organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-1-(phenyl­sulfin­yl)­naphtho­[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 17 August 2011; accepted 20 August 2011; online 27 August 2011)

In the title compound, C24H15FO2S, the 4-fluoro­phenyl ring makes a dihedral angle of 19.43 (4)° with the mean plane of the naphtho­furan fragment. The dihedral angle between the phenyl ring and the mean plane of the naphtho­furan fragment is 85.83 (4)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Goel & Dixit (2004[Goel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819-8821.]); Hagiwara et al. (1999[Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497-500.]); Piloto et al. (2005[Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757-4760.]). For structural studies of related 2-ar­yl-1-(phenyl­sulfin­yl)naphtho­[2,1-b]furan derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2014.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15FO2S

  • Mr = 386.42

  • Triclinic, [P \overline 1]

  • a = 7.2853 (2) Å

  • b = 10.1619 (3) Å

  • c = 12.3137 (4) Å

  • α = 103.439 (2)°

  • β = 90.486 (2)°

  • γ = 96.422 (2)°

  • V = 880.53 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.29 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.954

  • 16660 measured reflections

  • 4392 independent reflections

  • 3675 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.05

  • 4392 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O2i 0.95 2.53 3.277 (2) 136
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a naphthofuran moiety have drawn much attention owing to their valuable biological properties (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). As a part of our ongoing studies of the substituent effect on the solid state structures of 2–aryl–1–(phenylsulfinyl)naphtho[2,1–b]furan analogues (Choi et al., 2009a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.291 (1) Å from the least-squares plane defined by the thirteen constituent atoms. The 4–fluorophenyl ring makes the dihedral angle of 19.43 (4)° with the mean plane of the naphthofuran fragment. The diheral angle formed by the phenyl ring and the mean plane of the naphthofuran fragment is 85.83 (4)°. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds between a phenyl H atom and the O atom of the sulfinyl group (Table 1; C23—H23···O2i).

Related literature top

For the pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004); Hagiwara et al. (1999); Piloto et al. (2005). For structural studies of related 2–aryl–1–(phenylsulfinyl)naphtho[2,1–b]furan derivatives, see: Choi et al. (2009a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 2–(4–fluorophenyl)–1–(phenylsulfanyl)naphtho [2,1-b]furan (333 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered andconcentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 65%, m.p. 473–474 K; Rf = 0.46 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl H atoms. Uiso(H) = 1.2Ueq(C) for aryl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
2-(4-Fluorophenyl)-1-(phenylsulfinyl)naphtho[2,1-b]furan top
Crystal data top
C24H15FO2SZ = 2
Mr = 386.42F(000) = 400
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2853 (2) ÅCell parameters from 5489 reflections
b = 10.1619 (3) Åθ = 2.8–28.2°
c = 12.3137 (4) ŵ = 0.21 mm1
α = 103.439 (2)°T = 173 K
β = 90.486 (2)°Block, colourless
γ = 96.422 (2)°0.29 × 0.26 × 0.22 mm
V = 880.53 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4392 independent reflections
Radiation source: rotating anode3675 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.037
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.7°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.941, Tmax = 0.954l = 1616
16660 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.055P)2 + 0.2885P]
where P = (Fo2 + 2Fc2)/3
4392 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H15FO2Sγ = 96.422 (2)°
Mr = 386.42V = 880.53 (5) Å3
Triclinic, P1Z = 2
a = 7.2853 (2) ÅMo Kα radiation
b = 10.1619 (3) ŵ = 0.21 mm1
c = 12.3137 (4) ÅT = 173 K
α = 103.439 (2)°0.29 × 0.26 × 0.22 mm
β = 90.486 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3675 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.954Rint = 0.037
16660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
4392 reflectionsΔρmin = 0.33 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45928 (5)0.63116 (4)0.30349 (3)0.02511 (11)
O10.20787 (15)0.47766 (10)0.53486 (8)0.0251 (2)
O20.60815 (15)0.55620 (12)0.24620 (9)0.0325 (3)
F10.30192 (18)1.08991 (10)0.78434 (9)0.0525 (3)
C10.3299 (2)0.52987 (14)0.38112 (11)0.0227 (3)
C20.2802 (2)0.38352 (14)0.35730 (12)0.0232 (3)
C30.2860 (2)0.27066 (14)0.26339 (12)0.0241 (3)
C40.3429 (2)0.28088 (15)0.15649 (12)0.0284 (3)
H40.38370.36780.14350.034*
C50.3403 (3)0.16705 (17)0.07079 (13)0.0350 (4)
H50.37780.17590.00110.042*
C60.2828 (3)0.03789 (17)0.08849 (14)0.0396 (4)
H60.28230.04040.02870.047*
C70.2276 (3)0.02390 (16)0.19071 (14)0.0363 (4)
H70.18960.06450.20170.044*
C80.2257 (2)0.13876 (15)0.28111 (13)0.0277 (3)
C90.1638 (2)0.12265 (16)0.38691 (13)0.0307 (3)
H90.12780.03340.39660.037*
C100.1545 (2)0.23082 (15)0.47463 (13)0.0285 (3)
H100.11180.21980.54500.034*
C110.2112 (2)0.35935 (14)0.45543 (12)0.0244 (3)
C130.2903 (2)0.71658 (15)0.56465 (11)0.0246 (3)
C140.3198 (2)0.83664 (15)0.52753 (13)0.0292 (3)
H140.33540.83200.45030.035*
C150.3266 (2)0.96241 (16)0.60182 (14)0.0327 (3)
H150.35051.04410.57680.039*
C160.2981 (2)0.96647 (16)0.71221 (14)0.0346 (4)
C170.2644 (3)0.85122 (18)0.75213 (13)0.0376 (4)
H170.24330.85750.82910.045*
C180.2618 (2)0.72569 (16)0.67816 (12)0.0315 (3)
H180.24040.64490.70470.038*
C190.2902 (2)0.63310 (14)0.19726 (12)0.0243 (3)
C120.2825 (2)0.58147 (14)0.48933 (12)0.0238 (3)
C200.3553 (2)0.63478 (15)0.09205 (12)0.0284 (3)
H200.48130.62490.07660.034*
C210.2352 (2)0.65096 (16)0.00974 (13)0.0341 (4)
H210.27790.65050.06300.041*
C220.0532 (2)0.66772 (17)0.03334 (15)0.0365 (4)
H220.02810.68130.02280.044*
C230.0115 (2)0.66481 (16)0.13781 (15)0.0352 (4)
H230.13730.67540.15310.042*
C240.1062 (2)0.64650 (15)0.22047 (13)0.0297 (3)
H240.06160.64310.29220.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02566 (19)0.02638 (19)0.02358 (18)0.00069 (14)0.00323 (13)0.00750 (13)
O10.0290 (5)0.0258 (5)0.0215 (5)0.0044 (4)0.0048 (4)0.0068 (4)
O20.0266 (6)0.0420 (6)0.0325 (6)0.0091 (5)0.0074 (5)0.0135 (5)
F10.0772 (8)0.0330 (5)0.0407 (6)0.0154 (5)0.0018 (6)0.0089 (4)
C10.0234 (7)0.0237 (6)0.0214 (6)0.0024 (5)0.0024 (5)0.0064 (5)
C20.0213 (6)0.0250 (7)0.0242 (7)0.0029 (5)0.0002 (5)0.0074 (5)
C30.0223 (7)0.0248 (7)0.0252 (7)0.0037 (5)0.0000 (5)0.0052 (5)
C40.0328 (8)0.0270 (7)0.0255 (7)0.0038 (6)0.0011 (6)0.0062 (6)
C50.0454 (10)0.0336 (8)0.0247 (7)0.0057 (7)0.0028 (7)0.0039 (6)
C60.0537 (11)0.0273 (8)0.0322 (8)0.0022 (8)0.0007 (8)0.0027 (6)
C70.0447 (10)0.0239 (7)0.0377 (9)0.0003 (7)0.0002 (7)0.0040 (6)
C80.0266 (7)0.0262 (7)0.0300 (7)0.0030 (6)0.0008 (6)0.0064 (6)
C90.0310 (8)0.0261 (7)0.0367 (8)0.0004 (6)0.0023 (7)0.0122 (6)
C100.0279 (7)0.0313 (7)0.0293 (7)0.0037 (6)0.0054 (6)0.0131 (6)
C110.0236 (7)0.0257 (7)0.0240 (7)0.0045 (6)0.0023 (5)0.0054 (5)
C130.0226 (7)0.0275 (7)0.0232 (7)0.0057 (6)0.0011 (5)0.0039 (5)
C140.0318 (8)0.0289 (7)0.0265 (7)0.0045 (6)0.0044 (6)0.0048 (6)
C150.0331 (8)0.0261 (7)0.0378 (8)0.0038 (6)0.0021 (7)0.0048 (6)
C160.0377 (9)0.0287 (8)0.0328 (8)0.0102 (7)0.0034 (7)0.0051 (6)
C170.0506 (10)0.0412 (9)0.0218 (7)0.0167 (8)0.0005 (7)0.0036 (6)
C180.0396 (9)0.0322 (8)0.0243 (7)0.0109 (7)0.0002 (6)0.0069 (6)
C190.0273 (7)0.0208 (6)0.0254 (7)0.0032 (5)0.0015 (6)0.0064 (5)
C120.0228 (7)0.0265 (7)0.0233 (6)0.0033 (6)0.0009 (5)0.0084 (5)
C200.0282 (7)0.0304 (7)0.0281 (7)0.0041 (6)0.0045 (6)0.0096 (6)
C210.0400 (9)0.0350 (8)0.0292 (8)0.0010 (7)0.0007 (7)0.0129 (6)
C220.0361 (9)0.0332 (8)0.0409 (9)0.0022 (7)0.0092 (7)0.0112 (7)
C230.0258 (8)0.0317 (8)0.0475 (9)0.0041 (6)0.0004 (7)0.0082 (7)
C240.0299 (8)0.0270 (7)0.0319 (8)0.0044 (6)0.0062 (6)0.0058 (6)
Geometric parameters (Å, º) top
S1—O21.4840 (11)C10—H100.9500
S1—C11.7655 (15)C13—C141.395 (2)
S1—C191.7939 (15)C13—C181.398 (2)
O1—C111.3650 (16)C13—C121.4623 (19)
O1—C121.3690 (17)C14—C151.384 (2)
F1—C161.3554 (17)C14—H140.9500
C1—C121.3761 (19)C15—C161.369 (2)
C1—C21.4505 (19)C15—H150.9500
C2—C111.376 (2)C16—C171.371 (2)
C2—C31.4316 (19)C17—C181.383 (2)
C3—C41.407 (2)C17—H170.9500
C3—C81.429 (2)C18—H180.9500
C4—C51.371 (2)C19—C201.387 (2)
C4—H40.9500C19—C241.388 (2)
C5—C61.399 (2)C20—C211.384 (2)
C5—H50.9500C20—H200.9500
C6—C71.358 (2)C21—C221.380 (2)
C6—H60.9500C21—H210.9500
C7—C81.415 (2)C22—C231.379 (3)
C7—H70.9500C22—H220.9500
C8—C91.421 (2)C23—C241.384 (2)
C9—C101.359 (2)C23—H230.9500
C9—H90.9500C24—H240.9500
C10—C111.399 (2)
O2—S1—C1109.66 (7)C14—C13—C12122.77 (13)
O2—S1—C19106.56 (7)C18—C13—C12118.58 (14)
C1—S1—C19100.32 (7)C15—C14—C13120.83 (14)
C11—O1—C12107.08 (11)C15—C14—H14119.6
C12—C1—C2106.96 (12)C13—C14—H14119.6
C12—C1—S1122.10 (11)C16—C15—C14118.52 (15)
C2—C1—S1130.23 (11)C16—C15—H15120.7
C11—C2—C3118.81 (13)C14—C15—H15120.7
C11—C2—C1104.59 (12)F1—C16—C15118.28 (15)
C3—C2—C1136.60 (13)F1—C16—C17119.01 (15)
C4—C3—C8118.60 (13)C15—C16—C17122.71 (14)
C4—C3—C2124.99 (13)C16—C17—C18118.67 (15)
C8—C3—C2116.40 (13)C16—C17—H17120.7
C5—C4—C3120.89 (15)C18—C17—H17120.7
C5—C4—H4119.6C17—C18—C13120.61 (15)
C3—C4—H4119.6C17—C18—H18119.7
C4—C5—C6120.45 (15)C13—C18—H18119.7
C4—C5—H5119.8C20—C19—C24120.76 (14)
C6—C5—H5119.8C20—C19—S1116.63 (12)
C7—C6—C5120.35 (15)C24—C19—S1122.28 (11)
C7—C6—H6119.8O1—C12—C1109.83 (12)
C5—C6—H6119.8O1—C12—C13114.08 (12)
C6—C7—C8121.09 (15)C1—C12—C13136.09 (14)
C6—C7—H7119.5C21—C20—C19119.39 (15)
C8—C7—H7119.5C21—C20—H20120.3
C7—C8—C9120.40 (14)C19—C20—H20120.3
C7—C8—C3118.61 (14)C22—C21—C20120.00 (15)
C9—C8—C3120.99 (13)C22—C21—H21120.0
C10—C9—C8122.07 (14)C20—C21—H21120.0
C10—C9—H9119.0C23—C22—C21120.45 (15)
C8—C9—H9119.0C23—C22—H22119.8
C9—C10—C11116.22 (14)C21—C22—H22119.8
C9—C10—H10121.9C22—C23—C24120.23 (15)
C11—C10—H10121.9C22—C23—H23119.9
O1—C11—C2111.49 (12)C24—C23—H23119.9
O1—C11—C10123.09 (13)C23—C24—C19119.14 (15)
C2—C11—C10125.40 (13)C23—C24—H24120.4
C14—C13—C18118.63 (13)C19—C24—H24120.4
O2—S1—C1—C12134.17 (12)C9—C10—C11—C22.3 (2)
C19—S1—C1—C12113.94 (13)C18—C13—C14—C152.0 (2)
O2—S1—C1—C234.89 (15)C12—C13—C14—C15179.88 (14)
C19—S1—C1—C277.00 (14)C13—C14—C15—C162.0 (2)
C12—C1—C2—C111.64 (16)C14—C15—C16—F1178.94 (15)
S1—C1—C2—C11168.69 (12)C14—C15—C16—C170.4 (3)
C12—C1—C2—C3178.01 (16)F1—C16—C17—C18179.64 (15)
S1—C1—C2—C311.7 (3)C15—C16—C17—C181.0 (3)
C11—C2—C3—C4176.20 (14)C16—C17—C18—C130.9 (3)
C1—C2—C3—C43.4 (3)C14—C13—C18—C170.6 (2)
C11—C2—C3—C82.6 (2)C12—C13—C18—C17178.74 (15)
C1—C2—C3—C8177.77 (15)O2—S1—C19—C2031.41 (13)
C8—C3—C4—C50.2 (2)C1—S1—C19—C20145.68 (12)
C2—C3—C4—C5178.65 (15)O2—S1—C19—C24155.11 (12)
C3—C4—C5—C60.7 (3)C1—S1—C19—C2440.84 (13)
C4—C5—C6—C70.5 (3)C11—O1—C12—C11.02 (16)
C5—C6—C7—C80.4 (3)C11—O1—C12—C13179.62 (12)
C6—C7—C8—C9178.66 (16)C2—C1—C12—O10.40 (16)
C6—C7—C8—C31.0 (3)S1—C1—C12—O1170.89 (10)
C4—C3—C8—C70.7 (2)C2—C1—C12—C13178.75 (16)
C2—C3—C8—C7179.59 (14)S1—C1—C12—C1310.0 (2)
C4—C3—C8—C9178.94 (14)C14—C13—C12—O1164.53 (14)
C2—C3—C8—C90.0 (2)C18—C13—C12—O113.57 (19)
C7—C8—C9—C10177.87 (16)C14—C13—C12—C114.6 (3)
C3—C8—C9—C101.7 (2)C18—C13—C12—C1167.30 (17)
C8—C9—C10—C110.7 (2)C24—C19—C20—C210.4 (2)
C12—O1—C11—C22.16 (16)S1—C19—C20—C21173.16 (12)
C12—O1—C11—C10176.51 (14)C19—C20—C21—C221.2 (2)
C3—C2—C11—O1177.37 (12)C20—C21—C22—C231.8 (2)
C1—C2—C11—O12.34 (16)C21—C22—C23—C240.7 (3)
C3—C2—C11—C104.0 (2)C22—C23—C24—C190.9 (2)
C1—C2—C11—C10176.29 (14)C20—C19—C24—C231.5 (2)
C9—C10—C11—O1179.24 (13)S1—C19—C24—C23171.74 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O2i0.952.533.277 (2)136
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H15FO2S
Mr386.42
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.2853 (2), 10.1619 (3), 12.3137 (4)
α, β, γ (°)103.439 (2), 90.486 (2), 96.422 (2)
V3)880.53 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.29 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.941, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
16660, 4392, 3675
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.05
No. of reflections4392
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O2i0.952.533.277 (2)135.6
Symmetry code: (i) x1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2014.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoel, A. & Dixit, M. (2004). Tetrahedron Lett. 45, 8819–8821.  Web of Science CrossRef CAS Google Scholar
First citationHagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.  CrossRef CAS Google Scholar
First citationPiloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett. 46, 4757–4760.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds