organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(2-Formyl­phen­­oxy)­but­­oxy]­benzaldehyde

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 18 August 2011; accepted 20 August 2011; online 27 August 2011)

In the crystal structure of the title compound, C18H18O4, the full mol­ecule is generated by the application of an inversion centre. The mol­ecule is essentially planar, with an r.m.s. deviation of 0.017 (1) Å for all non-H atoms. The mol­ecules are linked through inter­molecular C—H⋯O inter­actions to form a mol­ecular sheet parallel to the ([\overline{1}]02) plane.

Related literature

For the synthesis and related structures, see: Hu et al. (2005[Hu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775-o2777.]); Aravindan et al. (2003[Aravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806-o807.]). For related literature on Schiff bases and their transition metal complexes, see: Ilhan et al. (2009[Ilhan, S., Temel, H. & Pasa, S. (2009). Chin. Chem. Lett. 20, 339-343.], 2010[Ilhan, S., Temel, H., Pasa, S. & Tegin, I. (2010). Russ. J. Coord. Chem. 55, 1402-1409.]); Yilmaz et al. (2009[Yilmaz, I., Ilhan, S., Temel, H. & Kilic, A. (2009). J. Incl. Phenom. Macrocycl. Chem. 63, 163-169.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O4

  • Mr = 298.34

  • Monoclinic, P 21 /c

  • a = 8.0624 (7) Å

  • b = 14.5896 (7) Å

  • c = 6.8003 (4) Å

  • β = 108.549 (4)°

  • V = 758.35 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 190 K

  • 0.30 × 0.24 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.986

  • 12149 measured reflections

  • 2210 independent reflections

  • 1243 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.13

  • 2210 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.53 3.397 (2) 152
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, much attention has been paid to the synthesis and coordination chemistry of salicylaldehyde, its Schiff base derivatives and transition metal complexes (Hu et al., 2005; Aravindan et al., 2003; Ilhan et al., 2009, 2010; Yilmaz et al., 2009). The two-arm aldehydes can be condensed with primary diamines to form macrocyclic Schiff base ligands (Ilhan et al., 2009, 2010; Yilmaz et al., 2009).

In the crystal structure, the title molecule, 2,2'-[butane-1,4-diylbis(oxy)]dibenzaldehyde (Fig. 1), lies on a crystallographic inversion center, thus indicating that one half the molecule comprises the asymmetric unit. The molecules are linked through intermolecular C3—H3···O1ii contacts (Table 1), resulting in a molecular sheet parallel to the (102) plane (Fig. 2).

Related literature top

For the synthesis and related structures, see: Hu et al. (2005); Aravindan et al. (2003). For related literature on Schiff bases and their transition metal complexes, see: Ilhan et al. (2009, 2010); Yilmaz et al. (2009).

Experimental top

The title compound was isolated from the reaction between salicylaldehyde and butane-1,4-diamine in the presence of K2CO3 at 85 °C for about 48 h according to the literature (Hu et al., 2005). A small amount of the precipitate was dissolved in a mixture of methanol-chloroform (1:1 v/v) to make a clear solution and kept at room temperature for 3 days to give single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing a molecular sheet formed by C—H···O hydrogen bonds (dashed lines).
2-[4-(2-Formylphenoxy)butoxy]benzaldehyde top
Crystal data top
C18H18O4F(000) = 316.00
Mr = 298.34Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 7072 reflections
a = 8.0624 (7) Åθ = 3.0–30.1°
b = 14.5896 (7) ŵ = 0.09 mm1
c = 6.8003 (4) ÅT = 190 K
β = 108.549 (4)°Block, pale-yellow
V = 758.35 (8) Å30.30 × 0.24 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1243 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.041
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1111
Tmin = 0.980, Tmax = 0.986k = 2020
12149 measured reflectionsl = 99
2210 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0806P]
where P = (Fo2 + 2Fc2)/3
2210 reflections(Δ/σ)max = 0.0001
100 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H18O4V = 758.35 (8) Å3
Mr = 298.34Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0624 (7) ŵ = 0.09 mm1
b = 14.5896 (7) ÅT = 190 K
c = 6.8003 (4) Å0.30 × 0.24 × 0.15 mm
β = 108.549 (4)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
2210 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1243 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.041
12149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.13Δρmax = 0.29 e Å3
2210 reflectionsΔρmin = 0.24 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18122 (15)0.33844 (8)0.1640 (2)0.0554 (4)
O20.69626 (12)0.36790 (7)0.37956 (16)0.0343 (3)
C10.45915 (17)0.26677 (9)0.2840 (2)0.0307 (3)
C20.64045 (18)0.27981 (9)0.3598 (2)0.0297 (3)
C30.75273 (18)0.20492 (10)0.4082 (2)0.0327 (3)
H30.87580.21350.45960.039*
C40.6825 (2)0.11807 (10)0.3803 (2)0.0380 (4)
H40.75860.06660.41340.046*
C50.5042 (2)0.10385 (11)0.3054 (3)0.0411 (4)
H50.45820.04340.28680.049*
C60.3940 (2)0.17801 (10)0.2582 (2)0.0380 (4)
H60.27120.16840.20710.046*
C70.3391 (2)0.34439 (11)0.2358 (3)0.0396 (4)
H70.38820.40410.26250.047*
C80.88087 (17)0.38476 (10)0.4570 (2)0.0333 (3)
H8A0.94050.35470.36740.040*
H8B0.93070.36040.59960.040*
C90.90444 (18)0.48669 (10)0.4558 (2)0.0350 (4)
H9A0.83790.51590.53870.042*
H9B0.85680.50960.31170.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0243 (6)0.0575 (8)0.0782 (9)0.0011 (5)0.0074 (6)0.0063 (6)
O20.0210 (5)0.0285 (5)0.0497 (6)0.0040 (4)0.0060 (4)0.0021 (4)
C10.0234 (7)0.0324 (8)0.0352 (7)0.0038 (5)0.0077 (6)0.0030 (6)
C20.0268 (7)0.0287 (7)0.0333 (7)0.0051 (5)0.0092 (6)0.0032 (6)
C30.0244 (7)0.0320 (8)0.0391 (8)0.0013 (6)0.0065 (6)0.0020 (6)
C40.0358 (8)0.0316 (8)0.0447 (9)0.0011 (6)0.0102 (7)0.0001 (7)
C50.0363 (8)0.0317 (8)0.0521 (9)0.0074 (6)0.0095 (7)0.0039 (7)
C60.0286 (8)0.0388 (9)0.0441 (9)0.0085 (6)0.0081 (7)0.0055 (7)
C70.0265 (8)0.0372 (9)0.0529 (10)0.0018 (6)0.0095 (7)0.0027 (7)
C80.0206 (7)0.0313 (7)0.0453 (8)0.0026 (5)0.0068 (6)0.0035 (6)
C90.0239 (7)0.0294 (7)0.0489 (9)0.0023 (6)0.0075 (6)0.0035 (6)
Geometric parameters (Å, º) top
O1—C71.2128 (18)C5—C61.372 (2)
O2—C21.3543 (16)C5—H50.9500
O2—C81.4333 (16)C6—H60.9500
C1—C61.3874 (19)C7—H70.9500
C1—C21.3997 (19)C8—C91.500 (2)
C1—C71.458 (2)C8—H8A0.9900
C2—C31.390 (2)C8—H8B0.9900
C3—C41.376 (2)C9—C9i1.516 (3)
C3—H30.9500C9—H9A0.9900
C4—C51.379 (2)C9—H9B0.9900
C4—H40.9500
C2—O2—C8118.21 (11)C5—C6—H6119.5
C6—C1—C2118.83 (13)C1—C6—H6119.5
C6—C1—C7119.95 (13)O1—C7—C1124.87 (14)
C2—C1—C7121.21 (12)O1—C7—H7117.6
O2—C2—C3123.48 (13)C1—C7—H7117.6
O2—C2—C1116.14 (12)O2—C8—C9106.66 (11)
C3—C2—C1120.37 (12)O2—C8—H8A110.4
C4—C3—C2118.85 (13)C9—C8—H8A110.4
C4—C3—H3120.6O2—C8—H8B110.4
C2—C3—H3120.6C9—C8—H8B110.4
C3—C4—C5121.62 (14)H8A—C8—H8B108.6
C3—C4—H4119.2C8—C9—C9i111.50 (15)
C5—C4—H4119.2C8—C9—H9A109.3
C6—C5—C4119.28 (14)C9i—C9—H9A109.3
C6—C5—H5120.4C8—C9—H9B109.3
C4—C5—H5120.4C9i—C9—H9B109.3
C5—C6—C1121.05 (14)H9A—C9—H9B108.0
C8—O2—C2—C30.8 (2)C3—C4—C5—C60.2 (2)
C8—O2—C2—C1179.88 (12)C4—C5—C6—C10.2 (2)
C6—C1—C2—O2179.34 (12)C2—C1—C6—C50.1 (2)
C7—C1—C2—O21.8 (2)C7—C1—C6—C5179.02 (15)
C6—C1—C2—C30.0 (2)C6—C1—C7—O13.4 (3)
C7—C1—C2—C3178.91 (14)C2—C1—C7—O1177.73 (16)
O2—C2—C3—C4179.30 (13)C2—O2—C8—C9178.18 (12)
C1—C2—C3—C40.0 (2)O2—C8—C9—C9i177.46 (15)
C2—C3—C4—C50.1 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.952.533.397 (2)152
Symmetry code: (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18O4
Mr298.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)190
a, b, c (Å)8.0624 (7), 14.5896 (7), 6.8003 (4)
β (°) 108.549 (4)
V3)758.35 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.24 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.980, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12149, 2210, 1243
Rint0.041
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.13
No. of reflections2210
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.533.397 (2)152
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science. We also acknowledge Golestan University for partial support of this work.

References

First citationAravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806–o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775–o2777.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlhan, S., Temel, H. & Pasa, S. (2009). Chin. Chem. Lett. 20, 339–343.  CrossRef CAS Google Scholar
First citationIlhan, S., Temel, H., Pasa, S. & Tegin, I. (2010). Russ. J. Coord. Chem. 55, 1402–1409.  CAS Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYilmaz, I., Ilhan, S., Temel, H. & Kilic, A. (2009). J. Incl. Phenom. Macrocycl. Chem. 63, 163–169.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds