metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chlorido(phenanthren-9-yl)bis­­(tri­phenyl­phosphane)nickel(II)

aDepartment of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
*Correspondence e-mail: xlei@lamar.edu

(Received 28 July 2011; accepted 9 August 2011; online 27 August 2011)

The title compound, [Ni(C14H9)Cl(C18H15P)2], was synthesized from the reaction between 9-chloro­phenanthrene, NiCl2·6H2O and triphenyl­phosphane in ethanol. The bond angles around the NiII atom indicate that it exists in a slightly distorted square-planar geometry.

Related literature

For the synthesis, see: Soolinger et al. (1990[Soolinger, J. V., Verkruijsse, H. D., Keegstra, M. A. & Brandsma, L. (1990). Synth. Commun. 20, 3153-3156.]). For analogues and related applications, see: Rosen et al. (2011[Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). Chem. Rev. 111, 1346-1416.]); Zim et al. (2001[Zim, D., Lando, V. R., Dupont, J. & Monteiro, A. (2001). Org. Lett. 3, 3049-3051.]); Chen & Yang (2007a[Chen, C. & Yang, L. M. (2007a). Tetrahedron Lett. 48, 2427-2430.],b[Chen, C. & Yang, L. M. (2007b). J. Org. Chem. 72, 6324-6327.]); Gao & Yang (2008[Gao, C. Y. & Yang, L. M. (2008). J. Org. Chem. 73, 1624-1627.]); Zhou et al. (2009[Zhou, L., Feng, X., He, R. & Bao, M. (2009). J. Coord. Chem. 62, 2824-2831.]); Roma et al. (2011[Roma, A. D., Yang, H. J., Millione, S., Capacchione, C., Roviello, G. & Grassi, A. (2011). Inorg. Chem. Commun. 14, 542-544.]); Liu et al. (2008[Liu, Y.-H., Chen, C. & Yang, L.-M. (2008). Acta Cryst. E64, m1225.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H9)Cl(C18H15P)2]

  • Mr = 795.91

  • Orthorhombic, P 21 21 21

  • a = 11.090 (5) Å

  • b = 15.204 (7) Å

  • c = 23.679 (10) Å

  • V = 3993 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 110 K

  • 0.59 × 0.46 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.863

  • 53371 measured reflections

  • 6780 independent reflections

  • 6359 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.02

  • 6780 reflections

  • 488 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2986 Friedel pairs

  • Flack parameter: 0.000 (7)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ni catalysts have attracted considerate attention in recent years. In comparison with Pd and Pt catalysts, Ni catalysts are more desirable from the standpoints of economics and versatility (Rosen et al., 2011). Ni-catalyzed cross-coupling reactions play an important role in the formation of carbon-carbon and carbon-heteroatom bonds. The mechanism of Ni-catalyzed cross-coupling reactions was considered similar to the Pd-catalyzed cross-couplings (Rosen et al., 2011). The catalytic cycle in both cases involves three sequential steps: oxidative addition, translation, and reductive elimination (Zim et al., 2001). Ni(II) σ-aryl complex is believed to be the oxidative addition product in the Ni-catalyzed cross-coupling reactions. Soolinger et al. (1990), Chen & Yang (2007a,b), and Gao & Yang (2008) have demonstrated that isolatable Ni(II) σ-aryl complexes can be directly used as efficient catalysts for cross-coupling reactions. In addition, Zhou et al. (2009) have reported that Ni(II) σ-aryl complexes can catalyze dehalogenation of aryl chlorides, and Roma et al. (2011)have shown that Ni(II) σ-aryl complexes can promote the polymerization of methylmethacrylate.

As further advances in Ni(II) σ-aryl complexes as catalyst are necessary, we synthesized the title compound in an analogous fashion to the literature procedure (Soolinger et al., 1990). The title compound is air- and thermally stable. The bond angles around Ni of the complex indicate that it exists in a slightly distorted square-planar geometry, which is similar to the geometry of its 1-naphthyl (Zhou et al., 2009) and 4-acetylnaphthyl (Liu et al., 2008) analogues. It is noteworthy that there are potentially C—H···Cl hydrogen bond intramolecular interactions, and the donor-acceptor distances are 2.862 Å for C22—H22A···Cl1 and 2.887 Å for C44—H44A···Cl1. There are also potentially C—H···Cl intermolecular interactions, and the donor-acceptor distances are 2.747 Å for C23—H23A···Cl1i and 2.872 Å for C43—H43A···Cl1i (symmetry codes: (i) -1/2 + x, 3/2 - y, - z). Intramolecular C—H···π interactions are observed as the distances from C32—H32A and C33—H33A to the centroid of the plane C1—C2—C3—C8—C9—C14 of the phenanthrene ring are 2.788 and 2.588 Å, respectively. The application of the title compound as catalyst in cross-coupling reactions is under investigation.

Related literature top

For the synthesis, see: Soolinger et al. (1990). For analogues and related applications, see: Rosen et al. (2011); Zim et al. (2001); Chen & Yang (2007a,b); Gao & Yang (2008); Zhou et al. (2009); Roma et al. (2011); Liu et al. (2008).

Experimental top

A stirred mixture of 1.20 g (5.0 mmol) of NiCl2.6H2O, 2.88 g (11.0 mmol) of triphenylphosphine and 25 ml of 96% ethanol was heated until a gentle reflux started. 9-Chlorophenanthrene (10.0 mmol, 2.13 g, excess) was then added, followed by zinc dust (0.33 g, 5.0 mmol, Merck, analytical grade) over 5 min. The dark-green mixture very soon turned yellow. After stirring and heating under reflux for 1.5 h (under nitrogen), the mixture was cooled to 293 K. Four 2 ml portions of 30% aqueous hydrochloric acid were added over 15 min. After stirring for 1.5 h, the solid was filtered off on a sintered-glass funnel and successively washed with 5 ml of ethanol, twice with 5 ml of 1 M aqueous hydrochloric acid, twice with 5 ml of 96% ethanol and once with 5 ml of pentane. The yellowish solid (3.10 g) was dried in vacuo. Single crystals suitable for X-ray diffraction were obtained by recrystallization from CH2Cl2/hexanes.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms bound to carbon atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C–H) = 0.95 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure. Ellipsoids are drawn at the 30% probability level.
trans-Chlorido(phenanthren-9-yl)bis(triphenylphosphane)nickel(II) top
Crystal data top
[Ni(C14H9)Cl(C18H15P)2]F(000) = 1656
Mr = 795.91Dx = 1.324 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6845 reflections
a = 11.090 (5) Åθ = 2.2–26.7°
b = 15.204 (7) ŵ = 0.67 mm1
c = 23.679 (10) ÅT = 110 K
V = 3993 (3) Å3Plate, orange
Z = 40.59 × 0.46 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
6780 independent reflections
Radiation source: fine-focus sealed tube6359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.692, Tmax = 0.863k = 1818
53371 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6780 reflectionsΔρmax = 0.26 e Å3
488 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983), 2986 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (7)
Crystal data top
[Ni(C14H9)Cl(C18H15P)2]V = 3993 (3) Å3
Mr = 795.91Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.090 (5) ŵ = 0.67 mm1
b = 15.204 (7) ÅT = 110 K
c = 23.679 (10) Å0.59 × 0.46 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
6780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6359 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.863Rint = 0.048
53371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.26 e Å3
S = 1.02Δρmin = 0.14 e Å3
6780 reflectionsAbsolute structure: Flack (1983), 2986 Friedel pairs
488 parametersAbsolute structure parameter: 0.000 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.56721 (2)0.527489 (15)0.047248 (9)0.02000 (7)
Cl10.49242 (4)0.63193 (3)0.009025 (18)0.02449 (11)
P10.65475 (5)0.45655 (3)0.024960 (19)0.02055 (11)
P20.50725 (4)0.59607 (3)0.125640 (19)0.02011 (11)
C10.65053 (18)0.44916 (12)0.09623 (8)0.0215 (4)
C20.76625 (18)0.46946 (15)0.11185 (8)0.0264 (4)
H2A0.80040.52350.09970.032*
C30.83753 (19)0.41080 (15)0.14631 (8)0.0285 (5)
C40.95831 (19)0.43137 (16)0.15978 (10)0.0373 (6)
H4A0.99100.48620.14820.045*
C51.0289 (2)0.37379 (18)0.18910 (11)0.0481 (7)
H5A1.11030.38840.19740.058*
C60.9811 (3)0.29272 (18)0.20702 (11)0.0503 (7)
H6A1.03050.25240.22720.060*
C70.8645 (2)0.27199 (17)0.19557 (9)0.0409 (6)
H7A0.83310.21740.20830.049*
C80.7884 (2)0.33008 (14)0.16497 (9)0.0298 (5)
C90.66463 (19)0.30797 (14)0.15135 (8)0.0272 (5)
C100.6079 (2)0.23092 (15)0.16979 (9)0.0355 (5)
H10A0.65160.19050.19250.043*
C110.4903 (2)0.21231 (15)0.15580 (9)0.0387 (6)
H11A0.45360.15980.16910.046*
C120.4251 (2)0.26995 (14)0.12229 (9)0.0343 (5)
H12A0.34410.25670.11240.041*
C130.47822 (19)0.34736 (14)0.10304 (8)0.0292 (5)
H13A0.43280.38660.08020.035*
C140.59785 (18)0.36821 (13)0.11689 (8)0.0242 (4)
C150.36705 (18)0.65927 (14)0.12249 (8)0.0253 (4)
C160.2761 (2)0.63172 (17)0.08626 (9)0.0359 (5)
H16A0.28920.58350.06150.043*
C170.1658 (2)0.67511 (19)0.08639 (10)0.0473 (7)
H17A0.10350.65650.06160.057*
C180.1462 (2)0.74547 (18)0.12253 (10)0.0451 (6)
H18A0.07100.77530.12210.054*
C190.2356 (2)0.77222 (16)0.15896 (10)0.0379 (6)
H19A0.22150.81990.18400.046*
C200.34575 (19)0.72989 (14)0.15910 (9)0.0286 (5)
H20A0.40740.74880.18420.034*
C210.62413 (17)0.67544 (13)0.14485 (8)0.0230 (4)
C220.69398 (18)0.71257 (14)0.10193 (9)0.0259 (5)
H22A0.67730.69840.06370.031*
C230.7876 (2)0.77001 (15)0.11455 (9)0.0315 (5)
H23A0.83410.79530.08500.038*
C240.81292 (19)0.79046 (15)0.17089 (9)0.0318 (5)
H24A0.87820.82850.17970.038*
C250.74276 (19)0.75518 (14)0.21397 (10)0.0331 (5)
H25A0.75910.76990.25220.040*
C260.64865 (19)0.69838 (14)0.20099 (8)0.0265 (5)
H26A0.60040.67480.23050.032*
C270.48354 (17)0.53297 (13)0.19152 (7)0.0222 (4)
C280.36738 (19)0.51242 (14)0.20905 (8)0.0278 (5)
H28A0.30020.53250.18780.033*
C290.3486 (2)0.46246 (15)0.25774 (9)0.0349 (5)
H29A0.26870.44830.26900.042*
C300.4445 (2)0.43348 (15)0.28973 (9)0.0353 (5)
H30A0.43100.40010.32310.042*
C310.5605 (2)0.45350 (14)0.27274 (8)0.0312 (5)
H31A0.62720.43370.29450.037*
C320.58031 (19)0.50237 (13)0.22399 (8)0.0258 (4)
H32A0.66050.51520.21260.031*
C330.76549 (19)0.30173 (14)0.01596 (8)0.0267 (5)
H33A0.81540.34020.03720.032*
C340.7797 (2)0.21147 (14)0.02159 (9)0.0294 (5)
H34A0.83890.18880.04670.035*
C350.7080 (2)0.15427 (15)0.00917 (9)0.0336 (5)
H35A0.71780.09250.00520.040*
C360.6218 (2)0.18761 (14)0.04567 (11)0.0357 (5)
H36A0.57180.14860.06660.043*
C370.60811 (18)0.27826 (13)0.05175 (9)0.0296 (5)
H37A0.54990.30060.07750.036*
C380.67883 (17)0.33683 (13)0.02052 (8)0.0222 (4)
C390.80445 (17)0.50331 (13)0.03660 (7)0.0223 (4)
C400.90278 (18)0.45309 (13)0.05382 (8)0.0275 (5)
H40A0.89410.39150.05910.033*
C411.0134 (2)0.49305 (15)0.06328 (9)0.0315 (5)
H41A1.08000.45880.07560.038*
C421.02723 (19)0.58275 (15)0.05485 (9)0.0325 (5)
H42A1.10380.60940.06040.039*
C430.9301 (2)0.63360 (13)0.03836 (8)0.0320 (5)
H43A0.93950.69510.03290.038*
C440.81898 (18)0.59436 (14)0.02980 (8)0.0265 (4)
H44A0.75180.62950.01920.032*
C450.58119 (18)0.46590 (13)0.09426 (7)0.0235 (4)
C460.6465 (2)0.46476 (15)0.14471 (8)0.0316 (5)
H46A0.73210.46500.14350.038*
C470.5875 (2)0.46324 (17)0.19689 (8)0.0380 (5)
H47A0.63280.46350.23100.046*
C480.4638 (2)0.46144 (15)0.19862 (8)0.0345 (5)
H48A0.42330.45910.23390.041*
C490.3976 (2)0.46299 (15)0.14867 (9)0.0311 (5)
H49A0.31200.46220.15000.037*
C500.45626 (18)0.46568 (14)0.09676 (8)0.0264 (4)
H50A0.41050.46740.06290.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02228 (12)0.01963 (13)0.01808 (11)0.00345 (10)0.00132 (10)0.00025 (10)
Cl10.0339 (3)0.0210 (2)0.0185 (2)0.0106 (2)0.00216 (19)0.00120 (17)
P10.0232 (2)0.0196 (3)0.0189 (2)0.0014 (2)0.00066 (19)0.00014 (19)
P20.0200 (2)0.0211 (3)0.0192 (2)0.0012 (2)0.0001 (2)0.00030 (19)
C10.0253 (10)0.0201 (11)0.0192 (9)0.0044 (8)0.0008 (8)0.0023 (8)
C20.0291 (11)0.0271 (11)0.0230 (10)0.0051 (10)0.0002 (8)0.0050 (9)
C30.0296 (11)0.0336 (12)0.0224 (10)0.0084 (10)0.0051 (9)0.0095 (9)
C40.0291 (12)0.0431 (14)0.0397 (12)0.0084 (10)0.0064 (10)0.0168 (11)
C50.0366 (14)0.0590 (18)0.0486 (14)0.0147 (12)0.0174 (11)0.0199 (13)
C60.0603 (17)0.0449 (16)0.0458 (14)0.0219 (14)0.0245 (13)0.0119 (12)
C70.0564 (17)0.0369 (14)0.0294 (12)0.0162 (12)0.0137 (11)0.0041 (10)
C80.0387 (12)0.0292 (12)0.0214 (10)0.0093 (10)0.0030 (9)0.0065 (9)
C90.0369 (12)0.0262 (11)0.0186 (10)0.0055 (10)0.0016 (9)0.0051 (8)
C100.0581 (16)0.0252 (12)0.0231 (11)0.0030 (11)0.0017 (10)0.0013 (9)
C110.0580 (16)0.0295 (12)0.0286 (11)0.0104 (12)0.0067 (11)0.0028 (9)
C120.0386 (13)0.0324 (12)0.0317 (11)0.0112 (11)0.0052 (10)0.0069 (10)
C130.0368 (12)0.0267 (11)0.0242 (10)0.0001 (9)0.0009 (9)0.0027 (8)
C140.0317 (11)0.0206 (10)0.0204 (9)0.0016 (9)0.0016 (8)0.0041 (8)
C150.0226 (10)0.0305 (12)0.0229 (10)0.0022 (9)0.0035 (8)0.0069 (9)
C160.0275 (12)0.0529 (15)0.0273 (11)0.0050 (11)0.0031 (9)0.0064 (10)
C170.0261 (12)0.081 (2)0.0345 (12)0.0106 (13)0.0081 (10)0.0030 (13)
C180.0279 (13)0.0627 (18)0.0446 (14)0.0183 (12)0.0054 (11)0.0085 (13)
C190.0352 (13)0.0349 (13)0.0437 (14)0.0099 (11)0.0099 (11)0.0031 (11)
C200.0248 (11)0.0279 (12)0.0330 (11)0.0030 (9)0.0052 (9)0.0019 (9)
C210.0202 (10)0.0205 (11)0.0285 (10)0.0029 (8)0.0024 (8)0.0030 (8)
C220.0271 (11)0.0264 (11)0.0241 (10)0.0014 (9)0.0014 (9)0.0011 (8)
C230.0269 (11)0.0310 (12)0.0365 (12)0.0009 (10)0.0075 (9)0.0010 (10)
C240.0244 (11)0.0301 (12)0.0410 (13)0.0030 (9)0.0033 (10)0.0042 (10)
C250.0323 (13)0.0340 (13)0.0329 (12)0.0025 (10)0.0030 (10)0.0056 (10)
C260.0264 (11)0.0278 (11)0.0254 (10)0.0023 (9)0.0023 (9)0.0032 (9)
C270.0260 (10)0.0198 (10)0.0208 (8)0.0011 (9)0.0009 (8)0.0023 (8)
C280.0267 (11)0.0272 (12)0.0295 (10)0.0003 (9)0.0012 (9)0.0008 (9)
C290.0354 (12)0.0337 (12)0.0357 (11)0.0023 (11)0.0091 (10)0.0031 (10)
C300.0488 (14)0.0311 (12)0.0260 (10)0.0010 (11)0.0045 (11)0.0048 (9)
C310.0388 (12)0.0300 (12)0.0248 (10)0.0017 (11)0.0091 (9)0.0002 (9)
C320.0264 (11)0.0277 (11)0.0233 (9)0.0010 (9)0.0018 (8)0.0022 (8)
C330.0302 (11)0.0260 (11)0.0238 (10)0.0026 (9)0.0011 (9)0.0026 (9)
C340.0304 (12)0.0271 (12)0.0307 (11)0.0062 (9)0.0043 (9)0.0030 (9)
C350.0373 (12)0.0212 (11)0.0422 (13)0.0002 (10)0.0084 (10)0.0001 (10)
C360.0327 (12)0.0256 (12)0.0488 (13)0.0056 (9)0.0014 (11)0.0050 (11)
C370.0251 (11)0.0295 (12)0.0342 (11)0.0005 (9)0.0020 (9)0.0031 (10)
C380.0234 (10)0.0217 (10)0.0216 (9)0.0006 (8)0.0041 (8)0.0004 (8)
C390.0251 (10)0.0239 (10)0.0180 (9)0.0004 (8)0.0021 (8)0.0001 (8)
C400.0306 (11)0.0215 (11)0.0305 (10)0.0008 (8)0.0020 (9)0.0001 (9)
C410.0260 (11)0.0343 (12)0.0344 (11)0.0020 (10)0.0017 (9)0.0033 (9)
C420.0324 (12)0.0362 (13)0.0288 (11)0.0099 (10)0.0028 (9)0.0061 (9)
C430.0435 (12)0.0238 (11)0.0285 (11)0.0071 (10)0.0022 (10)0.0001 (9)
C440.0312 (11)0.0231 (10)0.0252 (10)0.0010 (9)0.0005 (8)0.0024 (8)
C450.0299 (11)0.0189 (10)0.0217 (9)0.0011 (9)0.0025 (8)0.0011 (8)
C460.0294 (11)0.0398 (13)0.0257 (10)0.0010 (11)0.0010 (8)0.0010 (10)
C470.0425 (14)0.0489 (15)0.0225 (10)0.0009 (12)0.0034 (9)0.0010 (10)
C480.0449 (14)0.0355 (13)0.0232 (10)0.0007 (11)0.0102 (9)0.0028 (9)
C490.0320 (11)0.0284 (12)0.0331 (11)0.0021 (10)0.0054 (9)0.0012 (10)
C500.0288 (11)0.0249 (10)0.0255 (9)0.0017 (9)0.0015 (8)0.0001 (9)
Geometric parameters (Å, º) top
Ni1—C11.9020 (19)C23—H23A0.9500
Ni1—P22.2305 (9)C24—C251.391 (3)
Ni1—Cl12.2327 (8)C24—H24A0.9500
Ni1—P12.2426 (8)C25—C261.389 (3)
P1—C391.827 (2)C25—H25A0.9500
P1—C451.8381 (19)C26—H26A0.9500
P1—C381.843 (2)C27—C281.389 (3)
P2—C211.829 (2)C27—C321.400 (3)
P2—C151.829 (2)C28—C291.396 (3)
P2—C271.850 (2)C28—H28A0.9500
C1—C21.371 (3)C29—C301.378 (3)
C1—C141.448 (3)C29—H29A0.9500
C2—C31.444 (3)C30—C311.383 (3)
C2—H2A0.9500C30—H30A0.9500
C3—C41.412 (3)C31—C321.390 (3)
C3—C81.414 (3)C31—H31A0.9500
C4—C51.364 (3)C32—H32A0.9500
C4—H4A0.9500C33—C341.388 (3)
C5—C61.407 (4)C33—C381.398 (3)
C5—H5A0.9500C33—H33A0.9500
C6—C71.358 (4)C34—C351.386 (3)
C6—H6A0.9500C34—H34A0.9500
C7—C81.420 (3)C35—C361.385 (3)
C7—H7A0.9500C35—H35A0.9500
C8—C91.450 (3)C36—C371.394 (3)
C9—C101.400 (3)C36—H36A0.9500
C9—C141.433 (3)C37—C381.398 (3)
C10—C111.375 (3)C37—H37A0.9500
C10—H10A0.9500C39—C401.392 (3)
C11—C121.386 (3)C39—C441.403 (3)
C11—H11A0.9500C40—C411.387 (3)
C12—C131.393 (3)C40—H40A0.9500
C12—H12A0.9500C41—C421.387 (3)
C13—C141.403 (3)C41—H41A0.9500
C13—H13A0.9500C42—C431.382 (3)
C15—C161.389 (3)C42—H42A0.9500
C15—C201.400 (3)C43—C441.384 (3)
C16—C171.390 (3)C43—H43A0.9500
C16—H16A0.9500C44—H44A0.9500
C17—C181.387 (4)C45—C501.387 (3)
C17—H17A0.9500C45—C461.397 (3)
C18—C191.375 (4)C46—C471.398 (3)
C18—H18A0.9500C46—H46A0.9500
C19—C201.381 (3)C47—C481.373 (3)
C19—H19A0.9500C47—H47A0.9500
C20—H20A0.9500C48—C491.392 (3)
C21—C221.397 (3)C48—H48A0.9500
C21—C261.401 (3)C49—C501.391 (3)
C22—C231.389 (3)C49—H49A0.9500
C22—H22A0.9500C50—H50A0.9500
C23—C241.398 (3)
C1—Ni1—P285.99 (6)C22—C23—C24119.7 (2)
C1—Ni1—Cl1171.79 (6)C22—C23—H23A120.2
P2—Ni1—Cl193.06 (4)C24—C23—H23A120.2
C1—Ni1—P187.33 (6)C25—C24—C23120.1 (2)
P2—Ni1—P1171.26 (2)C25—C24—H24A120.0
Cl1—Ni1—P192.74 (3)C23—C24—H24A120.0
C39—P1—C45103.80 (9)C26—C25—C24119.9 (2)
C39—P1—C38105.14 (9)C26—C25—H25A120.1
C45—P1—C38101.05 (9)C24—C25—H25A120.1
C39—P1—Ni1108.74 (6)C25—C26—C21120.70 (19)
C45—P1—Ni1116.83 (7)C25—C26—H26A119.7
C38—P1—Ni1119.63 (6)C21—C26—H26A119.7
C21—P2—C15105.43 (10)C28—C27—C32118.18 (18)
C21—P2—C27103.49 (9)C28—C27—P2120.03 (15)
C15—P2—C27100.72 (9)C32—C27—P2121.77 (15)
C21—P2—Ni1107.71 (7)C27—C28—C29120.5 (2)
C15—P2—Ni1117.71 (7)C27—C28—H28A119.8
C27—P2—Ni1120.11 (7)C29—C28—H28A119.8
C2—C1—C14118.56 (18)C30—C29—C28120.9 (2)
C2—C1—Ni1118.58 (15)C30—C29—H29A119.6
C14—C1—Ni1122.85 (15)C28—C29—H29A119.6
C1—C2—C3121.7 (2)C29—C30—C31119.21 (19)
C1—C2—H2A119.1C29—C30—H30A120.4
C3—C2—H2A119.1C31—C30—H30A120.4
C4—C3—C8119.2 (2)C30—C31—C32120.4 (2)
C4—C3—C2120.7 (2)C30—C31—H31A119.8
C8—C3—C2120.11 (19)C32—C31—H31A119.8
C5—C4—C3121.2 (2)C31—C32—C27120.8 (2)
C5—C4—H4A119.4C31—C32—H32A119.6
C3—C4—H4A119.4C27—C32—H32A119.6
C4—C5—C6120.0 (2)C34—C33—C38121.0 (2)
C4—C5—H5A120.0C34—C33—H33A119.5
C6—C5—H5A120.0C38—C33—H33A119.5
C7—C6—C5120.1 (2)C35—C34—C33120.3 (2)
C7—C6—H6A119.9C35—C34—H34A119.8
C5—C6—H6A119.9C33—C34—H34A119.8
C6—C7—C8121.6 (3)C36—C35—C34119.7 (2)
C6—C7—H7A119.2C36—C35—H35A120.2
C8—C7—H7A119.2C34—C35—H35A120.2
C3—C8—C7118.1 (2)C35—C36—C37120.1 (2)
C3—C8—C9119.78 (19)C35—C36—H36A120.0
C7—C8—C9122.1 (2)C37—C36—H36A120.0
C10—C9—C14118.7 (2)C36—C37—C38120.9 (2)
C10—C9—C8123.4 (2)C36—C37—H37A119.5
C14—C9—C8117.90 (19)C38—C37—H37A119.5
C11—C10—C9121.6 (2)C33—C38—C37117.99 (19)
C11—C10—H10A119.2C33—C38—P1120.79 (15)
C9—C10—H10A119.2C37—C38—P1121.17 (15)
C10—C11—C12120.2 (2)C40—C39—C44119.01 (18)
C10—C11—H11A119.9C40—C39—P1122.85 (15)
C12—C11—H11A119.9C44—C39—P1118.10 (15)
C11—C12—C13120.1 (2)C41—C40—C39119.98 (19)
C11—C12—H12A120.0C41—C40—H40A120.0
C13—C12—H12A120.0C39—C40—H40A120.0
C12—C13—C14121.0 (2)C42—C41—C40120.4 (2)
C12—C13—H13A119.5C42—C41—H41A119.8
C14—C13—H13A119.5C40—C41—H41A119.8
C13—C14—C9118.52 (19)C43—C42—C41120.3 (2)
C13—C14—C1119.65 (18)C43—C42—H42A119.9
C9—C14—C1121.82 (18)C41—C42—H42A119.9
C16—C15—C20119.42 (19)C42—C43—C44119.61 (19)
C16—C15—P2118.96 (16)C42—C43—H43A120.2
C20—C15—P2121.39 (16)C44—C43—H43A120.2
C15—C16—C17119.7 (2)C43—C44—C39120.7 (2)
C15—C16—H16A120.2C43—C44—H44A119.6
C17—C16—H16A120.2C39—C44—H44A119.6
C18—C17—C16120.3 (2)C50—C45—C46118.78 (17)
C18—C17—H17A119.8C50—C45—P1118.76 (15)
C16—C17—H17A119.8C46—C45—P1122.17 (15)
C19—C18—C17120.2 (2)C45—C46—C47120.9 (2)
C19—C18—H18A119.9C45—C46—H46A119.6
C17—C18—H18A119.9C47—C46—H46A119.6
C18—C19—C20120.1 (2)C48—C47—C46119.60 (19)
C18—C19—H19A120.0C48—C47—H47A120.2
C20—C19—H19A120.0C46—C47—H47A120.2
C19—C20—C15120.3 (2)C47—C48—C49120.08 (18)
C19—C20—H20A119.8C47—C48—H48A120.0
C15—C20—H20A119.8C49—C48—H48A120.0
C22—C21—C26118.82 (19)C50—C49—C48120.31 (19)
C22—C21—P2118.61 (15)C50—C49—H49A119.8
C26—C21—P2122.54 (15)C48—C49—H49A119.8
C23—C22—C21120.79 (19)C45—C50—C49120.32 (19)
C23—C22—H22A119.6C45—C50—H50A119.8
C21—C22—H22A119.6C49—C50—H50A119.8
C1—Ni1—P1—C3984.48 (9)P2—C15—C20—C19174.90 (16)
P2—Ni1—P1—C3944.27 (16)C15—P2—C21—C2296.93 (17)
Cl1—Ni1—P1—C3987.30 (7)C27—P2—C21—C22157.73 (16)
C1—Ni1—P1—C45158.52 (9)Ni1—P2—C21—C2229.55 (17)
P2—Ni1—P1—C45161.27 (15)C15—P2—C21—C2685.05 (18)
Cl1—Ni1—P1—C4529.69 (8)C27—P2—C21—C2620.30 (19)
C1—Ni1—P1—C3836.20 (10)Ni1—P2—C21—C26148.47 (16)
P2—Ni1—P1—C3876.41 (16)C26—C21—C22—C231.1 (3)
Cl1—Ni1—P1—C38152.02 (8)P2—C21—C22—C23176.97 (16)
C1—Ni1—P2—C2186.28 (9)C21—C22—C23—C240.5 (3)
Cl1—Ni1—P2—C2185.55 (7)C22—C23—C24—C251.7 (3)
P1—Ni1—P2—C2146.01 (17)C23—C24—C25—C261.1 (3)
C1—Ni1—P2—C15154.82 (10)C24—C25—C26—C210.6 (3)
Cl1—Ni1—P2—C1533.35 (8)C22—C21—C26—C251.7 (3)
P1—Ni1—P2—C15164.90 (15)P2—C21—C26—C25176.32 (16)
C1—Ni1—P2—C2731.63 (10)C21—P2—C27—C28136.92 (17)
Cl1—Ni1—P2—C27156.53 (8)C15—P2—C27—C2828.02 (19)
P1—Ni1—P2—C2771.91 (17)Ni1—P2—C27—C28103.04 (16)
P2—Ni1—C1—C288.87 (15)C21—P2—C27—C3245.10 (18)
Cl1—Ni1—C1—C25.2 (5)C15—P2—C27—C32154.00 (17)
P1—Ni1—C1—C285.49 (15)Ni1—P2—C27—C3274.95 (17)
P2—Ni1—C1—C1492.31 (15)C32—C27—C28—C290.1 (3)
Cl1—Ni1—C1—C14176.0 (3)P2—C27—C28—C29177.97 (16)
P1—Ni1—C1—C1493.33 (15)C27—C28—C29—C300.8 (3)
C14—C1—C2—C32.4 (3)C28—C29—C30—C310.8 (3)
Ni1—C1—C2—C3176.45 (14)C29—C30—C31—C320.1 (3)
C1—C2—C3—C4177.19 (18)C30—C31—C32—C270.6 (3)
C1—C2—C3—C80.1 (3)C28—C27—C32—C310.6 (3)
C8—C3—C4—C51.7 (3)P2—C27—C32—C31178.65 (15)
C2—C3—C4—C5175.6 (2)C38—C33—C34—C350.2 (3)
C3—C4—C5—C60.7 (4)C33—C34—C35—C360.0 (3)
C4—C5—C6—C70.5 (4)C34—C35—C36—C370.6 (3)
C5—C6—C7—C80.8 (4)C35—C36—C37—C381.3 (3)
C4—C3—C8—C71.4 (3)C34—C33—C38—C370.9 (3)
C2—C3—C8—C7175.90 (19)C34—C33—C38—P1176.66 (16)
C4—C3—C8—C9179.86 (18)C36—C37—C38—C331.5 (3)
C2—C3—C8—C92.5 (3)C36—C37—C38—P1176.07 (17)
C6—C7—C8—C30.2 (3)C39—P1—C38—C3351.45 (17)
C6—C7—C8—C9178.6 (2)C45—P1—C38—C33159.19 (16)
C3—C8—C9—C10177.74 (19)Ni1—P1—C38—C3371.01 (17)
C7—C8—C9—C103.9 (3)C39—P1—C38—C37131.07 (17)
C3—C8—C9—C142.7 (3)C45—P1—C38—C3723.33 (18)
C7—C8—C9—C14175.66 (19)Ni1—P1—C38—C37106.46 (16)
C14—C9—C10—C110.3 (3)C45—P1—C39—C4089.94 (17)
C8—C9—C10—C11179.84 (19)C38—P1—C39—C4015.78 (18)
C9—C10—C11—C120.6 (3)Ni1—P1—C39—C40145.03 (15)
C10—C11—C12—C130.5 (3)C45—P1—C39—C4487.64 (16)
C11—C12—C13—C140.2 (3)C38—P1—C39—C44166.64 (15)
C12—C13—C14—C90.1 (3)Ni1—P1—C39—C4437.40 (16)
C12—C13—C14—C1179.99 (18)C44—C39—C40—C410.8 (3)
C10—C9—C14—C130.0 (3)P1—C39—C40—C41178.37 (15)
C8—C9—C14—C13179.55 (17)C39—C40—C41—C421.0 (3)
C10—C9—C14—C1179.97 (18)C40—C41—C42—C431.7 (3)
C8—C9—C14—C10.4 (3)C41—C42—C43—C440.6 (3)
C2—C1—C14—C13177.90 (18)C42—C43—C44—C391.3 (3)
Ni1—C1—C14—C133.3 (2)C40—C39—C44—C432.0 (3)
C2—C1—C14—C92.2 (3)P1—C39—C44—C43179.63 (15)
Ni1—C1—C14—C9176.64 (14)C39—P1—C45—C50157.71 (17)
C21—P2—C15—C16151.15 (17)C38—P1—C45—C5093.51 (18)
C27—P2—C15—C16101.48 (18)Ni1—P1—C45—C5038.04 (19)
Ni1—P2—C15—C1631.05 (19)C39—P1—C45—C4628.5 (2)
C21—P2—C15—C2034.37 (18)C38—P1—C45—C4680.25 (19)
C27—P2—C15—C2073.00 (18)Ni1—P1—C45—C46148.20 (16)
Ni1—P2—C15—C20154.47 (14)C50—C45—C46—C470.1 (3)
C20—C15—C16—C170.7 (3)P1—C45—C46—C47173.63 (19)
P2—C15—C16—C17175.27 (19)C45—C46—C47—C481.0 (4)
C15—C16—C17—C180.1 (4)C46—C47—C48—C491.4 (4)
C16—C17—C18—C190.7 (4)C47—C48—C49—C500.5 (4)
C17—C18—C19—C200.9 (4)C46—C45—C50—C491.0 (3)
C18—C19—C20—C150.4 (3)P1—C45—C50—C49173.00 (16)
C16—C15—C20—C190.4 (3)C48—C49—C50—C450.7 (3)

Experimental details

Crystal data
Chemical formula[Ni(C14H9)Cl(C18H15P)2]
Mr795.91
Crystal system, space groupOrthorhombic, P212121
Temperature (K)110
a, b, c (Å)11.090 (5), 15.204 (7), 23.679 (10)
V3)3993 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.59 × 0.46 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.692, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
53371, 6780, 6359
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.02
No. of reflections6780
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.14
Absolute structureFlack (1983), 2986 Friedel pairs
Absolute structure parameter0.000 (7)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Welch Foundation (V-004) for financial support. We are very grateful to Dr Joseph Reibenspies at Texas A & M University for the X-ray crystallographic analysis. The X-ray diffractometers, small angle scattering instrumentation and crystallographic computing systems in the X-ray Diffraction Laboratory at the Department of Chemistry, Texas A & M University, were purchased with funds provided by the National Science Foundation (CHE-9807975, CHE-0079822 and CHE-0215838).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. & Yang, L. M. (2007a). Tetrahedron Lett. 48, 2427–2430.  Google Scholar
First citationChen, C. & Yang, L. M. (2007b). J. Org. Chem. 72, 6324–6327.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, C. Y. & Yang, L. M. (2008). J. Org. Chem. 73, 1624–1627.  Google Scholar
First citationLiu, Y.-H., Chen, C. & Yang, L.-M. (2008). Acta Cryst. E64, m1225.  Google Scholar
First citationRoma, A. D., Yang, H. J., Millione, S., Capacchione, C., Roviello, G. & Grassi, A. (2011). Inorg. Chem. Commun. 14, 542–544.  Google Scholar
First citationRosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). Chem. Rev. 111, 1346–1416.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoolinger, J. V., Verkruijsse, H. D., Keegstra, M. A. & Brandsma, L. (1990). Synth. Commun. 20, 3153–3156.  Google Scholar
First citationZhou, L., Feng, X., He, R. & Bao, M. (2009). J. Coord. Chem. 62, 2824–2831.  Google Scholar
First citationZim, D., Lando, V. R., Dupont, J. & Monteiro, A. (2001). Org. Lett. 3, 3049–3051.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds