organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2212-o2213

3,4-Di­bromo-2,5-bis­­[(dieth­­oxy­phosphor­yl)meth­yl]-1-phenyl­sulfonyl-1H-pyrrole

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 5 July 2011; accepted 27 July 2011; online 2 August 2011)

In the title compound, C20H29Br2NO8P2S, the pyrrole ring is essentially planar, with a maximum deviation of 0.013 (3) Å for a C atom. The pyrrole ring is almost orthogonal to the sulfonyl-bound phenyl ring, with a dihedral angle 88.5 (2)°. Both P atoms exhibit distorted tetra­hedral configurations with O—P—O angles widened and O—P—C angles narrowed from the ideal tetra­hedral value. In the crystal, mol­ecules are linked into centrosymmetric dimers via C—H⋯O inter­actions, resulting in R22(10) graph-set motifs which are further consolidated by R22(13) graph-set ring motifs via C—H⋯O inter­actions, further resulting in chains of mol­ecules running parallel to the c axis; a phosphono O atom is involved in bifurcated hydrogen bonding. All the eth­oxy groups are disordered over two positions each with unequal site-occupancy factors.

Related literature

For a related structure, see: Seshadri et al. (2009[Seshadri, P. R., Balakrishnan, B., Ilangovan, K., Sureshbabu, R. & Mohanakrishnan, A. K. (2009). Acta Cryst. E65, o531.]). For applications of pyrrole derivatives, see: Faulkner (2002[Faulkner, D. J. (2002). Nat. Prod. Rep. 18, 1-48.]); Banwell et al. (2006[Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.]); Fabio et al. (2007[Fabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254-2259.]). For comparison of mol­ecular dimensions, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29Br2NO8P2S

  • Mr = 665.26

  • Monoclinic, P 21 /n

  • a = 9.6524 (2) Å

  • b = 17.5137 (5) Å

  • c = 15.8965 (4) Å

  • β = 95.506 (1)°

  • V = 2674.89 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.440, Tmax = 0.561

  • 34672 measured reflections

  • 8138 independent reflections

  • 4819 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.00

  • 8138 reflections

  • 355 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O6i 0.97 2.34 3.272 (4) 162
C16—H16⋯O3ii 0.93 2.44 3.162 (5) 134
C11—H11B⋯O6iii 0.97 2.62 3.592 (19) 179
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. A.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. A.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrole derivatives are known to occur in many marine organisms (Faulkner, 2002). Pyrrole and its derivatives have shown to possess biological activities such as antibacterial, antiallergic, antitumor (Banwell, et al., 2006), and some of them are well known as metabotropic receptor antagonists (Fabio, et al.., 2007).

In the title compound (Fig. 1), the pyrrole ring is essentially planar with a maximum deviation of 0.013 (3)Å for atom C9. The methyl carbon atoms C5 and C10 and S1 atom lie -0.078 (3), 0.034 (3) and 0.5396 (8) Å, respectively, from the pyrrole plane. The pyrrole ring is almost orthogonal to the sulfonyl bound phenyl ring, with a dihedral angle 88.5 (2)°.

Atoms P1 and P2 have distorted tetrahedral configurations. The widening of angles O3—P1—O4 [114.4 (13)°] and O6—P2—O7 [120.0 (7)°] and narrowing of angles O5—P1—C5 [95.0 (9)°] and O8—P2—C10 [107.4 (9)°] from the ideal tetrahedral value are attributed to the Thrope-Ingold effect (Bassindale, 1984). The ethoxy side chains were disordered with un-equal site occupancy factors.

The crystal packing is stabilized by C—H···O intermolecular interactions. The molecules are linked into centrosymmetric dimers via C11—H11B···O6 interactions resulting in R22(10) graph set motif (Bernstein, et al., 1995). The dimers are further consolidated by R22(13) graph-set ring motif via C5—H5A···O6 and C16—H16···O3 interactions resulting in chains of molecules running parallel to the c-axis (Tab. 1 & Fig. 2); the phosphono O atom (O6) is involved in bifurcated hydrogen bonding.

Related literature top

For a related structure, see: Seshadri et al. (2009). For applications of pyrrole derivatives, see: Faulkner et al. (2002); Banwell et al. (2006); Fabio et al. (2007). For comparison of molecular dimensions, see: Bassindale (1984). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 3,4-dibromo-2,5-bis(bromomethyl)-1-phenylsulfonyl- pyrrole (1 mmol) and triethylphosphite (2.5 mmol) in dry dichloromethane at room temperature, ZnBr2 (0.4 mmol) was added and allowed to stir for 4 h under N2. After consumption of the 3,4-dibromo-2,5-bis (bromomethyl)-1-phenylsulfonyl-pyrrole (monitored by TLC) volatile components were removed under vacuo. The residual mass was poured over crushed ice containing conc. HCl. The precipitated solid was filtered, washed with water and dried to give crude phosphonate ester which was crystallized from CHCl3.

Refinement top

The ethoxy groups were disordered over positions C4/C3/O4:C4'/C3'/O4', C1/C2/O5:C1'/C2'/O5', C12/C11/O7:C12'/C11'/O7' and C14/C13/O8:C14'/C13'/O8' with site occupancy factors 0.411 (10):0.589 (10), 0.121 (5):0.879 (5), 0.609 (13):0.391 (13) and 0.719 (8):0.281 (8), respectively. The distance P–O and P–O' were restrained to be equal with an esd value 0.01. The C–C and O–C bond lengths were restrained at C–C = 1.54 (1) and O–C = 1.45 (1) Å. The anisotropic thermal parameter of the atom pairs were treated equally in the refinement. All the hydrogen atoms of the compound were fixed geometrically and allowed to ride on their parent atoms with C–H distance in the range 0.93 to 0.97Å and with Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for all the other groups.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing only the atoms representing major fractions of the disordered ethoxy groups, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis, showing the hydrogen bonds resulting in R22(10) and R22(13) graph-set ring motifs; H-atoms not involved in H-bonds have been excluded for clarity.
diethyl {[1-(benzenesulfonyl)-3,4-dibromo-5- [(diethoxyphosphoryl)methyl]-1H-pyrrol-2-yl]methyl}phosphonate top
Crystal data top
C20H29Br2NO8P2SF(000) = 1344
Mr = 665.26Dx = 1.652 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8138 reflections
a = 9.6524 (2) Åθ = 2.3–30.5°
b = 17.5137 (5) ŵ = 3.27 mm1
c = 15.8965 (4) ÅT = 293 K
β = 95.506 (1)°Block, colourless
V = 2674.89 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8138 independent reflections
Radiation source: fine-focus sealed tube4819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.440, Tmax = 0.561k = 2424
34672 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0558P)2 + 1.4803P]
where P = (Fo2 + 2Fc2)/3
8138 reflections(Δ/σ)max = 0.002
355 parametersΔρmax = 0.79 e Å3
20 restraintsΔρmin = 0.76 e Å3
Crystal data top
C20H29Br2NO8P2SV = 2674.89 (12) Å3
Mr = 665.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6524 (2) ŵ = 3.27 mm1
b = 17.5137 (5) ÅT = 293 K
c = 15.8965 (4) Å0.30 × 0.25 × 0.20 mm
β = 95.506 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8138 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4819 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.561Rint = 0.039
34672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04520 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 0.79 e Å3
8138 reflectionsΔρmin = 0.76 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.0820 (3)0.13111 (17)0.74030 (19)0.0400 (7)
H5A0.09170.09340.69650.048*
H5B0.00430.15850.72570.048*
C60.2004 (3)0.18591 (16)0.74214 (17)0.0335 (6)
C70.3347 (3)0.16883 (16)0.73313 (17)0.0357 (6)
C80.4160 (3)0.23518 (17)0.74534 (18)0.0359 (6)
C90.3326 (3)0.29465 (16)0.76079 (17)0.0337 (6)
C100.3748 (3)0.37604 (17)0.77607 (18)0.0372 (6)
H10A0.29750.40820.75460.045*
H10B0.45140.38690.74260.045*
C150.0367 (3)0.33865 (18)0.6355 (2)0.0452 (7)
C160.1028 (4)0.4005 (2)0.6062 (2)0.0591 (9)
H160.15800.43160.64320.071*
C170.0868 (5)0.4165 (3)0.5209 (3)0.0812 (13)
H170.13310.45800.50000.097*
C180.0039 (7)0.3722 (3)0.4671 (3)0.0974 (18)
H180.00630.38350.40970.117*
C190.0652 (7)0.3108 (3)0.4970 (3)0.106 (2)
H190.12280.28110.45990.127*
C200.0490 (5)0.2931 (2)0.5821 (3)0.0767 (13)
H200.09480.25150.60290.092*
N10.1966 (2)0.26458 (13)0.76122 (15)0.0329 (5)
O10.0609 (2)0.27254 (14)0.76316 (18)0.0588 (6)
O20.0806 (2)0.38764 (13)0.78932 (14)0.0492 (5)
O30.2002 (3)0.04497 (19)0.8743 (2)0.0855 (9)
O60.4468 (3)0.48635 (13)0.89029 (15)0.0642 (7)
P10.07187 (10)0.08262 (5)0.83967 (6)0.0522 (2)
P20.42646 (9)0.40435 (5)0.88263 (5)0.0430 (2)
S10.05156 (8)0.31902 (4)0.74386 (5)0.03984 (18)
Br10.40069 (4)0.071636 (19)0.71196 (2)0.05379 (12)
Br20.60841 (3)0.23995 (2)0.74283 (3)0.05732 (12)
O50.0926 (10)0.0770 (13)0.8306 (16)0.0668 (9)0.121 (5)
C10.248 (5)0.029 (3)0.741 (3)0.124 (3)0.121 (5)
H1A0.34810.02840.73440.186*0.121 (5)
H1B0.21610.08090.74690.186*0.121 (5)
H1C0.21340.00660.69210.186*0.121 (5)
C20.195 (5)0.017 (3)0.820 (4)0.098 (2)0.121 (5)
H2A0.27850.03860.84030.117*0.121 (5)
H2B0.16310.02160.86160.117*0.121 (5)
O5'0.0402 (3)0.01914 (17)0.8237 (2)0.0668 (9)0.879 (5)
C1'0.2651 (6)0.0326 (4)0.8086 (7)0.124 (3)0.879 (5)
H1'10.22060.07690.78800.186*0.879 (5)
H1'20.35630.02720.77940.186*0.879 (5)
H1'30.27270.03810.86810.186*0.879 (5)
C2'0.1804 (6)0.0369 (4)0.7937 (5)0.098 (2)0.879 (5)
H2'10.18710.04910.73390.117*0.879 (5)
H2'20.21310.08030.82400.117*0.879 (5)
O40.009 (5)0.1382 (13)0.9016 (12)0.078 (4)0.411 (10)
C40.007 (3)0.1903 (13)1.0324 (17)0.173 (7)0.411 (10)
H4A0.08660.20901.04410.260*0.411 (10)
H4B0.04820.18421.08450.260*0.411 (10)
H4C0.06030.22600.99700.260*0.411 (10)
C30.004 (2)0.1141 (11)0.9879 (11)0.125 (4)0.411 (10)
H3A0.07490.08351.01010.150*0.411 (10)
H3B0.08920.08570.99230.150*0.411 (10)
O4'0.028 (3)0.1505 (8)0.8938 (8)0.078 (4)0.589 (10)
C3'0.0613 (13)0.1538 (9)0.9850 (7)0.125 (4)0.589 (10)
H3'10.10690.20190.99990.150*0.589 (10)
H3'20.12570.11301.00250.150*0.589 (10)
C4'0.0661 (17)0.1464 (14)1.0318 (11)0.173 (7)0.589 (10)
H4'10.12020.10351.01010.260*0.589 (10)
H4'20.12080.19211.02420.260*0.589 (10)
H4'30.03860.13891.09080.260*0.589 (10)
O80.318 (2)0.3710 (6)0.9390 (13)0.0637 (10)0.719 (8)
C130.2084 (9)0.4151 (5)0.9727 (4)0.078 (2)0.719 (8)
H13A0.11780.39620.95030.094*0.719 (8)
H13B0.21550.46840.95690.094*0.719 (8)
C140.2251 (11)0.4074 (6)1.0654 (4)0.115 (3)0.719 (8)
H14A0.21370.35481.08040.173*0.719 (8)
H14B0.15610.43781.08940.173*0.719 (8)
H14C0.31620.42441.08680.173*0.719 (8)
O8'0.322 (6)0.3676 (15)0.940 (3)0.0637 (10)0.281 (8)
C13'0.278 (2)0.4208 (13)1.0017 (14)0.078 (2)0.281 (8)
H13C0.25890.47090.97720.094*0.281 (8)
H13D0.34670.42541.04990.094*0.281 (8)
C14'0.145 (2)0.3836 (16)1.0264 (14)0.115 (3)0.281 (8)
H14D0.08020.42241.03920.173*0.281 (8)
H14E0.16680.35191.07520.173*0.281 (8)
H14F0.10480.35290.98030.173*0.281 (8)
O70.5503 (12)0.3488 (9)0.9077 (17)0.054 (3)0.609 (13)
C120.7959 (11)0.3707 (10)0.9575 (9)0.120 (4)0.609 (13)
H12A0.83020.32490.93350.180*0.609 (13)
H12B0.85570.38451.00690.180*0.609 (13)
H12C0.79430.41120.91680.180*0.609 (13)
C110.6496 (16)0.3569 (8)0.9817 (15)0.079 (3)0.609 (13)
H11A0.64880.31101.01580.095*0.609 (13)
H11B0.62210.39941.01560.095*0.609 (13)
O7'0.569 (2)0.3624 (16)0.900 (3)0.054 (3)0.391 (13)
C11'0.648 (3)0.3788 (13)0.980 (2)0.079 (3)0.391 (13)
H11C0.59060.37501.02690.095*0.391 (13)
H11D0.68890.42950.98030.095*0.391 (13)
C12'0.7607 (19)0.3174 (15)0.9864 (14)0.120 (4)0.391 (13)
H12D0.72180.27001.00310.180*0.391 (13)
H12E0.83520.33231.02750.180*0.391 (13)
H12F0.79590.31140.93230.180*0.391 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0387 (16)0.0307 (15)0.0499 (17)0.0039 (12)0.0003 (13)0.0013 (13)
C60.0332 (14)0.0281 (14)0.0393 (15)0.0000 (11)0.0035 (11)0.0014 (11)
C70.0373 (15)0.0300 (14)0.0400 (15)0.0027 (12)0.0052 (12)0.0054 (12)
C80.0257 (13)0.0400 (16)0.0430 (15)0.0003 (12)0.0082 (11)0.0025 (13)
C90.0332 (14)0.0296 (14)0.0384 (15)0.0031 (12)0.0031 (11)0.0008 (11)
C100.0357 (15)0.0328 (15)0.0423 (16)0.0052 (12)0.0002 (12)0.0007 (12)
C150.0425 (17)0.0370 (17)0.0534 (18)0.0123 (14)0.0096 (14)0.0056 (14)
C160.059 (2)0.061 (2)0.055 (2)0.0022 (19)0.0081 (17)0.0075 (18)
C170.090 (3)0.087 (3)0.063 (3)0.004 (3)0.006 (2)0.017 (2)
C180.151 (5)0.077 (3)0.057 (3)0.033 (4)0.025 (3)0.001 (2)
C190.158 (6)0.071 (3)0.075 (3)0.020 (3)0.058 (3)0.020 (3)
C200.094 (3)0.042 (2)0.086 (3)0.001 (2)0.029 (2)0.006 (2)
N10.0310 (11)0.0248 (11)0.0426 (13)0.0023 (9)0.0013 (10)0.0015 (10)
O10.0335 (11)0.0501 (14)0.0946 (19)0.0041 (10)0.0150 (12)0.0046 (13)
O20.0519 (13)0.0376 (12)0.0579 (14)0.0112 (10)0.0040 (11)0.0096 (10)
O30.079 (2)0.086 (2)0.091 (2)0.0235 (17)0.0097 (17)0.0353 (18)
O60.098 (2)0.0348 (13)0.0568 (14)0.0080 (13)0.0081 (14)0.0076 (11)
P10.0545 (5)0.0449 (5)0.0587 (5)0.0079 (4)0.0124 (4)0.0034 (4)
P20.0529 (5)0.0307 (4)0.0442 (4)0.0004 (4)0.0008 (4)0.0029 (3)
S10.0312 (4)0.0324 (4)0.0559 (4)0.0053 (3)0.0039 (3)0.0020 (3)
Br10.0543 (2)0.03644 (18)0.0716 (2)0.01011 (15)0.01144 (17)0.01260 (15)
Br20.03251 (17)0.0609 (2)0.0805 (3)0.00089 (15)0.01528 (16)0.01378 (18)
O50.0502 (17)0.0469 (18)0.105 (2)0.0058 (13)0.0133 (16)0.0164 (16)
C10.058 (3)0.078 (4)0.233 (10)0.026 (3)0.005 (5)0.030 (6)
C20.052 (3)0.081 (4)0.158 (7)0.003 (3)0.001 (4)0.042 (4)
O5'0.0502 (17)0.0469 (18)0.105 (2)0.0058 (13)0.0133 (16)0.0164 (16)
C1'0.058 (3)0.078 (4)0.233 (10)0.026 (3)0.005 (5)0.030 (6)
C2'0.052 (3)0.081 (4)0.158 (7)0.003 (3)0.001 (4)0.042 (4)
O40.118 (8)0.067 (5)0.053 (3)0.015 (6)0.031 (3)0.006 (3)
C40.176 (17)0.26 (2)0.088 (5)0.056 (11)0.057 (9)0.045 (12)
C30.134 (11)0.149 (13)0.093 (5)0.023 (7)0.014 (7)0.046 (7)
O4'0.118 (8)0.067 (5)0.053 (3)0.015 (6)0.031 (3)0.006 (3)
C3'0.134 (11)0.149 (13)0.093 (5)0.023 (7)0.014 (7)0.046 (7)
C4'0.176 (17)0.26 (2)0.088 (5)0.056 (11)0.057 (9)0.045 (12)
O80.083 (2)0.0512 (18)0.0605 (15)0.0023 (17)0.0247 (16)0.0014 (15)
C130.075 (5)0.096 (4)0.066 (4)0.012 (5)0.020 (3)0.005 (4)
C140.125 (8)0.159 (8)0.065 (5)0.005 (6)0.026 (4)0.001 (5)
O8'0.083 (2)0.0512 (18)0.0605 (15)0.0023 (17)0.0247 (16)0.0014 (15)
C13'0.075 (5)0.096 (4)0.066 (4)0.012 (5)0.020 (3)0.005 (4)
C14'0.125 (8)0.159 (8)0.065 (5)0.005 (6)0.026 (4)0.001 (5)
O70.053 (3)0.047 (6)0.057 (4)0.001 (4)0.015 (4)0.008 (4)
C120.067 (6)0.157 (13)0.130 (9)0.014 (7)0.024 (5)0.033 (9)
C110.089 (4)0.058 (8)0.084 (3)0.011 (5)0.028 (3)0.021 (7)
O7'0.053 (3)0.047 (6)0.057 (4)0.001 (4)0.015 (4)0.008 (4)
C11'0.089 (4)0.058 (8)0.084 (3)0.011 (5)0.028 (3)0.021 (7)
C12'0.067 (6)0.157 (13)0.130 (9)0.014 (7)0.024 (5)0.033 (9)
Geometric parameters (Å, º) top
C5—C61.491 (4)C1'—C2'1.497 (6)
C5—P11.804 (3)C1'—H1'10.9600
C5—H5A0.9700C1'—H1'20.9600
C5—H5B0.9700C1'—H1'30.9600
C6—C71.351 (4)C2'—H2'10.9700
C6—N11.412 (3)C2'—H2'20.9700
C7—C81.405 (4)O4—C31.453 (10)
C7—Br11.860 (3)C4—C31.511 (10)
C8—C91.353 (4)C4—H4A0.9600
C8—Br21.863 (3)C4—H4B0.9600
C9—N11.415 (4)C4—H4C0.9600
C9—C101.496 (4)C3—H3A0.9700
C10—P21.789 (3)C3—H3B0.9700
C10—H10A0.9700O4'—C3'1.456 (10)
C10—H10B0.9700C3'—C4'1.502 (9)
C15—C161.363 (5)C3'—H3'10.9700
C15—C201.381 (5)C3'—H3'20.9700
C15—S11.748 (3)C4'—H4'10.9600
C16—C171.379 (6)C4'—H4'20.9600
C16—H160.9300C4'—H4'30.9600
C17—C181.357 (7)O8—C131.451 (10)
C17—H170.9300C13—C141.473 (7)
C18—C191.374 (8)C13—H13A0.9700
C18—H180.9300C13—H13B0.9700
C19—C201.382 (7)C14—H14A0.9600
C19—H190.9300C14—H14B0.9600
C20—H200.9300C14—H14C0.9600
N1—S11.694 (2)O8'—C13'1.450 (10)
O1—S11.414 (3)C13'—C14'1.519 (10)
O2—S11.416 (2)C13'—H13C0.9700
O3—P11.463 (3)C13'—H13D0.9700
O6—P21.453 (2)C14'—H14D0.9600
P1—O41.548 (7)C14'—H14E0.9600
P1—O4'1.549 (6)C14'—H14F0.9600
P1—O5'1.555 (3)O7—C111.452 (7)
P1—O51.583 (10)C12—C111.518 (10)
P2—O8'1.558 (8)C12—H12A0.9600
P2—O81.558 (4)C12—H12B0.9600
P2—O7'1.561 (7)C12—H12C0.9600
P2—O71.563 (5)C11—H11A0.9700
O5—C21.447 (10)C11—H11B0.9700
O5—O41.78 (4)O7'—C11'1.448 (9)
C1—C21.539 (10)C11'—C12'1.524 (10)
C1—H1A0.9600C11'—H11C0.9700
C1—H1B0.9600C11'—H11D0.9700
C1—H1C0.9600C12'—H12D0.9600
C2—H2A0.9700C12'—H12E0.9600
C2—H2B0.9700C12'—H12F0.9600
O5'—C2'1.425 (6)
C6—C5—P1113.1 (2)O5—C2—H2A104.8
C6—C5—H5A109.0C1—C2—H2A104.8
P1—C5—H5A109.0O5—C2—H2B104.8
C6—C5—H5B109.0C1—C2—H2B104.8
P1—C5—H5B109.0H2A—C2—H2B105.8
H5A—C5—H5B107.8C2'—O5'—P1121.5 (3)
C7—C6—N1106.5 (2)C2'—C1'—H1'1109.5
C7—C6—C5126.7 (3)C2'—C1'—H1'2109.5
N1—C6—C5126.6 (2)H1'1—C1'—H1'2109.5
C6—C7—C8109.3 (2)C2'—C1'—H1'3109.5
C6—C7—Br1124.8 (2)H1'1—C1'—H1'3109.5
C8—C7—Br1125.8 (2)H1'2—C1'—H1'3109.5
C9—C8—C7109.1 (2)O5'—C2'—C1'106.6 (5)
C9—C8—Br2125.5 (2)O5'—C2'—H2'1110.4
C7—C8—Br2125.4 (2)C1'—C2'—H2'1110.4
C8—C9—N1106.4 (2)O5'—C2'—H2'2110.4
C8—C9—C10127.3 (3)C1'—C2'—H2'2110.4
N1—C9—C10126.3 (3)H2'1—C2'—H2'2108.6
C9—C10—P2117.7 (2)C3—O4—P1119.6 (13)
C9—C10—H10A107.9C3—O4—O5109 (2)
P2—C10—H10A107.9P1—O4—O556.3 (10)
C9—C10—H10B107.9O4—C3—C4101.2 (16)
P2—C10—H10B107.9O4—C3—H3A111.5
H10A—C10—H10B107.2C4—C3—H3A111.5
C16—C15—C20121.4 (4)O4—C3—H3B111.5
C16—C15—S1119.8 (3)C4—C3—H3B111.5
C20—C15—S1118.7 (3)H3A—C3—H3B109.3
C15—C16—C17119.1 (4)C3'—O4'—P1122.6 (11)
C15—C16—H16120.5O4'—C3'—C4'112.3 (14)
C17—C16—H16120.5O4'—C3'—H3'1109.1
C18—C17—C16120.4 (5)C4'—C3'—H3'1109.1
C18—C17—H17119.8O4'—C3'—H3'2109.1
C16—C17—H17119.8C4'—C3'—H3'2109.1
C17—C18—C19120.4 (4)H3'1—C3'—H3'2107.9
C17—C18—H18119.8C3'—C4'—H4'1109.5
C19—C18—H18119.8C3'—C4'—H4'2109.5
C18—C19—C20120.0 (4)H4'1—C4'—H4'2109.5
C18—C19—H19120.0C3'—C4'—H4'3109.5
C20—C19—H19120.0H4'1—C4'—H4'3109.5
C15—C20—C19118.5 (5)H4'2—C4'—H4'3109.5
C15—C20—H20120.7C13—O8—P2124.5 (9)
C19—C20—H20120.7O8—C13—C14107.8 (11)
C6—N1—C9108.6 (2)O8—C13—H13A110.1
C6—N1—S1123.55 (19)C14—C13—H13A110.1
C9—N1—S1122.83 (19)O8—C13—H13B110.1
O3—P1—O4114.4 (13)C14—C13—H13B110.1
O3—P1—O4'113.7 (10)H13A—C13—H13B108.5
O3—P1—O5'106.83 (19)C13'—O8'—P2112.4 (14)
O4—P1—O5'104.2 (17)O8'—C13'—C14'102.2 (17)
O4'—P1—O5'114.7 (11)O8'—C13'—H13C111.3
O3—P1—O5144.2 (8)C14'—C13'—H13C111.3
O4—P1—O569 (2)O8'—C13'—H13D111.3
O4'—P1—O577.1 (15)C14'—C13'—H13D111.3
O3—P1—C5115.23 (17)H13C—C13'—H13D109.2
O4—P1—C5108.5 (8)C13'—C14'—H14D109.5
O4'—P1—C599.5 (5)C13'—C14'—H14E109.5
O5'—P1—C5106.80 (16)H14D—C14'—H14E109.5
O5—P1—C595.0 (9)C13'—C14'—H14F109.5
O6—P2—O8'116.7 (9)H14D—C14'—H14F109.5
O6—P2—O8114.5 (4)H14E—C14'—H14F109.5
O6—P2—O7'109.9 (13)C11—O7—P2125.1 (15)
O8'—P2—O7'108 (3)O7—C11—C12111.6 (13)
O8—P2—O7'110.5 (17)O7—C11—H11A109.3
O6—P2—O7120.0 (7)C12—C11—H11A109.3
O8'—P2—O797 (2)O7—C11—H11B109.3
O8—P2—O799.3 (12)C12—C11—H11B109.3
O6—P2—C10112.10 (15)H11A—C11—H11B108.0
O8'—P2—C10107 (2)C11'—O7'—P2117 (2)
O8—P2—C10107.4 (9)O7'—C11'—C12'103.2 (16)
O7'—P2—C10101.7 (16)O7'—C11'—H11C111.1
O7—P2—C10101.9 (10)C12'—C11'—H11C111.1
O1—S1—O2119.75 (15)O7'—C11'—H11D111.1
O1—S1—N1106.26 (13)C12'—C11'—H11D111.1
O2—S1—N1105.94 (13)H11C—C11'—H11D109.1
O1—S1—C15109.56 (16)C11'—C12'—H12D109.5
O2—S1—C15109.22 (15)C11'—C12'—H12E109.5
N1—S1—C15105.04 (13)H12D—C12'—H12E109.5
C2—O5—P1137 (3)C11'—C12'—H12F109.5
C2—O5—O4147 (3)H12D—C12'—H12F109.5
P1—O5—O454.4 (11)H12E—C12'—H12F109.5
O5—C2—C1130 (4)
P1—C5—C6—C781.3 (3)C5—P1—O5—C2114 (4)
P1—C5—C6—N192.5 (3)O3—P1—O5—O4103.4 (16)
N1—C6—C7—C80.5 (3)O4'—P1—O5—O49.3 (14)
C5—C6—C7—C8175.4 (3)O5'—P1—O5—O4142.6 (16)
N1—C6—C7—Br1177.33 (19)C5—P1—O5—O4107.9 (10)
C5—C6—C7—Br12.5 (4)P1—O5—C2—C178 (7)
C6—C7—C8—C91.0 (3)O4—O5—C2—C1172 (4)
Br1—C7—C8—C9178.8 (2)O3—P1—O5'—C2'176.9 (5)
C6—C7—C8—Br2177.9 (2)O4—P1—O5'—C2'55.5 (11)
Br1—C7—C8—Br20.0 (4)O4'—P1—O5'—C2'50.0 (8)
C7—C8—C9—N12.0 (3)O5—P1—O5'—C2'19.6 (14)
Br2—C8—C9—N1176.8 (2)C5—P1—O5'—C2'59.3 (5)
C7—C8—C9—C10179.0 (3)P1—O5'—C2'—C1'164.6 (5)
Br2—C8—C9—C102.2 (4)O3—P1—O4—C347 (4)
C8—C9—C10—P289.0 (3)O4'—P1—O4—C3136 (13)
N1—C9—C10—P289.8 (3)O5'—P1—O4—C369 (3)
C20—C15—C16—C171.9 (6)O5—P1—O4—C395 (3)
S1—C15—C16—C17178.1 (3)C5—P1—O4—C3177 (3)
C15—C16—C17—C181.4 (7)O3—P1—O4—O5141.4 (10)
C16—C17—C18—C190.0 (8)O4'—P1—O4—O5130 (11)
C17—C18—C19—C200.9 (9)O5'—P1—O4—O525.1 (10)
C16—C15—C20—C191.0 (6)C5—P1—O4—O588.4 (11)
S1—C15—C20—C19177.3 (4)C2—O5—O4—C39 (6)
C18—C19—C20—C150.4 (8)P1—O5—O4—C3113.2 (18)
C7—C6—N1—C91.8 (3)C2—O5—O4—P1123 (6)
C5—C6—N1—C9176.6 (3)P1—O4—C3—C4156 (3)
C7—C6—N1—S1157.1 (2)O5—O4—C3—C4142.1 (19)
C5—C6—N1—S128.1 (4)O3—P1—O4'—C3'30 (2)
C8—C9—N1—C62.4 (3)O4—P1—O4'—C3'66 (9)
C10—C9—N1—C6178.6 (3)O5'—P1—O4'—C3'93 (2)
C8—C9—N1—S1157.9 (2)O5—P1—O4'—C3'114 (2)
C10—C9—N1—S123.1 (4)C5—P1—O4'—C3'153 (2)
C6—C5—P1—O352.7 (3)P1—O4'—C3'—C4'111 (2)
C6—C5—P1—O477.1 (18)O6—P2—O8—C1322 (2)
C6—C5—P1—O4'69.2 (12)O8'—P2—O8—C13165 (65)
C6—C5—P1—O5'171.2 (2)O7'—P2—O8—C13147 (2)
C6—C5—P1—O5146.9 (9)O7—P2—O8—C13151 (2)
C9—C10—P2—O6172.3 (2)C10—P2—O8—C13103.3 (18)
C9—C10—P2—O8'42.9 (19)P2—O8—C13—C14122.5 (19)
C9—C10—P2—O845.7 (8)O6—P2—O8'—C13'9 (6)
C9—C10—P2—O7'70.4 (13)O8—P2—O8'—C13'47 (58)
C9—C10—P2—O758.1 (8)O7'—P2—O8'—C13'115 (4)
C6—N1—S1—O137.7 (3)O7—P2—O8'—C13'119 (4)
C9—N1—S1—O1170.4 (2)C10—P2—O8'—C13'136 (4)
C6—N1—S1—O2166.1 (2)P2—O8'—C13'—C14'161 (4)
C9—N1—S1—O242.0 (3)O6—P2—O7—C1142 (2)
C6—N1—S1—C1578.4 (3)O8'—P2—O7—C1184 (2)
C9—N1—S1—C1573.5 (2)O8—P2—O7—C1183.4 (18)
C16—C15—S1—O1158.4 (3)O7'—P2—O7—C1176 (12)
C20—C15—S1—O117.9 (3)C10—P2—O7—C11166.5 (16)
C16—C15—S1—O225.5 (3)P2—O7—C11—C12116 (2)
C20—C15—S1—O2150.8 (3)O6—P2—O7'—C11'55 (3)
C16—C15—S1—N187.8 (3)O8'—P2—O7'—C11'73 (3)
C20—C15—S1—N195.9 (3)O8—P2—O7'—C11'72 (3)
O3—P1—O5—C235 (5)O7—P2—O7'—C11'94 (13)
O4—P1—O5—C2138 (4)C10—P2—O7'—C11'174 (2)
O4'—P1—O5—C2148 (4)P2—O7'—C11'—C12'168 (3)
O5'—P1—O5—C24 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O6i0.972.343.272 (4)162
C16—H16···O3ii0.932.443.162 (5)134
C11—H11B···O6iii0.972.623.592 (19)179
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC20H29Br2NO8P2S
Mr665.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6524 (2), 17.5137 (5), 15.8965 (4)
β (°) 95.506 (1)
V3)2674.89 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.440, 0.561
No. of measured, independent and
observed [I > 2σ(I)] reflections
34672, 8138, 4819
Rint0.039
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.00
No. of reflections8138
No. of parameters355
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.76

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O6i0.972.343.272 (4)162
C16—H16···O3ii0.932.443.162 (5)134
C11—H11B···O6iii0.972.623.592 (19)178.6
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2.
 

Acknowledgements

SK and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, for providing facilities in the department to carry out this work.

References

First citationBanwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. A.  Google Scholar
First citationFabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFaulkner, D. J. (2002). Nat. Prod. Rep. 18, 1–48.  Web of Science CrossRef Google Scholar
First citationSeshadri, P. R., Balakrishnan, B., Ilangovan, K., Sureshbabu, R. & Mohanakrishnan, A. K. (2009). Acta Cryst. E65, o531.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages o2212-o2213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds