metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­chloridozincate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: shipingping1990@126.com

(Received 9 August 2011; accepted 10 August 2011; online 27 August 2011)

The reaction of 1-bromo­methyl-1,4-diazo­niabicyclo­[2.2.2]octane bromide, zinc chloride and hydro­chloric acid in water yields the title compound, (C7H15BrN2)[ZnCl4]. In the crystal, the components are linked by N—H⋯Cl hydrogen bonds. The ZnII atom has an approximately tetra­hedral coordination geometry.

Related literature

For applications of ferroelectric materials, see: Fu et al. (2009[Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). 1,4-diazo­niabicyclo­[2.2.2]octane (DABCO) salts with inorganic tetra­hedral anions exhibit exceptional properties, see: Szafrański et al. (2002[Szafrański, M., Katrusiak, A. & McIntyre, G. J. (2002). Phys. Rev. Lett. 89, 215507-1-215507-4.]). Furthermore, DABCO can undergo substitution with dibromo­methane to obtain 1-bromo­methyl-DABCO bromide, see: Finke et al. (2010[Finke, A. D., Gray, D. L. & Moore, J. S. (2010). Acta Cryst. E66, o377.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H15BrN2)[ZnCl4]

  • Mr = 414.30

  • Monoclinic, P 21 /c

  • a = 10.253 (2) Å

  • b = 12.214 (2) Å

  • c = 11.147 (2) Å

  • β = 90.97 (3)°

  • V = 1395.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.36 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]) Tmin = 0.342, Tmax = 0.356

  • 14183 measured reflections

  • 3201 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.12

  • 3201 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl2i 0.91 2.64 3.313 (4) 131
N2—H2C⋯Cl1i 0.91 2.75 3.405 (4) 130
N2—H2C⋯Cl4ii 0.91 2.82 3.363 (3) 120
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ferroelectric materials have so many potential applications in memory storage that they attract much attention(Fu et al., 2009; Ye et al., 2009; Zhang et al., 2009). In order to find more dielectric or ferroelectric materials, many novel compounds have been synthesized. Thereinto 1,4-diazoniabicyclo[2.2.2]octane (DABCO) salts with inorganic tetrahedral anions exhibit exceptional properties (Szafrański et al.,2002). Furthermore, DABCO can undergo substitution with dibromomethane to obtain 1-Bromomethyl-DABCO bromide (Finke et al.,2010).

Therefore, we report the single-crystal structure of the title copound which consists of a 1-Bromomethyl-1,4-diazoniabicyclo[2.2.2]octane-1,4-diium cation and a tetrachloridozincate dianion(Fig.1).In the ctystal structure,as showed in the packing diagram(Fig.2), the protonated N2 atom of DABCO derivant interacts via a trifurcated hydrogen bond with three Cl atoms of the two neighbouring anions.

However, within the measured temperature range from 190 K to near its melting point(m.p. > 473 K), the dielectric constant of the title compound is basically temperature-independant, suggesting that this material should be not a real ferroelectric.

Related literature top

For applications of ferroelectric materials, see: Fu et al. (2009); Ye et al. (2009); Zhang et al.(2009). 1,4-diazoniabicyclo[2.2.2]octane (DABCO) salts with inorganic tetrahedral anions exhibit exceptional properties, see: Szafrański et al. (2002). Furthermore, DABCO can undergo substitution with dibromomethane to obtain 1-bromomethyl-DABCO bromide, see: Finke et al. (2010).

Experimental top

The mixture solution of 1,4-diazoniabicyclo[2.2.2]octane (20 mmol,2.24 g) and dibromomethane (20 mmol,3.48 g) in acetone was stirred for three hours. A white precipite of 1-Bromomethyl-1,4-diazoniabicyclo[2.2.2]octane-1-ium bromide(1) was synthesized. At room temperature,by slow evaporation of a hydrochloric acid solution containing 1 (20 mmol,5.72 g) and zinc chloride (20 mmol,2.72 g),colorless crystals of the title copound suitable for X-ray analysis were obtained.

Refinement top

All H atoms were positioned geometrically with C—H = 0.97 Å, N—H = 0.91 Å, and refined using a riding model, with Uiso(H) = 1.2eq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound,with atom lables and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound,showing molecules connected by N—H···Cl hydrogen bonds (dash lines).
1-Bromomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridozincate top
Crystal data top
(C7H15BrN2)[ZnCl4]F(000) = 816
Mr = 414.30Dx = 1.972 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12777 reflections
a = 10.253 (2) Åθ = 3.2–27.5°
b = 12.214 (2) ŵ = 5.36 mm1
c = 11.147 (2) ÅT = 293 K
β = 90.97 (3)°Prism, colorless
V = 1395.7 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3201 independent reflections
Radiation source: fine-focus sealed tube2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.342, Tmax = 0.356l = 1414
14183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0381P)2 + 2.7437P]
where P = (Fo2 + 2Fc2)/3
3201 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
(C7H15BrN2)[ZnCl4]V = 1395.7 (4) Å3
Mr = 414.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.253 (2) ŵ = 5.36 mm1
b = 12.214 (2) ÅT = 293 K
c = 11.147 (2) Å0.20 × 0.20 × 0.20 mm
β = 90.97 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3201 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2698 reflections with I > 2σ(I)
Tmin = 0.342, Tmax = 0.356Rint = 0.040
14183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.12Δρmax = 1.12 e Å3
3201 reflectionsΔρmin = 0.92 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22858 (4)0.07443 (4)0.21406 (4)0.02816 (13)
Br10.60658 (5)0.19087 (4)0.46852 (4)0.04538 (15)
Cl10.06383 (9)0.14865 (9)0.09911 (9)0.0345 (2)
Cl20.41010 (10)0.13065 (10)0.11498 (9)0.0379 (2)
Cl30.21448 (13)0.10851 (8)0.23132 (11)0.0455 (3)
Cl40.22216 (16)0.14841 (9)0.40008 (9)0.0534 (4)
N10.7521 (3)0.0408 (2)0.3236 (3)0.0220 (6)
C50.7422 (4)0.1103 (3)0.2117 (3)0.0294 (8)
H5A0.81570.16010.20890.035*
H5B0.66280.15340.21300.035*
N20.7501 (3)0.0797 (3)0.1395 (3)0.0299 (7)
H2C0.74950.12320.07320.036*
C20.6364 (4)0.1081 (4)0.2143 (4)0.0383 (10)
H2A0.64090.18470.23710.046*
H2B0.55620.09670.16860.046*
C40.8766 (4)0.0259 (4)0.3192 (4)0.0313 (9)
H4A0.88400.07170.39000.038*
H4B0.95140.02280.31810.038*
C60.7411 (4)0.0367 (3)0.1011 (3)0.0316 (9)
H6A0.66140.04820.05480.038*
H6B0.81430.05480.05080.038*
C30.8752 (4)0.0969 (4)0.2076 (4)0.0371 (10)
H3A0.94830.07800.15760.045*
H3B0.88360.17330.23020.045*
C10.6368 (4)0.0367 (3)0.3260 (4)0.0315 (9)
H1A0.55640.00490.32900.038*
H1B0.64250.08240.39710.038*
C70.7626 (4)0.1111 (4)0.4357 (3)0.0341 (9)
H7A0.83380.16260.42670.041*
H7B0.78350.06450.50380.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0349 (3)0.0251 (2)0.0246 (2)0.00060 (18)0.00461 (18)0.00046 (18)
Br10.0530 (3)0.0438 (3)0.0399 (3)0.0122 (2)0.0152 (2)0.0048 (2)
Cl10.0290 (5)0.0422 (6)0.0323 (5)0.0009 (4)0.0019 (4)0.0055 (4)
Cl20.0273 (5)0.0515 (6)0.0351 (5)0.0061 (4)0.0039 (4)0.0019 (5)
Cl30.0708 (8)0.0177 (5)0.0478 (6)0.0032 (5)0.0015 (6)0.0023 (4)
Cl40.1096 (11)0.0293 (5)0.0214 (5)0.0050 (6)0.0062 (6)0.0014 (4)
N10.0254 (15)0.0230 (15)0.0178 (14)0.0006 (12)0.0041 (12)0.0003 (12)
C50.041 (2)0.0245 (19)0.0231 (19)0.0007 (16)0.0025 (17)0.0050 (15)
N20.0380 (19)0.0261 (17)0.0258 (16)0.0002 (14)0.0020 (14)0.0046 (13)
C20.041 (2)0.031 (2)0.043 (2)0.0126 (19)0.008 (2)0.0026 (19)
C40.030 (2)0.036 (2)0.028 (2)0.0072 (17)0.0029 (16)0.0013 (17)
C60.045 (2)0.029 (2)0.0209 (19)0.0009 (18)0.0001 (17)0.0003 (16)
C30.038 (2)0.034 (2)0.039 (2)0.0142 (18)0.0051 (19)0.0089 (19)
C10.030 (2)0.034 (2)0.031 (2)0.0063 (17)0.0062 (16)0.0022 (17)
C70.040 (2)0.040 (2)0.0229 (19)0.0052 (18)0.0022 (17)0.0085 (17)
Geometric parameters (Å, º) top
Zn1—Cl32.2475 (12)N2—H2C0.9100
Zn1—Cl42.2639 (12)C2—C11.521 (6)
Zn1—Cl22.2858 (12)C2—H2A0.9700
Zn1—Cl12.2899 (12)C2—H2B0.9700
Br1—C71.913 (4)C4—C31.516 (5)
N1—C51.511 (5)C4—H4A0.9700
N1—C11.515 (5)C4—H4B0.9700
N1—C41.516 (5)C6—H6A0.9700
N1—C71.519 (5)C6—H6B0.9700
C5—C61.525 (5)C3—H3A0.9700
C5—H5A0.9700C3—H3B0.9700
C5—H5B0.9700C1—H1A0.9700
N2—C21.486 (5)C1—H1B0.9700
N2—C61.487 (5)C7—H7A0.9700
N2—C31.494 (5)C7—H7B0.9700
Cl3—Zn1—Cl4108.39 (5)N1—C4—C3109.8 (3)
Cl3—Zn1—Cl2113.21 (5)N1—C4—H4A109.7
Cl4—Zn1—Cl2111.05 (5)C3—C4—H4A109.7
Cl3—Zn1—Cl1113.17 (5)N1—C4—H4B109.7
Cl4—Zn1—Cl1108.78 (5)C3—C4—H4B109.7
Cl2—Zn1—Cl1102.10 (4)H4A—C4—H4B108.2
C5—N1—C1108.9 (3)N2—C6—C5109.3 (3)
C5—N1—C4108.7 (3)N2—C6—H6A109.8
C1—N1—C4108.8 (3)C5—C6—H6A109.8
C5—N1—C7111.4 (3)N2—C6—H6B109.8
C1—N1—C7112.5 (3)C5—C6—H6B109.8
C4—N1—C7106.5 (3)H6A—C6—H6B108.3
N1—C5—C6109.6 (3)N2—C3—C4109.4 (3)
N1—C5—H5A109.7N2—C3—H3A109.8
C6—C5—H5A109.7C4—C3—H3A109.8
N1—C5—H5B109.7N2—C3—H3B109.8
C6—C5—H5B109.7C4—C3—H3B109.8
H5A—C5—H5B108.2H3A—C3—H3B108.2
C2—N2—C6109.8 (3)N1—C1—C2109.6 (3)
C2—N2—C3110.9 (3)N1—C1—H1A109.8
C6—N2—C3109.2 (3)C2—C1—H1A109.8
C2—N2—H2C108.9N1—C1—H1B109.8
C6—N2—H2C108.9C2—C1—H1B109.8
C3—N2—H2C108.9H1A—C1—H1B108.2
N2—C2—C1109.5 (3)N1—C7—Br1113.4 (3)
N2—C2—H2A109.8N1—C7—H7A108.9
C1—C2—H2A109.8Br1—C7—H7A108.9
N2—C2—H2B109.8N1—C7—H7B108.9
C1—C2—H2B109.8Br1—C7—H7B108.9
H2A—C2—H2B108.2H7A—C7—H7B107.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl2i0.912.643.313 (4)131
N2—H2C···Cl1i0.912.753.405 (4)130
N2—H2C···Cl4ii0.912.823.363 (3)120
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C7H15BrN2)[ZnCl4]
Mr414.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.253 (2), 12.214 (2), 11.147 (2)
β (°) 90.97 (3)
V3)1395.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.36
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.342, 0.356
No. of measured, independent and
observed [I > 2σ(I)] reflections
14183, 3201, 2698
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.12
No. of reflections3201
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.92

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···Cl2i0.912.643.313 (4)131.4
N2—H2C···Cl1i0.912.753.405 (4)129.6
N2—H2C···Cl4ii0.912.823.363 (3)119.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationFinke, A. D., Gray, D. L. & Moore, J. S. (2010). Acta Cryst. E66, o377.  Google Scholar
First citationFu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzafrański, M., Katrusiak, A. & McIntyre, G. J. (2002). Phys. Rev. Lett. 89, 215507-1–215507-4.  Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds