exactly parallel. The N1—C7/8 bond lengths and the C7—N1—C8 bond angle indicate that the imino N1 atom is sp2-hybridized [d(N1C7) = 1.290 (7) Å and d(N1—C8) = 1.459 (7) Å; <C7—N1—C8 = 118.0 (5)°]. The C8—C9—C10—C11 torsion angle of -77.2 (7)° displays the gauche conformation for the four atoms within the diiminooctylene chain, whereas the N1—C8—C9—C10 and C9—C10—C11—C11i (symmetry code i: 1 - x, 2 - y, -1 - z) atoms show the anti conformation with the torsion angle of 174.6 (5)° and -178.9 (6)°, respectively. The molecule reveals strong intramolecular O—H···N hydrogen bonding between the hydroxy O atom and the imino N atom with d(O···N) = 2.581 (7) Å forming a nearly planar six-membered ring (Fig. 2, Table 1).

Related literature top

For related structures, see: Elerman et al. (1998); Ünaleroğlu & Hökelek (2002).

Experimental top

1,8-Diaminooctane (1.0103 g, 7.003 mmol) and 5-bromosalicylaldehyde (2.8159 g, 14.008 mmol) in EtOH (20 ml) were stirred for 1 h at room temperature. After addition of pentane (30 ml) to the reaction mixture, the formed precipitate was separated by filtration, washed with ether, and dried at 50 °C, to give a yellow powder (2.8918 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The hydroxy H atom was located from Fourier difference maps and refined isotropically with Uiso(H) = 1.5Ueq(O) [O—H = 0.84 (7) Å].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are related to the reference atoms by the (1 - x, 2 - y, -1 - z) symmetry transformation.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
4-bromo-2-[({8-[(5-hydroxy-2- methylphenyl)methylideneamino]octyl}imino)methyl]phenol top
Crystal data top
C22H26Br2N2O2Z = 1
Mr = 510.27F(000) = 258
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.253 (3) ÅCell parameters from 1213 reflections
b = 8.363 (3) Åθ = 2.7–28.0°
c = 9.571 (3) ŵ = 3.80 mm1
α = 64.431 (6)°T = 200 K
β = 65.839 (7)°Block, yellow
γ = 87.403 (7)°0.24 × 0.23 × 0.10 mm
V = 536.7 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2557 independent reflections
Radiation source: fine-focus sealed tube1445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.701, Tmax = 1.000k = 1011
3910 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
2557 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C22H26Br2N2O2γ = 87.403 (7)°
Mr = 510.27V = 536.7 (3) Å3
Triclinic, P1Z = 1
a = 8.253 (3) ÅMo Kα radiation
b = 8.363 (3) ŵ = 3.80 mm1
c = 9.571 (3) ÅT = 200 K
α = 64.431 (6)°0.24 × 0.23 × 0.10 mm
β = 65.839 (7)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2557 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1445 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 1.000Rint = 0.046
3910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.69 e Å3
2557 reflectionsΔρmin = 0.67 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15293 (11)0.11794 (9)0.87746 (8)0.0532 (3)
O10.2341 (6)0.5706 (6)0.3510 (5)0.0402 (12)
H10.139 (10)0.622 (10)0.262 (9)0.060*
N10.1031 (7)0.6095 (6)0.1542 (6)0.0350 (12)
C10.0431 (8)0.3603 (8)0.4327 (7)0.0279 (13)
C20.2133 (8)0.4146 (8)0.4675 (7)0.0308 (13)
C30.3617 (8)0.3092 (8)0.6202 (7)0.0351 (15)
H30.47570.34770.64190.042*
C40.3464 (8)0.1514 (8)0.7395 (7)0.0334 (14)
H40.44880.07920.84270.040*
C50.1777 (9)0.0982 (8)0.7068 (7)0.0334 (14)
C60.0262 (8)0.1996 (7)0.5568 (7)0.0336 (15)
H60.08760.16110.53800.040*
C70.1174 (8)0.4680 (8)0.2747 (7)0.0295 (13)
H70.23220.43380.26090.035*
C80.2663 (9)0.7103 (8)0.0021 (7)0.0390 (16)
H8A0.37050.69600.02610.047*
H8B0.25600.83950.04950.047*
C90.2982 (9)0.6468 (8)0.1364 (6)0.0342 (15)
H9A0.18900.65000.15600.041*
H9B0.31980.52090.09290.041*
C100.4597 (8)0.7637 (7)0.3076 (6)0.0331 (15)
H10A0.55990.78590.28340.040*
H10B0.50020.69630.37610.040*
C110.4197 (8)0.9434 (7)0.4143 (6)0.0311 (14)
H11A0.38171.01200.34700.037*
H11B0.31800.92150.43680.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0653 (6)0.0326 (4)0.0349 (4)0.0100 (3)0.0125 (3)0.0017 (3)
O10.044 (3)0.034 (2)0.032 (2)0.016 (2)0.017 (2)0.0065 (19)
N10.037 (3)0.030 (3)0.024 (2)0.002 (2)0.008 (2)0.006 (2)
C10.022 (3)0.030 (3)0.024 (3)0.003 (2)0.005 (2)0.011 (2)
C20.031 (4)0.028 (3)0.024 (3)0.004 (3)0.008 (2)0.006 (2)
C30.024 (4)0.043 (4)0.032 (3)0.007 (3)0.006 (3)0.018 (3)
C40.036 (4)0.032 (3)0.022 (3)0.005 (3)0.004 (3)0.010 (2)
C50.042 (4)0.027 (3)0.021 (3)0.003 (3)0.011 (3)0.005 (2)
C60.036 (4)0.023 (3)0.029 (3)0.008 (3)0.010 (3)0.006 (2)
C70.026 (3)0.031 (3)0.023 (3)0.003 (3)0.001 (2)0.012 (2)
C80.041 (4)0.035 (3)0.021 (3)0.002 (3)0.005 (3)0.004 (3)
C90.038 (4)0.026 (3)0.022 (3)0.005 (3)0.008 (3)0.002 (2)
C100.035 (4)0.028 (3)0.019 (3)0.007 (3)0.004 (3)0.003 (2)
C110.027 (4)0.028 (3)0.022 (3)0.001 (3)0.003 (2)0.004 (2)
Geometric parameters (Å, º) top
Br1—C51.915 (6)C6—H60.9500
O1—C21.362 (7)C7—H70.9500
O1—H10.84 (7)C8—C91.518 (8)
N1—C71.290 (7)C8—H8A0.9900
N1—C81.459 (7)C8—H8B0.9900
C1—C61.406 (7)C9—C101.538 (7)
C1—C21.407 (8)C9—H9A0.9900
C1—C71.465 (7)C9—H9B0.9900
C2—C31.390 (8)C10—C111.522 (7)
C3—C41.365 (8)C10—H10A0.9900
C3—H30.9500C10—H10B0.9900
C4—C51.394 (8)C11—C11i1.530 (10)
C4—H40.9500C11—H11A0.9900
C5—C61.386 (8)C11—H11B0.9900
C2—O1—H1113 (5)N1—C8—H8A109.3
C7—N1—C8118.0 (5)C9—C8—H8A109.3
C6—C1—C2118.6 (5)N1—C8—H8B109.3
C6—C1—C7119.0 (5)C9—C8—H8B109.3
C2—C1—C7122.3 (5)H8A—C8—H8B108.0
O1—C2—C3119.5 (5)C8—C9—C10112.0 (5)
O1—C2—C1120.1 (5)C8—C9—H9A109.2
C3—C2—C1120.4 (5)C10—C9—H9A109.2
C4—C3—C2121.2 (6)C8—C9—H9B109.2
C4—C3—H3119.4C10—C9—H9B109.2
C2—C3—H3119.4H9A—C9—H9B107.9
C3—C4—C5118.7 (5)C11—C10—C9113.9 (5)
C3—C4—H4120.7C11—C10—H10A108.8
C5—C4—H4120.7C9—C10—H10A108.8
C6—C5—C4122.0 (5)C11—C10—H10B108.8
C6—C5—Br1118.9 (5)C9—C10—H10B108.8
C4—C5—Br1119.0 (4)H10A—C10—H10B107.7
C5—C6—C1119.1 (5)C10—C11—C11i113.3 (6)
C5—C6—H6120.4C10—C11—H11A108.9
C1—C6—H6120.4C11i—C11—H11A108.9
N1—C7—C1120.0 (5)C10—C11—H11B108.9
N1—C7—H7120.0C11i—C11—H11B108.9
C1—C7—H7120.0H11A—C11—H11B107.7
N1—C8—C9111.5 (5)
C6—C1—C2—O1179.2 (5)Br1—C5—C6—C1178.7 (4)
C7—C1—C2—O11.4 (8)C2—C1—C6—C51.6 (9)
C6—C1—C2—C31.3 (9)C7—C1—C6—C5179.5 (5)
C7—C1—C2—C3179.2 (6)C8—N1—C7—C1178.8 (5)
O1—C2—C3—C4179.5 (5)C6—C1—C7—N1175.4 (5)
C1—C2—C3—C40.0 (9)C2—C1—C7—N16.8 (8)
C2—C3—C4—C50.9 (9)C7—N1—C8—C991.7 (7)
C3—C4—C5—C60.6 (9)N1—C8—C9—C10174.6 (5)
C3—C4—C5—Br1177.4 (4)C8—C9—C10—C1177.2 (7)
C4—C5—C6—C10.7 (9)C9—C10—C11—C11i178.9 (6)
Symmetry code: (i) x+1, y+2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (7)1.86 (7)2.581 (7)144 (7)

Experimental details

Crystal data
Chemical formulaC22H26Br2N2O2
Mr510.27
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.253 (3), 8.363 (3), 9.571 (3)
α, β, γ (°)64.431 (6), 65.839 (7), 87.403 (7)
V3)536.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.80
Crystal size (mm)0.24 × 0.23 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.701, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3910, 2557, 1445
Rint0.046
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.176, 1.04
No. of reflections2557
No. of parameters130
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.67

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (7)1.86 (7)2.581 (7)144 (7)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElerman, Y., Elmali, A., Kabak, M. & Svoboda, I. (1998). Acta Cryst. C54, 1701–1703.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnaleroğlu, C. & Hökelek, T. (2002). Spectrosc. Lett. 35, 317–326.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds