organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-cis-Cyclo­hexane-1,2-dicarb­­oxy­lic acid–iso­quinoline (1/1)

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 29 July 2011; accepted 29 July 2011; online 6 August 2011)

In the crystal structure of the title mol­ecular adduct, C9H7N·C8H12O4, the two species are ­linked through a carb­oxy­lic acid–isoquinoline O—H⋯N hydrogen bond. These mol­ecular pairs then inter-associate through the second acid group of the cis-cyclo­hexane-1,2-dicarb­oxy­lic acid molecules, forming a classic centrosymmetric cyclic head-to-head carb­oxy­lic acid–carboxyl O—H⋯O hydrogen-bonding association [graph-set R22(8)], giving a zero-dimensional (cluster) structure, consisting of two of each species.

Related literature

For the structure of racemic cis-cyclo­hexane-1,2-dicarb­oxy­lic acid, see: Benedetti et al. (1970[Benedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512-516.]). For the structures of the racemic 1:1 ammonium and 2-amino­pyridinium salts of this acid, see: Smith & Wermuth (2011a[Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o174.],b[Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o1900.]). For the structure of the 1:1 adduct with 4,4′-bipyridine, see: Bhogala et al. (2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551-562.]). For hydrogen bonding in carb­oxy­lic acids and graph-set analysis, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N·C8H12O4

  • Mr = 301.33

  • Triclinic, [P \overline 1]

  • a = 6.2459 (3) Å

  • b = 11.4238 (6) Å

  • c = 11.9970 (6) Å

  • α = 64.082 (5)°

  • β = 77.793 (4)°

  • γ = 82.756 (4)°

  • V = 751.95 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.40 × 0.28 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.974, Tmax = 0.990

  • 9094 measured reflections

  • 2952 independent reflections

  • 2463 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.02

  • 2952 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O12i 0.96 (2) 1.68 (2) 2.6362 (14) 171.7 (18)
O22—H22⋯N2A 0.98 (2) 1.69 (2) 2.670 (2) 174.5 (19)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Although the structure of racemic cis-cyclohexane-1,2-dicarboxylic acid is known (Benedetti et al., 1970), together with its 1:1 adduct with 4,4'-bipyridine (Bhogala et al., 2005), there are few examples of salts of this cis-acid in the crystallographic literature. We have previously reported the structures of the anhydrous 1:1 ammonium salt (Smith & Wermuth, 2011a) and the 2-aminopyridinium salt (Smith & Wermuth, 2011b). Our 1:1 stoichiometric interaction of cyclohexane-1,2-dicarboxylic anhydride with isoquinoline in 50% ethanol–water solution gave minor crystals of the 1:1 adduct C8H12O4. C9H7N, formed in a residual oil, and the structure is reported here.

In the structure of the title adduct (Fig. 1), the two molecular species are interlinked through a carboxylic acid OH···Nisoquinoline hydrogen bond (Table 1). The molecule pairs then associate through the second acid group, forming a classic centrosymmetric cyclic head-to-head carboxylic acid–carboxyl O—H···O hydrogen-bonding interaction (Leiserowitz, 1976) [graph set R22(8) (Etter et al., 1990)] giving a zero-dimensional structure (Fig. 2).

Related literature top

For the structure of racemic cis-cyclohexane-1,2-dicarboxylic acid, see: Benedetti et al. (1970). For the structures of the racemic 1:1 ammonium and 2-aminopyridinium salts of this acid, see: Smith & Wermuth (2011a,b). For the structure of the 1:1 adduct with 4,4'-bipyridine, see: Bhogala et al. (2005). For hydrogen bonding in carboxylic acids and graph-set analysis, see: Leiserowitz (1976); Etter et al. (1990).

Experimental top

The title compound was synthesized by heating a solution of 1 mmol of cyclohexane-1,2-dicarboxylic anhydride and 1 mmol of isoquinoline in 50 ml of 1:1 ethanol–water under reflux for 10 min. After concentration to 30 ml the solution was allowed to evaporate at room temperature, giving a viscous oil which eventually gave minor colourless crystals (m.p. 439–441 K) from which a specimen was cleaved for the X-ray analysis.

Refinement top

The carboxylic acid H atoms were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(aromatic C), or 1.5Ueq(aliphatic C), using a riding-model approximation.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010; data reduction: CrysAlis PRO (Oxford Diffraction, 2010; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Atom numbering scheme for the two molecules in the title adduct. The inter-species hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The cyclic carboxylic acid hydrogen-bonding interactions between the acid–base molecular pairs, showing hydrogen bonds as dashed lines. Non-associative H atoms are omitted. For symmetry codes, see Table 1.
rac-cis-Cyclohexane-1,2-dicarboxylic acid–isoquinoline (1/1) top
Crystal data top
C9H7N·C8H12O4Z = 2
Mr = 301.33F(000) = 320
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Melting point = 439–441 K
a = 6.2459 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4238 (6) ÅCell parameters from 4474 reflections
c = 11.9970 (6) Åθ = 3.3–28.7°
α = 64.082 (5)°µ = 0.10 mm1
β = 77.793 (4)°T = 200 K
γ = 82.756 (4)°Block, colourless
V = 751.95 (7) Å30.40 × 0.28 × 0.20 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2952 independent reflections
Radiation source: Enhance (Mo) X-ray source2463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1414
Tmin = 0.974, Tmax = 0.990l = 1414
9094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.20P]
where P = (Fo2 + 2Fc2)/3
2952 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H7N·C8H12O4γ = 82.756 (4)°
Mr = 301.33V = 751.95 (7) Å3
Triclinic, P1Z = 2
a = 6.2459 (3) ÅMo Kα radiation
b = 11.4238 (6) ŵ = 0.10 mm1
c = 11.9970 (6) ÅT = 200 K
α = 64.082 (5)°0.40 × 0.28 × 0.20 mm
β = 77.793 (4)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2463 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.022
9094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
2952 reflectionsΔρmin = 0.18 e Å3
207 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.70832 (16)1.07685 (11)0.86864 (10)0.0405 (4)
O120.37261 (16)1.01881 (10)0.88359 (9)0.0371 (3)
O210.49576 (18)0.88369 (10)0.70388 (12)0.0476 (4)
O220.17799 (18)0.95466 (11)0.63667 (11)0.0468 (4)
C10.5909 (2)1.13098 (13)0.67706 (12)0.0272 (4)
C20.4067 (2)1.11424 (13)0.61893 (12)0.0272 (4)
C30.1978 (2)1.19528 (13)0.63551 (13)0.0298 (4)
C40.2466 (2)1.33837 (14)0.58905 (14)0.0338 (4)
C50.4233 (2)1.35310 (13)0.65186 (13)0.0314 (4)
C60.6329 (2)1.27692 (13)0.62795 (13)0.0309 (4)
C110.5440 (2)1.06979 (12)0.81900 (13)0.0271 (4)
C210.3661 (2)0.97179 (14)0.65964 (13)0.0308 (4)
N2A0.1006 (2)0.70353 (12)0.71708 (12)0.0366 (4)
C1A0.2157 (2)0.61693 (14)0.79877 (14)0.0343 (5)
C3A0.0816 (3)0.66352 (15)0.69941 (14)0.0375 (5)
C4A0.1451 (2)0.53805 (15)0.76063 (14)0.0357 (5)
C5A0.0839 (3)0.31194 (15)0.92123 (15)0.0390 (5)
C6A0.0362 (3)0.22778 (16)1.00839 (16)0.0434 (5)
C7A0.2218 (3)0.26877 (16)1.02899 (15)0.0421 (5)
C8A0.2845 (2)0.39437 (15)0.96060 (14)0.0365 (5)
C9A0.1621 (2)0.48468 (14)0.87014 (13)0.0304 (4)
C10A0.0255 (2)0.44335 (14)0.84987 (13)0.0303 (4)
H10.725001.088800.649900.0410*
H20.461401.149500.528100.0410*
H110.669 (3)1.037 (2)0.959 (2)0.080 (7)*
H220.158 (3)0.862 (2)0.663 (2)0.078 (6)*
H310.094201.188400.589000.0450*
H320.131001.160900.723800.0450*
H410.294901.376000.498500.0510*
H420.113701.385500.607300.0510*
H510.370801.321500.741800.0470*
H520.454101.444500.619000.0470*
H610.742301.286700.669600.0460*
H620.689901.312200.538300.0460*
H1A0.340100.644200.810400.0410*
H3A0.165800.724600.643200.0450*
H4A0.267700.514500.743700.0430*
H5A0.205300.282900.908500.0470*
H6A0.004900.141901.055100.0520*
H7A0.301700.210201.089300.0510*
H8A0.408500.420700.973500.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0362 (6)0.0521 (7)0.0326 (6)0.0141 (5)0.0111 (5)0.0120 (5)
O120.0331 (6)0.0448 (6)0.0305 (5)0.0113 (5)0.0061 (4)0.0105 (5)
O210.0450 (6)0.0329 (6)0.0715 (8)0.0055 (5)0.0211 (6)0.0251 (6)
O220.0487 (7)0.0313 (6)0.0680 (8)0.0050 (5)0.0269 (6)0.0197 (6)
C10.0240 (7)0.0283 (7)0.0305 (7)0.0012 (5)0.0032 (5)0.0141 (6)
C20.0303 (7)0.0285 (7)0.0247 (7)0.0036 (6)0.0036 (5)0.0128 (6)
C30.0272 (7)0.0299 (7)0.0326 (7)0.0030 (6)0.0061 (6)0.0126 (6)
C40.0332 (7)0.0284 (7)0.0380 (8)0.0008 (6)0.0084 (6)0.0116 (6)
C50.0372 (8)0.0241 (7)0.0319 (7)0.0056 (6)0.0045 (6)0.0106 (6)
C60.0300 (7)0.0322 (8)0.0298 (7)0.0085 (6)0.0029 (6)0.0116 (6)
C110.0275 (7)0.0228 (7)0.0334 (7)0.0003 (5)0.0081 (6)0.0131 (6)
C210.0345 (7)0.0326 (8)0.0300 (7)0.0022 (6)0.0053 (6)0.0174 (6)
N2A0.0422 (7)0.0331 (7)0.0390 (7)0.0029 (5)0.0073 (6)0.0189 (6)
C1A0.0326 (8)0.0379 (8)0.0420 (8)0.0036 (6)0.0051 (6)0.0256 (7)
C3A0.0438 (9)0.0391 (8)0.0354 (8)0.0015 (7)0.0132 (7)0.0190 (7)
C4A0.0350 (8)0.0431 (9)0.0393 (8)0.0030 (6)0.0101 (6)0.0249 (7)
C5A0.0368 (8)0.0376 (8)0.0493 (9)0.0062 (6)0.0046 (7)0.0247 (8)
C6A0.0498 (10)0.0316 (8)0.0468 (9)0.0026 (7)0.0025 (8)0.0172 (7)
C7A0.0483 (9)0.0386 (9)0.0417 (9)0.0091 (7)0.0118 (7)0.0201 (7)
C8A0.0347 (8)0.0414 (9)0.0429 (9)0.0045 (6)0.0108 (7)0.0262 (7)
C9A0.0308 (7)0.0347 (8)0.0333 (7)0.0003 (6)0.0037 (6)0.0225 (6)
C10A0.0312 (7)0.0345 (8)0.0330 (7)0.0015 (6)0.0025 (6)0.0226 (6)
Geometric parameters (Å, º) top
O11—C111.3175 (17)C4—H410.9700
O12—C111.2237 (17)C5—H510.9700
O21—C211.2082 (19)C5—H520.9700
O22—C211.3178 (18)C6—H620.9700
O11—H110.96 (2)C6—H610.9700
O22—H220.98 (2)C1A—C9A1.415 (2)
N2A—C3A1.366 (2)C3A—C4A1.361 (2)
N2A—C1A1.314 (2)C4A—C10A1.413 (2)
C1—C21.5356 (19)C5A—C6A1.361 (3)
C1—C111.5081 (19)C5A—C10A1.415 (2)
C1—C61.543 (2)C6A—C7A1.408 (3)
C2—C211.519 (2)C7A—C8A1.365 (3)
C2—C31.532 (2)C8A—C9A1.414 (2)
C3—C41.527 (2)C9A—C10A1.420 (2)
C4—C51.5243 (19)C1A—H1A0.9300
C5—C61.525 (2)C3A—H3A0.9300
C1—H10.9800C4A—H4A0.9300
C2—H20.9800C5A—H5A0.9300
C3—H310.9700C6A—H6A0.9300
C3—H320.9700C7A—H7A0.9300
C4—H420.9700C8A—H8A0.9300
C11—O11—H11109.3 (12)C6—C5—H51110.00
C21—O22—H22110.7 (12)C4—C5—H51109.00
C1A—N2A—C3A118.09 (14)H51—C5—H52108.00
C2—C1—C6110.04 (11)C6—C5—H52110.00
C6—C1—C11109.54 (12)C1—C6—H61109.00
C2—C1—C11113.10 (11)C1—C6—H62109.00
C1—C2—C21112.12 (11)C5—C6—H62109.00
C3—C2—C21113.55 (11)H61—C6—H62108.00
C1—C2—C3113.23 (12)C5—C6—H61109.00
C2—C3—C4111.43 (11)N2A—C1A—C9A124.04 (13)
C3—C4—C5111.18 (12)N2A—C3A—C4A122.78 (15)
C4—C5—C6110.73 (13)C3A—C4A—C10A120.23 (14)
C1—C6—C5111.33 (11)C6A—C5A—C10A120.47 (17)
O11—C11—C1112.94 (11)C5A—C6A—C7A121.01 (17)
O12—C11—C1124.77 (12)C6A—C7A—C8A120.05 (16)
O11—C11—O12122.29 (13)C7A—C8A—C9A120.39 (14)
O22—C21—C2112.83 (13)C1A—C9A—C8A122.95 (13)
O21—C21—C2123.78 (13)C1A—C9A—C10A117.55 (13)
O21—C21—O22123.33 (16)C8A—C9A—C10A119.49 (14)
C2—C1—H1108.00C4A—C10A—C5A124.13 (14)
C11—C1—H1108.00C4A—C10A—C9A117.27 (14)
C6—C1—H1108.00C5A—C10A—C9A118.58 (14)
C1—C2—H2106.00N2A—C1A—H1A118.00
C21—C2—H2106.00C9A—C1A—H1A118.00
C3—C2—H2106.00N2A—C3A—H3A119.00
C2—C3—H31109.00C4A—C3A—H3A119.00
C2—C3—H32109.00C3A—C4A—H4A120.00
C4—C3—H32109.00C10A—C4A—H4A120.00
H31—C3—H32108.00C6A—C5A—H5A120.00
C4—C3—H31109.00C10A—C5A—H5A120.00
C3—C4—H42109.00C5A—C6A—H6A120.00
C5—C4—H41109.00C7A—C6A—H6A119.00
C5—C4—H42109.00C6A—C7A—H7A120.00
H41—C4—H42108.00C8A—C7A—H7A120.00
C3—C4—H41109.00C7A—C8A—H8A120.00
C4—C5—H52110.00C9A—C8A—H8A120.00
C3A—N2A—C1A—C9A0.3 (2)C3—C4—C5—C657.52 (15)
C1A—N2A—C3A—C4A1.4 (2)C4—C5—C6—C158.31 (15)
C6—C1—C2—C352.58 (14)N2A—C1A—C9A—C8A177.79 (15)
C11—C1—C2—C2159.79 (16)N2A—C1A—C9A—C10A1.2 (2)
C6—C1—C2—C21177.35 (11)N2A—C3A—C4A—C10A2.1 (3)
C11—C1—C2—C370.29 (16)C3A—C4A—C10A—C5A177.60 (16)
C2—C1—C11—O11175.82 (13)C3A—C4A—C10A—C9A1.0 (2)
C2—C1—C11—O124.5 (2)C10A—C5A—C6A—C7A0.5 (3)
C6—C1—C11—O1161.03 (16)C6A—C5A—C10A—C4A177.82 (16)
C6—C1—C11—O12118.67 (16)C6A—C5A—C10A—C9A0.8 (2)
C11—C1—C6—C569.79 (14)C5A—C6A—C7A—C8A0.4 (3)
C2—C1—C6—C555.15 (14)C6A—C7A—C8A—C9A1.0 (3)
C21—C2—C3—C4178.03 (11)C7A—C8A—C9A—C1A178.30 (16)
C1—C2—C3—C452.62 (15)C7A—C8A—C9A—C10A0.7 (2)
C3—C2—C21—O21148.08 (14)C1A—C9A—C10A—C4A0.5 (2)
C3—C2—C21—O2234.64 (16)C1A—C9A—C10A—C5A179.24 (14)
C1—C2—C21—O2118.2 (2)C8A—C9A—C10A—C4A178.53 (14)
C1—C2—C21—O22164.55 (12)C8A—C9A—C10A—C5A0.2 (2)
C2—C3—C4—C554.27 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.96 (2)1.68 (2)2.6362 (14)171.7 (18)
O22—H22···N2A0.98 (2)1.69 (2)2.670 (2)174.5 (19)
C3—H32···O120.972.543.1126 (17)117
C6—H61···O110.972.532.8841 (18)101
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC9H7N·C8H12O4
Mr301.33
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.2459 (3), 11.4238 (6), 11.9970 (6)
α, β, γ (°)64.082 (5), 77.793 (4), 82.756 (4)
V3)751.95 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.28 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.974, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9094, 2952, 2463
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.02
No. of reflections2952
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction, 2010, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O12i0.96 (2)1.68 (2)2.6362 (14)171.7 (18)
O22—H22···N2A0.98 (2)1.69 (2)2.670 (2)174.5 (19)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBenedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). CrystEngComm, 7, 551–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o174.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, o1900.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds