organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Meth­­oxy­anilino)meth­yl]phenol

aSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 2 August 2011; accepted 5 August 2011; online 11 August 2011)

In the title compound, C14H15NO2, the dihedral angle between the two benzene rings is 71.10 (5)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O, and O—H⋯N hydrogen bonds into a chain running parallel to the b axis.

Related literature

For the synthesis of the title compound, see: Noda (1959[Noda, M. (1959). J. Org. Chem. 24, 1209-1212.]). For other related structures, see: Liu et al. (2007[Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o3561.]); Qu et al. (2007[Qu, Y., Tian, L.-J. & Dong, J. (2007). Acta Cryst. E63, o4832.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2

  • Mr = 229.27

  • Monoclinic, P 21 /c

  • a = 7.8132 (16) Å

  • b = 5.7947 (12) Å

  • c = 26.175 (5) Å

  • β = 95.02 (3)°

  • V = 1180.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.970, Tmax = 0.983

  • 10971 measured reflections

  • 2693 independent reflections

  • 1692 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.128

  • S = 1.03

  • 2693 reflections

  • 163 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 (1) 2.22 (1) 3.058 (2) 163 (2)
O2—H2⋯N1ii 0.86 (1) 1.89 (1) 2.741 (2) 172 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the crystal structures of compounds closely related to the title molecule, e.g., 2-[(4-chlorophenyl)aminomethyl]-6-methoxyphenol (Liu et al., 2007) and 2-(anilinomethyl)phenol (Qu et al., 2007) have been reported. We report here the crystal structure of a new member of this family of compounds.

In the title compound (Fig. 1), the dihedral angle between the two benzene ring planes is 71.10 (5)°. In the crystal structure, the molecules are linked by intermolecular N—H···O, and O—H···N hydrogen bonds into a one-dimensional chain lying parallel to the b-axis (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Noda (1959). For related structures, see: Liu et al. (2007); Qu et al. (2007).

Experimental top

The title compound was synthesized by the reaction of 2-((4-methoxyphenylimino)- methyl)phenol (2.76 g, 10 mmol) with NaBH4 (0.38 g, 10 mmol) in methanol (50 ml) according to the reported method (Noda, 1959). Crystals were obtained from an ethanolic (95%) solution by slow evaporation at room temperature.

Refinement top

H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene H-atoms, respectively, with Uiso(H) = 1.2 (or 1.5 for methyl) Ueq(C). The hydrogen atoms bonded to O and N were included in the positions obtained from a difference map and were allowed to refine with distances contarined at N—H and O—H = 0.86 (1) Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The unit cell packing of the title compound viewed along the b-axis. Hydrogen bonds are drawn as dashed lines.
2-[(4-Methoxyanilino)methyl]phenol top
Crystal data top
C14H15NO2F(000) = 488
Mr = 229.27Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8657 reflections
a = 7.8132 (16) Åθ = 3.1–27.5°
b = 5.7947 (12) ŵ = 0.09 mm1
c = 26.175 (5) ÅT = 298 K
β = 95.02 (3)°Prism, colorless
V = 1180.5 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2693 independent reflections
Radiation source: fine-focus sealed tube1692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 910
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.970, Tmax = 0.983l = 3333
10971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1931P]
where P = (Fo2 + 2Fc2)/3
2693 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H15NO2V = 1180.5 (4) Å3
Mr = 229.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8132 (16) ŵ = 0.09 mm1
b = 5.7947 (12) ÅT = 298 K
c = 26.175 (5) Å0.40 × 0.30 × 0.20 mm
β = 95.02 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2693 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1692 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.983Rint = 0.056
10971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
2693 reflectionsΔρmin = 0.22 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.12511 (17)0.7060 (2)0.48819 (5)0.0369 (4)
N10.1955 (2)0.1501 (3)0.54954 (6)0.0322 (4)
C80.2161 (2)0.0685 (3)0.60126 (6)0.0301 (4)
C70.3137 (2)0.3330 (3)0.53561 (7)0.0350 (5)
H7A0.43090.28880.54670.042*
H7B0.28830.47460.55320.042*
C110.2449 (3)0.1048 (4)0.70119 (7)0.0395 (5)
C60.2976 (2)0.3745 (3)0.47851 (6)0.0317 (4)
C10.2033 (2)0.5582 (3)0.45649 (6)0.0295 (4)
C90.3148 (2)0.1824 (3)0.64015 (7)0.0370 (5)
H90.37170.31800.63300.044*
O10.2685 (2)0.1765 (3)0.75158 (5)0.0600 (5)
C20.1942 (2)0.5952 (3)0.40425 (7)0.0365 (5)
H2A0.13220.71990.39000.044*
C100.3290 (3)0.0950 (3)0.68955 (7)0.0410 (5)
H100.39610.17210.71520.049*
C130.1307 (3)0.1295 (3)0.61362 (7)0.0397 (5)
H130.06180.20560.58820.048*
C50.3797 (3)0.2304 (3)0.44614 (8)0.0442 (5)
H50.44350.10670.46010.053*
C120.1450 (3)0.2177 (4)0.66294 (7)0.0430 (5)
H120.08740.35250.67030.052*
C40.3699 (3)0.2647 (4)0.39393 (8)0.0488 (6)
H40.42570.16490.37310.059*
C30.2769 (3)0.4478 (4)0.37300 (7)0.0437 (5)
H30.26960.47260.33780.052*
C140.1791 (4)0.3750 (4)0.76569 (8)0.0698 (8)
H14A0.05760.34780.76030.105*
H14B0.20960.40890.80120.105*
H14C0.20920.50340.74510.105*
H10.195 (2)0.032 (2)0.5294 (6)0.046 (6)*
H20.0288 (19)0.756 (4)0.4738 (9)0.083 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0365 (8)0.0393 (8)0.0342 (7)0.0069 (7)0.0009 (6)0.0054 (6)
N10.0345 (9)0.0315 (9)0.0301 (9)0.0004 (7)0.0006 (7)0.0026 (7)
C80.0285 (10)0.0322 (10)0.0295 (9)0.0057 (8)0.0021 (8)0.0013 (8)
C70.0339 (11)0.0342 (11)0.0358 (10)0.0013 (9)0.0029 (8)0.0008 (8)
C110.0444 (12)0.0466 (12)0.0278 (10)0.0049 (10)0.0054 (9)0.0003 (9)
C60.0299 (10)0.0330 (10)0.0319 (10)0.0002 (8)0.0016 (8)0.0000 (8)
C10.0267 (9)0.0296 (10)0.0325 (10)0.0044 (8)0.0037 (8)0.0040 (8)
C90.0397 (11)0.0355 (11)0.0360 (11)0.0041 (9)0.0036 (9)0.0029 (8)
O10.0814 (12)0.0676 (11)0.0304 (8)0.0100 (9)0.0011 (8)0.0072 (7)
C20.0355 (11)0.0379 (11)0.0355 (10)0.0016 (9)0.0005 (9)0.0046 (9)
C100.0441 (12)0.0468 (12)0.0309 (10)0.0020 (10)0.0029 (9)0.0083 (9)
C130.0436 (12)0.0420 (12)0.0326 (10)0.0072 (9)0.0015 (9)0.0043 (9)
C50.0486 (13)0.0406 (12)0.0434 (12)0.0136 (10)0.0038 (10)0.0013 (9)
C120.0496 (13)0.0424 (12)0.0372 (11)0.0101 (10)0.0057 (10)0.0023 (9)
C40.0520 (13)0.0541 (14)0.0415 (12)0.0128 (11)0.0106 (10)0.0083 (10)
C30.0455 (12)0.0547 (13)0.0317 (10)0.0011 (11)0.0073 (9)0.0000 (9)
C140.111 (2)0.0580 (16)0.0417 (13)0.0056 (15)0.0122 (14)0.0121 (11)
Geometric parameters (Å, º) top
O2—C11.372 (2)C9—H90.9300
O2—H20.862 (10)O1—C141.412 (3)
N1—C81.430 (2)C2—C31.382 (3)
N1—C71.472 (2)C2—H2A0.9300
N1—H10.864 (9)C10—H100.9300
C8—C131.380 (3)C13—C121.384 (3)
C8—C91.389 (2)C13—H130.9300
C7—C61.508 (2)C5—C41.376 (3)
C7—H7A0.9700C5—H50.9300
C7—H7B0.9700C12—H120.9300
C11—C101.378 (3)C4—C31.372 (3)
C11—C121.379 (3)C4—H40.9300
C11—O11.380 (2)C3—H30.9300
C6—C51.386 (3)C14—H14A0.9600
C6—C11.390 (2)C14—H14B0.9600
C1—C21.380 (2)C14—H14C0.9600
C9—C101.384 (3)
C1—O2—H2111.4 (17)C1—C2—H2A119.8
C8—N1—C7116.84 (14)C3—C2—H2A119.8
C8—N1—H1108.1 (13)C11—C10—C9120.88 (18)
C7—N1—H1112.8 (13)C11—C10—H10119.6
C13—C8—C9118.17 (17)C9—C10—H10119.6
C13—C8—N1118.71 (16)C8—C13—C12121.63 (18)
C9—C8—N1123.10 (17)C8—C13—H13119.2
N1—C7—C6111.14 (15)C12—C13—H13119.2
N1—C7—H7A109.4C4—C5—C6122.09 (19)
C6—C7—H7A109.4C4—C5—H5119.0
N1—C7—H7B109.4C6—C5—H5119.0
C6—C7—H7B109.4C11—C12—C13119.77 (19)
H7A—C7—H7B108.0C11—C12—H12120.1
C10—C11—C12119.22 (18)C13—C12—H12120.1
C10—C11—O1115.96 (18)C3—C4—C5119.31 (19)
C12—C11—O1124.81 (19)C3—C4—H4120.3
C5—C6—C1117.69 (17)C5—C4—H4120.3
C5—C6—C7120.43 (17)C4—C3—C2120.01 (18)
C1—C6—C7121.88 (16)C4—C3—H3120.0
O2—C1—C2121.01 (16)C2—C3—H3120.0
O2—C1—C6118.35 (15)O1—C14—H14A109.5
C2—C1—C6120.59 (16)O1—C14—H14B109.5
C10—C9—C8120.31 (18)H14A—C14—H14B109.5
C10—C9—H9119.8O1—C14—H14C109.5
C8—C9—H9119.8H14A—C14—H14C109.5
C11—O1—C14117.88 (17)H14B—C14—H14C109.5
C1—C2—C3120.31 (18)
C7—N1—C8—C13168.27 (16)C6—C1—C2—C30.9 (3)
C7—N1—C8—C913.4 (2)C12—C11—C10—C90.3 (3)
C8—N1—C7—C6170.60 (14)O1—C11—C10—C9179.82 (18)
N1—C7—C6—C580.6 (2)C8—C9—C10—C110.5 (3)
N1—C7—C6—C1100.3 (2)C9—C8—C13—C121.6 (3)
C5—C6—C1—O2178.27 (16)N1—C8—C13—C12179.97 (17)
C7—C6—C1—O20.8 (3)C1—C6—C5—C40.1 (3)
C5—C6—C1—C20.6 (3)C7—C6—C5—C4179.12 (19)
C7—C6—C1—C2178.44 (17)C10—C11—C12—C130.1 (3)
C13—C8—C9—C101.3 (3)O1—C11—C12—C13179.99 (18)
N1—C8—C9—C10179.69 (17)C8—C13—C12—C110.8 (3)
C10—C11—O1—C14177.40 (19)C6—C5—C4—C30.4 (3)
C12—C11—O1—C142.5 (3)C5—C4—C3—C20.1 (3)
O2—C1—C2—C3178.53 (17)C1—C2—C3—C40.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.86 (1)2.22 (1)3.058 (2)163 (2)
O2—H2···N1ii0.86 (1)1.89 (1)2.741 (2)172 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H15NO2
Mr229.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.8132 (16), 5.7947 (12), 26.175 (5)
β (°) 95.02 (3)
V3)1180.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.970, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10971, 2693, 1692
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.128, 1.03
No. of reflections2693
No. of parameters163
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.864 (9)2.219 (11)3.058 (2)163 (2)
O2—H2···N1ii0.862 (10)1.885 (10)2.741 (2)172 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology and by the Foundation of Jiangsu Educational Committee (11KJB150004), China.

References

First citationLiu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o3561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoda, M. (1959). J. Org. Chem. 24, 1209–1212.  CrossRef CAS Web of Science Google Scholar
First citationQu, Y., Tian, L.-J. & Dong, J. (2007). Acta Cryst. E63, o4832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds