organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(Ethyl­sulfamo­yl)phen­yl]acetamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 29 July 2011; accepted 17 August 2011; online 27 August 2011)

The title compound, C10H14N2O3S, crystallized with two mol­ecules (A and B) in the asymmetric unit. The terminal methyl group of the ethyl­sulfonamide moiety in mol­ecule B is disordered over two sets of sites with an occupancy ratio of 0.61 (1):0.39 (1). Both mol­ecules have L-shaped conformations. In mol­ecule A, the dihedral angles between the benzene ring and its ethyl­sulfonamide and methyl­amide substituents are 83.5 (3) and 13.34 (18)°, respectively. Equivalent values for mol­ecule B are 87.9 (3) and 6.32 (16)°, respectively. The C—S—N—C torsion angles are 66.5 (3)° for A and −64.4 (3)° for B, indicating similar twists about the S—N bonds, but in opposite senses. In the crystal, the A mol­ecules are linked by pairs of Ns—H⋯O (s = sulfonamide) hydrogen bonds, generating inversion dimers containing R22(8) rings, while the B mol­ecules are linked by Ns—H⋯O hydrogen bonds into C(10) [100] chains. Finally, Na—H⋯O (a = amide) hydrogen bonds link the A-mol­ecule dimers and B-mol­ecule chains into a three-dimensional network.

Related literature

For related structures, see: Hou et al. (2009[Hou, H., Chen, S., Wang, L. & Ma, L. (2009). J. Coord. Chem. 61, 2690-2702.]); Khan et al. (2011[Khan, I. U., Sheikh, T. A., Ejaz, & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.]); Rehman et al. (2011[Rehman, J., Ejaz, Khan, I. U. & Harrison, W. T. A. (2011). Acta Cryst. E67. Submitted.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N2O3S

  • Mr = 242.29

  • Triclinic, [P \overline 1]

  • a = 8.2766 (3) Å

  • b = 12.1728 (4) Å

  • c = 13.5041 (4) Å

  • α = 70.130 (2)°

  • β = 73.935 (2)°

  • γ = 71.517 (2)°

  • V = 1191.56 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.949

  • 18017 measured reflections

  • 4310 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.04

  • 4310 reflections

  • 317 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.79 (3) 2.13 (3) 2.914 (3) 173 (3)
N2—H2N⋯O4ii 0.80 (2) 2.21 (2) 3.006 (3) 169 (3)
N3—H3N⋯O6iii 0.83 (3) 2.03 (3) 2.854 (3) 173 (3)
N4—H4N⋯O3iv 0.75 (2) 2.21 (2) 2.960 (3) 174 (3)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y-1, z+1; (iii) x-1, y, z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of sulfonamides (Khan et al., 2011; Rehman et al., 2011), the synthesis and crystal structure of the title compound are reported on herein. The related stucture of N-(p-acetamidobenzenesulfonyl)glycine has been described previously (Hou et al., 2009).

The title compound, C10H14N2O3S, crystallized with two molecules (A and B) in the asymmetric unit (Fig. 1). The -CH3 group of the ethylsulfonamide moiety (atom C20) in molecule B is disordered over two positions [C20a and C20b with occupancies 0.61 (1):0.39 (1)]. Both molecules have L-shaped conformations in which the ethylsulfonamide group is roughly perpendicular to the benzene ring, but the methyl-amide group is almost coplanar with the same ring. In molecule A the dihedral angles between the benzene ring (C1-C6) and the ethylsulfonamide (S1,N1,C9,C10) and methylamide (N2,C7,O3,C8) moieties are 83.5 (3) and 13.34 (18)°, respectively. The equivalent values for molecule B [benzene ring (C11-C16); ethylsulfonamide (S2,N3,C19,C20a); methylamide (N4,C17,O6,C18)] are 87.9 (3) and 6.32 (16)°, respectively. The C—S—N—C torsion angles are 66.5 (3)° for A and -64.4 (3)° for B, indicating similar twists about the S—N bonds in the two molecules, but in opposite senses. Similar twists about the equivalent S—N bonds were seen in 4-methyl-N-(4-aminophenyl)benzenesulfonamide (Rehman et al., 2011).

In the crystal, the A molecules are linked by pairs of Ns—H···O (s = sulfonamide) hydrogen bonds to generate inversion dimers containing R22(8) rings (Fig. 2), while the B molecules are linked by Ns—H···O hydrogen bonds into C(10) [100] chains (Fig. 3). Finally, Na—H···O (a = amide) hydrogen bonds link the dimers and chains into a three-dimensional network - see Table 1 for details of the hydrogen bonding.

Related literature top

For related structures, see: Hou et al. (2009); Khan et al. (2011); Rehman et al. (2011).

Experimental top

Ethyl amine (1 mmol, 0.0654 ml) was dissolved in distilled water (20 ml) in a round bottom flask (100 ml) and 4-(acetylamino)benzenesulfonyl chloride (1 mmol, 0.23367 g) was added with stirring at room temperature while keeping the pH of solution between 8.0–9.0 with sodium carbonate solution (3%). After 4 h, the white precipitate formed was filtered, washed with distilled water and dried. Colourless block-like crystals of the title compound were grown from methanol by slow evaporation.

Refinement top

Atom C20 and its attached H atoms were modelled as being disordered over two sets of sites with occupancies 0.61 (1):0.39 (1). The N-bound H atoms were located in difference Fourier maps and their positions were freely refined with the constraint Uiso(H) = 1.2Ueq(N) applied. The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The methyl H-atoms attached to C8 and C18 were modelled as being equally disordered over two sets of sites, with occupancies 0.5:0.5.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules (A and B) of the title compound, showing the numbering scheme and 50% displacement ellipsoids. Only the major disordered component (C20A) for atom C20 is shown. The disordered methyl H-atom sites for C8 and C18 are shown in black and orange.
[Figure 2] Fig. 2. An R22(8) inversion dimer of A molecules in the crystal of the title compound, linked by pairs of N—H···O hydrogen bonds [Symmetry code: (i) -x, -y+1, -z+2; C-bound H atoms have been omitted for clarity].
[Figure 3] Fig. 3. A fragment of a C(10) chain of B molecules in the crystal of the title compound, linked by N—H···O hydrogen bonds [Symmetry code: (i) x-1, y, z; C-bound H atoms have been omitted for clarity].
N-[4-(Ethylsulfamoyl)phenyl]acetamide top
Crystal data top
C10H14N2O3SZ = 4
Mr = 242.29F(000) = 512
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2766 (3) ÅCell parameters from 2513 reflections
b = 12.1728 (4) Åθ = 2.6–23.2°
c = 13.5041 (4) ŵ = 0.27 mm1
α = 70.130 (2)°T = 296 K
β = 73.935 (2)°Block, colourless
γ = 71.517 (2)°0.40 × 0.35 × 0.20 mm
V = 1191.56 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4310 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 25.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.901, Tmax = 0.949k = 1414
18017 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.23 e Å3
4 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H14N2O3Sγ = 71.517 (2)°
Mr = 242.29V = 1191.56 (7) Å3
Triclinic, P1Z = 4
a = 8.2766 (3) ÅMo Kα radiation
b = 12.1728 (4) ŵ = 0.27 mm1
c = 13.5041 (4) ÅT = 296 K
α = 70.130 (2)°0.40 × 0.35 × 0.20 mm
β = 73.935 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4310 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2701 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.949Rint = 0.049
18017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
4310 reflectionsΔρmin = 0.29 e Å3
317 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2008 (3)0.0487 (2)0.95681 (17)0.0464 (6)
C20.1609 (3)0.1059 (2)0.85534 (17)0.0505 (7)
H20.18270.06150.80690.061*
C30.0899 (4)0.2270 (2)0.82678 (18)0.0525 (7)
H30.06480.26490.75840.063*
C40.0548 (4)0.2939 (2)0.89748 (18)0.0520 (7)
C50.0892 (5)0.2362 (3)1.0001 (2)0.0727 (10)
H50.06370.28011.04940.087*
C60.1599 (4)0.1162 (3)1.02838 (19)0.0704 (9)
H60.18160.07821.09760.084*
C70.3582 (4)0.1539 (2)0.9343 (2)0.0515 (7)
C80.4335 (4)0.2783 (3)0.9973 (2)0.0711 (9)
H8A0.41040.28131.07170.107*0.50
H8B0.55660.29950.97200.107*0.50
H8C0.38200.33410.98870.107*0.50
H8D0.48890.32860.94990.107*0.50
H8E0.34280.31041.04960.107*0.50
H8F0.51730.27581.03290.107*0.50
C90.2775 (5)0.5052 (4)0.7663 (3)0.1020 (13)
H9A0.24680.53550.69580.122*
H9B0.34080.42140.77610.122*
C100.3891 (6)0.5758 (4)0.7731 (3)0.1241 (16)
H10A0.32470.65800.76620.186*
H10B0.48900.57260.71640.186*
H10C0.42570.54230.84100.186*
S10.02930 (11)0.45083 (7)0.85864 (5)0.0632 (3)
O10.0688 (3)0.48292 (18)0.75523 (15)0.0899 (8)
O20.1616 (3)0.48336 (18)0.94495 (15)0.0701 (6)
O30.3705 (3)0.12737 (18)0.83768 (13)0.0745 (6)
N10.1197 (4)0.5143 (2)0.8485 (2)0.0677 (8)
H1N0.132 (4)0.509 (3)0.906 (2)0.084 (12)*
N20.2774 (3)0.0745 (2)0.99202 (17)0.0509 (6)
H2N0.273 (3)0.098 (2)1.0556 (19)0.057 (8)*
C110.5045 (3)0.8474 (2)0.55157 (16)0.0400 (6)
C120.3254 (3)0.8783 (2)0.57472 (17)0.0464 (7)
H120.26800.89550.63940.056*
C130.2316 (3)0.8836 (2)0.50377 (17)0.0462 (6)
H130.11100.90350.52050.055*
C140.3162 (3)0.8595 (2)0.40685 (16)0.0429 (6)
C150.4946 (4)0.8336 (2)0.38109 (18)0.0530 (7)
H150.55160.81940.31520.064*
C160.5891 (4)0.8287 (2)0.45299 (18)0.0542 (7)
H160.70950.81270.43500.065*
C170.7625 (4)0.8011 (2)0.63274 (19)0.0471 (6)
C180.8106 (4)0.7976 (3)0.7326 (2)0.0613 (8)
H18A0.70760.82360.78140.092*0.50
H18B0.88590.85020.71510.092*0.50
H18C0.86940.71670.76550.092*0.50
H18D0.93430.77010.72660.092*0.50
H18E0.75600.74350.79290.092*0.50
H18F0.77250.87690.74250.092*0.50
C190.2575 (5)0.6154 (3)0.3897 (3)0.0936 (11)
H19A0.35330.62200.41390.112*0.61
H19B0.30270.60120.31960.112*0.61
H19C0.21660.56230.36800.112*0.39
H19D0.36370.62870.33980.112*0.39
C20A0.1990 (9)0.5089 (5)0.4637 (5)0.109 (2)0.61
H20A0.29790.44480.48320.131*0.61
H20B0.13590.48330.42930.131*0.61
H20C0.12510.52890.52700.131*0.61
C20B0.2956 (10)0.5581 (9)0.4878 (7)0.097 (3)0.39
H20D0.39040.48850.48430.116*0.39
H20E0.19590.53340.53610.116*0.39
H20F0.32760.61150.51330.116*0.39
S20.19472 (9)0.85254 (7)0.32215 (5)0.0510 (2)
O40.3107 (3)0.84047 (18)0.22380 (12)0.0666 (6)
O50.0430 (3)0.94944 (18)0.31922 (14)0.0715 (6)
O60.8709 (2)0.7722 (2)0.55920 (14)0.0725 (6)
N30.1303 (3)0.7306 (2)0.37712 (18)0.0558 (7)
H3N0.054 (4)0.737 (3)0.431 (2)0.074 (10)*
N40.5909 (3)0.8385 (2)0.63127 (17)0.0464 (6)
H4N0.531 (3)0.852 (2)0.6812 (19)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0546 (17)0.0509 (17)0.0336 (12)0.0121 (14)0.0065 (12)0.0141 (11)
C20.0633 (19)0.0566 (18)0.0351 (13)0.0090 (15)0.0115 (12)0.0208 (12)
C30.0663 (19)0.0571 (19)0.0360 (13)0.0076 (16)0.0162 (13)0.0170 (12)
C40.0681 (19)0.0490 (16)0.0412 (13)0.0069 (15)0.0184 (13)0.0159 (12)
C50.121 (3)0.058 (2)0.0444 (15)0.0006 (19)0.0344 (17)0.0244 (13)
C60.118 (3)0.0550 (19)0.0365 (14)0.0003 (19)0.0320 (16)0.0167 (13)
C70.0550 (18)0.0552 (18)0.0432 (15)0.0082 (15)0.0049 (13)0.0207 (13)
C80.085 (2)0.060 (2)0.0606 (17)0.0049 (18)0.0142 (17)0.0184 (15)
C90.124 (3)0.106 (3)0.073 (2)0.041 (3)0.021 (2)0.040 (2)
C100.134 (4)0.087 (3)0.138 (3)0.053 (3)0.030 (3)0.034 (2)
S10.0857 (6)0.0535 (5)0.0532 (4)0.0020 (4)0.0284 (4)0.0203 (3)
O10.148 (2)0.0633 (14)0.0648 (12)0.0019 (14)0.0616 (14)0.0176 (10)
O20.0702 (14)0.0692 (14)0.0750 (12)0.0001 (11)0.0216 (11)0.0347 (10)
O30.0948 (16)0.0751 (14)0.0430 (11)0.0051 (12)0.0103 (10)0.0294 (9)
N10.093 (2)0.0600 (17)0.0555 (16)0.0215 (15)0.0127 (16)0.0210 (13)
N20.0678 (16)0.0517 (15)0.0290 (11)0.0086 (12)0.0089 (11)0.0119 (10)
C110.0441 (16)0.0447 (15)0.0336 (12)0.0111 (13)0.0067 (11)0.0144 (10)
C120.0491 (17)0.0536 (17)0.0358 (13)0.0067 (14)0.0049 (12)0.0194 (11)
C130.0398 (15)0.0555 (17)0.0418 (13)0.0039 (13)0.0085 (12)0.0184 (12)
C140.0486 (17)0.0481 (16)0.0323 (12)0.0096 (13)0.0108 (11)0.0110 (11)
C150.0506 (17)0.075 (2)0.0350 (13)0.0133 (15)0.0029 (12)0.0230 (12)
C160.0415 (16)0.080 (2)0.0440 (14)0.0141 (15)0.0045 (12)0.0249 (13)
C170.0523 (18)0.0467 (16)0.0437 (14)0.0129 (14)0.0150 (13)0.0088 (12)
C180.0623 (19)0.068 (2)0.0596 (16)0.0101 (16)0.0260 (15)0.0193 (14)
C190.095 (3)0.063 (2)0.115 (3)0.013 (2)0.005 (2)0.034 (2)
C20A0.187 (8)0.071 (4)0.080 (4)0.046 (5)0.037 (4)0.011 (3)
C20B0.107 (8)0.092 (8)0.089 (7)0.002 (6)0.035 (6)0.030 (6)
S20.0567 (5)0.0621 (5)0.0360 (3)0.0101 (4)0.0169 (3)0.0136 (3)
O40.0735 (14)0.1001 (16)0.0299 (9)0.0264 (12)0.0085 (9)0.0191 (9)
O50.0702 (14)0.0710 (14)0.0708 (12)0.0101 (12)0.0408 (11)0.0199 (10)
O60.0473 (12)0.1133 (18)0.0551 (11)0.0118 (12)0.0038 (10)0.0331 (11)
N30.0559 (16)0.0708 (18)0.0482 (13)0.0185 (14)0.0073 (12)0.0253 (12)
N40.0441 (15)0.0603 (15)0.0364 (12)0.0083 (12)0.0064 (11)0.0206 (11)
Geometric parameters (Å, º) top
C1—C61.381 (3)C12—H120.9300
C1—C21.388 (3)C13—C141.383 (3)
C1—N21.399 (3)C13—H130.9300
C2—C31.363 (3)C14—C151.377 (3)
C2—H20.9300C14—S21.756 (2)
C3—C41.373 (3)C15—C161.381 (3)
C3—H30.9300C15—H150.9300
C4—C51.388 (3)C16—H160.9300
C4—S11.756 (3)C17—O61.208 (3)
C5—C61.351 (4)C17—N41.351 (3)
C5—H50.9300C17—C181.492 (3)
C6—H60.9300C18—H18A0.9600
C7—O31.215 (3)C18—H18B0.9600
C7—N21.343 (3)C18—H18C0.9600
C7—C81.491 (4)C18—H18D0.9600
C8—H8A0.9600C18—H18E0.9600
C8—H8B0.9600C18—H18F0.9600
C8—H8C0.9600C19—C20B1.343 (8)
C8—H8D0.9600C19—N31.451 (4)
C8—H8E0.9600C19—C20A1.471 (6)
C8—H8F0.9600C19—H19A0.9700
C9—N11.463 (4)C19—H19B0.9700
C9—C101.484 (5)C19—H19C0.9700
C9—H9A0.9700C19—H19D0.9700
C9—H9B0.9700C20A—H19C1.2249
C10—H10A0.9600C20A—H20A0.9600
C10—H10B0.9600C20A—H20B0.9600
C10—H10C0.9600C20A—H20C0.9600
S1—O11.4180 (19)C20B—H20D0.9600
S1—O21.431 (2)C20B—H20E0.9600
S1—N11.605 (3)C20B—H20F0.9600
N1—H1N0.79 (3)S2—O51.424 (2)
N2—H2N0.80 (2)S2—O41.4298 (17)
C11—C161.380 (3)S2—N31.604 (2)
C11—C121.381 (3)N3—H3N0.83 (3)
C11—N41.407 (3)N4—H4N0.75 (2)
C12—C131.364 (3)
C6—C1—C2118.5 (2)C13—C14—S2119.3 (2)
C6—C1—N2117.6 (2)C14—C15—C16120.1 (2)
C2—C1—N2123.8 (2)C14—C15—H15120.0
C3—C2—C1119.9 (2)C16—C15—H15120.0
C3—C2—H2120.0C11—C16—C15119.9 (2)
C1—C2—H2120.0C11—C16—H16120.1
C2—C3—C4121.0 (2)C15—C16—H16120.1
C2—C3—H3119.5O6—C17—N4123.2 (2)
C4—C3—H3119.5O6—C17—C18121.6 (3)
C3—C4—C5119.1 (2)N4—C17—C18115.2 (2)
C3—C4—S1120.80 (19)C17—C18—H18A109.5
C5—C4—S1120.1 (2)C17—C18—H18B109.5
C6—C5—C4119.9 (2)H18A—C18—H18B109.5
C6—C5—H5120.0C17—C18—H18C109.5
C4—C5—H5120.0H18A—C18—H18C109.5
C5—C6—C1121.5 (2)H18B—C18—H18C109.5
C5—C6—H6119.3C17—C18—H18D109.5
C1—C6—H6119.3H18A—C18—H18D141.1
O3—C7—N2123.0 (3)H18B—C18—H18D56.3
O3—C7—C8121.9 (2)H18C—C18—H18D56.3
N2—C7—C8115.1 (2)C17—C18—H18E109.5
C7—C8—H8A109.5H18A—C18—H18E56.3
C7—C8—H8B109.5H18B—C18—H18E141.1
H8A—C8—H8B109.5H18C—C18—H18E56.3
C7—C8—H8C109.5H18D—C18—H18E109.5
H8A—C8—H8C109.5C17—C18—H18F109.5
H8B—C8—H8C109.5H18A—C18—H18F56.3
C7—C8—H8D109.5H18B—C18—H18F56.3
H8A—C8—H8D141.1H18C—C18—H18F141.1
H8B—C8—H8D56.3H18D—C18—H18F109.5
H8C—C8—H8D56.3H18E—C18—H18F109.5
C7—C8—H8E109.5C20B—C19—N3117.2 (5)
H8A—C8—H8E56.3C20B—C19—C20A54.7 (4)
H8B—C8—H8E141.1N3—C19—C20A117.3 (4)
H8C—C8—H8E56.3C20B—C19—H19A55.6
H8D—C8—H8E109.5N3—C19—H19A108.0
C7—C8—H8F109.5C20A—C19—H19A108.0
H8A—C8—H8F56.3C20B—C19—H19B134.6
H8B—C8—H8F56.3N3—C19—H19B108.0
H8C—C8—H8F141.1C20A—C19—H19B108.0
H8D—C8—H8F109.5H19A—C19—H19B107.2
H8E—C8—H8F109.5C20B—C19—H19C108.1
N1—C9—C10110.3 (3)N3—C19—H19C108.0
N1—C9—H9A109.6C20A—C19—H19C55.8
C10—C9—H9A109.6H19A—C19—H19C143.9
N1—C9—H9B109.6H19B—C19—H19C58.7
C10—C9—H9B109.6C20B—C19—H19D108.4
H9A—C9—H9B108.1N3—C19—H19D107.5
C9—C10—H10A109.5C20A—C19—H19D135.0
C9—C10—H10B109.5H19A—C19—H19D59.1
H10A—C10—H10B109.5H19B—C19—H19D50.6
C9—C10—H10C109.5H19C—C19—H19D107.2
H10A—C10—H10C109.5C19—C20A—H19C40.9
H10B—C10—H10C109.5C19—C20A—H20A109.5
O1—S1—O2119.76 (14)H19C—C20A—H20A113.9
O1—S1—N1107.58 (15)C19—C20A—H20B109.5
O2—S1—N1104.88 (13)H19C—C20A—H20B70.0
O1—S1—C4107.82 (12)C19—C20A—H20C109.5
O2—S1—C4108.01 (12)H19C—C20A—H20C133.9
N1—S1—C4108.34 (14)C19—C20B—H20D109.5
C9—N1—S1121.8 (2)C19—C20B—H20E109.5
C9—N1—H1N116 (3)H20D—C20B—H20E109.5
S1—N1—H1N110 (2)C19—C20B—H20F109.5
C7—N2—C1129.0 (2)H20D—C20B—H20F109.5
C7—N2—H2N117.9 (19)H20E—C20B—H20F109.5
C1—N2—H2N113.0 (19)O5—S2—O4119.04 (11)
C16—C11—C12119.4 (2)O5—S2—N3106.63 (14)
C16—C11—N4123.5 (2)O4—S2—N3107.26 (13)
C12—C11—N4117.0 (2)O5—S2—C14109.07 (12)
C13—C12—C11120.7 (2)O4—S2—C14107.35 (12)
C13—C12—H12119.6N3—S2—C14106.90 (11)
C11—C12—H12119.6C19—N3—S2119.3 (2)
C12—C13—C14119.9 (2)C19—N3—H3N115 (2)
C12—C13—H13120.1S2—N3—H3N110 (2)
C14—C13—H13120.1C17—N4—C11128.9 (2)
C15—C14—C13119.8 (2)C17—N4—H4N117 (2)
C15—C14—S2120.78 (18)C11—N4—H4N114 (2)
C6—C1—C2—C32.8 (4)N4—C11—C12—C13177.1 (2)
N2—C1—C2—C3178.5 (2)C11—C12—C13—C140.8 (4)
C1—C2—C3—C40.8 (4)C12—C13—C14—C151.9 (4)
C2—C3—C4—C51.3 (4)C12—C13—C14—S2173.90 (19)
C2—C3—C4—S1177.6 (2)C13—C14—C15—C161.7 (4)
C3—C4—C5—C61.5 (5)S2—C14—C15—C16174.1 (2)
S1—C4—C5—C6177.5 (3)C12—C11—C16—C153.9 (4)
C4—C5—C6—C10.6 (5)N4—C11—C16—C15176.9 (2)
C2—C1—C6—C52.7 (5)C14—C15—C16—C111.3 (4)
N2—C1—C6—C5178.5 (3)C15—C14—S2—O5141.0 (2)
C3—C4—S1—O17.2 (3)C13—C14—S2—O543.2 (2)
C5—C4—S1—O1173.8 (3)C15—C14—S2—O410.8 (3)
C3—C4—S1—O2138.0 (2)C13—C14—S2—O4173.46 (19)
C5—C4—S1—O243.1 (3)C15—C14—S2—N3104.0 (2)
C3—C4—S1—N1108.9 (3)C13—C14—S2—N371.7 (2)
C5—C4—S1—N170.0 (3)C20B—C19—N3—S2102.6 (6)
C10—C9—N1—S1178.0 (3)C20A—C19—N3—S2164.8 (4)
O1—S1—N1—C949.8 (3)O5—S2—N3—C19179.1 (2)
O2—S1—N1—C9178.3 (3)O4—S2—N3—C1950.5 (3)
C4—S1—N1—C966.5 (3)C14—S2—N3—C1964.4 (3)
O3—C7—N2—C12.7 (5)O6—C17—N4—C112.5 (4)
C8—C7—N2—C1177.0 (3)C18—C17—N4—C11177.5 (2)
C6—C1—N2—C7166.0 (3)C16—C11—N4—C176.6 (4)
C2—C1—N2—C715.2 (4)C12—C11—N4—C17174.2 (3)
C16—C11—C12—C133.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.79 (3)2.13 (3)2.914 (3)173 (3)
N2—H2N···O4ii0.80 (2)2.21 (2)3.006 (3)169 (3)
N3—H3N···O6iii0.83 (3)2.03 (3)2.854 (3)173 (3)
N4—H4N···O3iv0.75 (2)2.21 (2)2.960 (3)174 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z+1; (iii) x1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H14N2O3S
Mr242.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2766 (3), 12.1728 (4), 13.5041 (4)
α, β, γ (°)70.130 (2), 73.935 (2), 71.517 (2)
V3)1191.56 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.901, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
18017, 4310, 2701
Rint0.049
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.04
No. of reflections4310
No. of parameters317
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.79 (3)2.13 (3)2.914 (3)173 (3)
N2—H2N···O4ii0.80 (2)2.21 (2)3.006 (3)169 (3)
N3—H3N···O6iii0.83 (3)2.03 (3)2.854 (3)173 (3)
N4—H4N···O3iv0.75 (2)2.21 (2)2.960 (3)174 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z+1; (iii) x1, y, z; (iv) x, y+1, z.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHou, H., Chen, S., Wang, L. & Ma, L. (2009). J. Coord. Chem. 61, 2690–2702.  CrossRef Google Scholar
First citationKhan, I. U., Sheikh, T. A., Ejaz, & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.  Google Scholar
First citationRehman, J., Ejaz, Khan, I. U. & Harrison, W. T. A. (2011). Acta Cryst. E67. Submitted.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds