organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-phenyldi­spiro­[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 August 2011; accepted 14 August 2011; online 27 August 2011)

The conformation of the title compound, C27H21NO3, is stabilized by a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. The pyrrolidine ring adopts a half-chair conformation. Both of the other five-membered rings are in envelope conformations. No significant inter­molecular hydrogen bonds are observed.

Related literature

For general background to and the biological activity of the title compound, see: Amalraj et al. (2003[Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Karthikeyan et al. (2010[Karthikeyan, S. V., Devi Bala, B., Alex Raja, V. P., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg. Med. Chem. Lett. 20, 350-353.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Sriram et al. (2009[Sriram, D., Yogeeswari, P. & Priya, D. Y. (2009). Biomed. Pharmacother. 63, 36-39.]); Duncan & Barry (2004[Duncan, K. & Barry, C. E. (2004). Curr Opin Microbiol. 7, 460-465.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Kumar et al. (2010[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540-o1541.]); Wei et al. (2011[Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381-o2382.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H21NO3

  • Mr = 407.45

  • Monoclinic, P 21 /c

  • a = 8.4578 (7) Å

  • b = 11.6194 (9) Å

  • c = 22.6360 (16) Å

  • β = 109.693 (2)°

  • V = 2094.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.15 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.988

  • 23854 measured reflections

  • 6084 independent reflections

  • 3982 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.163

  • S = 1.03

  • 6084 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯O2 0.97 2.42 3.069 (2) 124

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic compounds, especially those with five- and six-membered rings have received considerable attention as a result of their diverse biological activities (Amalraj et al., 2003). Substituted pyrrolidine analogues have high potential in the treatment of tuberculosis (TB) (Karthikeyan et al., 2010). Tuberculosis, an illness caused by Mycobacterium tuberculosis, is the leading cause of worldwide death from infectious diseases (Chande et al., 2005). Problems arise when patients develop bacterial resistance to the first-line drugs and the second-line drugs are too toxic and cannot be employed simultaneously (Sriram et al., 2009). Therefore, there is an impetus for the development of new antitubercular agents to shorten the treatment regime and which are effective against drug-resistant strains of M. tuberculosis (Duncan & Barry, 2004).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those in related crystal structures (Kumar et al., 2010; Wei et al., 2011).

The pyrrolidine ring (N1/C7/C8/C10/C19) is twisted about the C10—C19 bond, with puckering parameters (Cremer & Pople, 1975) Q = 0.4335 (17) Å and ϕ = 126.7 (2)°, thereby adopting a half-chair conformation. The two five-membered carbocyclic rings, C10-C12/C17/C18 and C19-C21/C26/C27, are in envelope conformations: puckering parameters Q = 0.1992 (17) Å and ϕ = 179.8 (5)° with atom C10 at the flap; and Q = 0.1879 (16) Å and ϕ = 355.8 (5)° with atom C19 at the flap, respectively.

If the three benzene rings C1–C6, C12–C17 and C21–C26 are denoted by R4, R5, R6 then the dihedral angles for R4^R5, R5^R6 and R4^R6 are 79.88 (11), 34.21 (9) and 82.39 (12)°, respectively.

The molecular structure is stabilized by an intramolecular C27–H27A···O2 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). No significant intermolecular hydrogen bond is observed. There is a short contact of 1.94 Å between H5A and H8B.

Related literature top

For general background to and the biological activity of the title compound, see: Amalraj et al. (2003); Karthikeyan et al. (2010); Chande et al. (2005); Sriram et al. (2009); Duncan & Barry (2004). For reference bond-length data, see: Allen et al. (1987). For related structures, see: Kumar et al. (2010); Wei et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of (E)-(2-benzylidene)-2,3-dihydro-IH-indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) was dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from a pet. ether - ethyl acetate mixture (1:1) to yield the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
1'-Methyl-4'-phenyldispiro[indan-2,2'-pyrrolidine-3',2''-indan]-1,3,1''-trione top
Crystal data top
C27H21NO3F(000) = 856
Mr = 407.45Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5963 reflections
a = 8.4578 (7) Åθ = 2.6–28.2°
b = 11.6194 (9) ŵ = 0.08 mm1
c = 22.6360 (16) ÅT = 296 K
β = 109.693 (2)°Block, yellow
V = 2094.4 (3) Å30.34 × 0.26 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6084 independent reflections
Radiation source: fine-focus sealed tube3982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.972, Tmax = 0.988k = 1516
23854 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.4081P]
where P = (Fo2 + 2Fc2)/3
6084 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C27H21NO3V = 2094.4 (3) Å3
Mr = 407.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4578 (7) ŵ = 0.08 mm1
b = 11.6194 (9) ÅT = 296 K
c = 22.6360 (16) Å0.34 × 0.26 × 0.15 mm
β = 109.693 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3982 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.988Rint = 0.035
23854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
6084 reflectionsΔρmin = 0.21 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.34827 (16)0.31094 (11)0.95641 (6)0.0717 (4)
O21.00814 (19)0.39487 (11)0.75292 (5)0.0679 (4)
O30.98637 (17)0.36481 (11)0.97255 (5)0.0622 (3)
N11.15973 (17)0.19994 (11)0.83324 (7)0.0517 (3)
C10.7927 (4)0.0968 (2)0.94738 (12)0.0926 (8)
H1A0.80540.16960.96540.111*
C20.6731 (4)0.0227 (2)0.95567 (14)0.1032 (9)
H2A0.60470.04760.97780.124*
C30.6549 (3)0.0845 (2)0.93209 (12)0.0863 (7)
H3A0.57780.13520.93900.104*
C40.7512 (4)0.1166 (2)0.89819 (17)0.1153 (10)
H4A0.73930.19020.88120.138*
C50.8678 (3)0.04216 (18)0.88813 (14)0.0938 (8)
H5A0.93060.06610.86370.113*
C60.89185 (19)0.06577 (13)0.91353 (7)0.0457 (3)
C71.02348 (18)0.14830 (12)0.90680 (7)0.0415 (3)
H7A1.09760.16680.94940.050*
C81.1369 (2)0.10356 (15)0.87084 (10)0.0607 (5)
H8A1.24420.07830.89990.073*
H8B1.08390.03940.84410.073*
C91.3153 (3)0.2003 (2)0.81922 (12)0.0852 (7)
H9A1.31270.26180.79060.128*
H9B1.32750.12820.80050.128*
H9C1.40840.21120.85730.128*
C101.11262 (17)0.30515 (12)0.85686 (7)0.0414 (3)
C111.24588 (18)0.36203 (13)0.91420 (7)0.0466 (3)
C121.22771 (17)0.48842 (13)0.90556 (7)0.0424 (3)
C131.2992 (2)0.57672 (14)0.94769 (8)0.0504 (4)
H13A1.36710.56080.98860.060*
C141.2661 (2)0.68821 (15)0.92684 (9)0.0575 (4)
H14A1.31260.74850.95420.069*
C151.1648 (2)0.71263 (15)0.86571 (9)0.0599 (4)
H15A1.14530.78890.85290.072*
C161.0922 (2)0.62575 (14)0.82347 (8)0.0523 (4)
H16A1.02390.64220.78260.063*
C171.12528 (18)0.51301 (13)0.84439 (7)0.0428 (3)
C181.07040 (19)0.40499 (14)0.80921 (7)0.0461 (3)
C190.95609 (16)0.26431 (12)0.87430 (6)0.0378 (3)
C200.91217 (19)0.35346 (12)0.91692 (7)0.0428 (3)
C210.76765 (19)0.42024 (13)0.87730 (8)0.0477 (4)
C220.7002 (3)0.52158 (15)0.89235 (11)0.0663 (5)
H22A0.74610.55590.93160.080*
C230.5639 (3)0.5683 (2)0.84708 (15)0.0856 (7)
H23A0.51550.63540.85550.103*
C240.4974 (3)0.5161 (2)0.78866 (14)0.0898 (8)
H24A0.40440.54910.75880.108*
C250.5656 (2)0.41625 (19)0.77349 (10)0.0710 (6)
H25A0.52060.38290.73400.085*
C260.70320 (18)0.36772 (13)0.81919 (8)0.0477 (4)
C270.79686 (18)0.25889 (13)0.81565 (7)0.0456 (3)
H27A0.82560.25710.77760.055*
H27B0.73040.19140.81670.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0569 (7)0.0572 (7)0.0736 (8)0.0085 (6)0.0143 (6)0.0166 (6)
O20.0945 (10)0.0639 (8)0.0383 (6)0.0176 (7)0.0131 (6)0.0000 (5)
O30.0805 (8)0.0580 (7)0.0440 (7)0.0050 (6)0.0155 (6)0.0125 (5)
N10.0550 (7)0.0446 (7)0.0638 (9)0.0008 (6)0.0309 (7)0.0027 (6)
C10.128 (2)0.0670 (13)0.119 (2)0.0339 (13)0.0878 (18)0.0193 (13)
C20.122 (2)0.0954 (19)0.125 (2)0.0344 (16)0.0859 (18)0.0022 (16)
C30.0723 (13)0.0836 (16)0.0965 (17)0.0276 (12)0.0200 (12)0.0272 (13)
C40.119 (2)0.0597 (14)0.181 (3)0.0419 (14)0.069 (2)0.0216 (17)
C50.0971 (16)0.0507 (11)0.155 (2)0.0228 (11)0.0698 (17)0.0251 (13)
C60.0477 (7)0.0391 (7)0.0461 (8)0.0035 (6)0.0103 (6)0.0053 (6)
C70.0449 (7)0.0352 (7)0.0431 (8)0.0017 (5)0.0130 (6)0.0005 (6)
C80.0684 (11)0.0437 (9)0.0810 (13)0.0068 (8)0.0396 (10)0.0044 (8)
C90.0804 (14)0.0779 (14)0.122 (2)0.0045 (11)0.0670 (14)0.0036 (13)
C100.0420 (7)0.0378 (7)0.0428 (8)0.0054 (5)0.0120 (6)0.0010 (6)
C110.0398 (7)0.0463 (8)0.0475 (8)0.0071 (6)0.0064 (6)0.0056 (7)
C120.0391 (6)0.0417 (7)0.0457 (8)0.0060 (6)0.0131 (6)0.0017 (6)
C130.0497 (8)0.0520 (9)0.0476 (8)0.0098 (7)0.0139 (7)0.0029 (7)
C140.0677 (10)0.0469 (9)0.0613 (11)0.0081 (8)0.0260 (9)0.0119 (8)
C150.0736 (11)0.0420 (9)0.0670 (11)0.0037 (8)0.0275 (9)0.0034 (8)
C160.0571 (9)0.0498 (9)0.0498 (9)0.0016 (7)0.0176 (7)0.0083 (7)
C170.0429 (7)0.0429 (8)0.0426 (8)0.0046 (6)0.0146 (6)0.0033 (6)
C180.0485 (8)0.0489 (8)0.0396 (8)0.0080 (6)0.0132 (6)0.0010 (6)
C190.0380 (6)0.0349 (7)0.0383 (7)0.0038 (5)0.0098 (5)0.0032 (5)
C200.0477 (7)0.0362 (7)0.0453 (8)0.0065 (6)0.0170 (6)0.0035 (6)
C210.0480 (8)0.0405 (8)0.0611 (10)0.0006 (6)0.0267 (7)0.0062 (7)
C220.0780 (12)0.0463 (9)0.0926 (14)0.0087 (8)0.0524 (11)0.0089 (9)
C230.0805 (14)0.0618 (13)0.134 (2)0.0262 (11)0.0619 (16)0.0306 (14)
C240.0582 (11)0.0838 (16)0.129 (2)0.0260 (11)0.0339 (13)0.0571 (16)
C250.0481 (9)0.0771 (13)0.0796 (13)0.0005 (9)0.0108 (9)0.0307 (11)
C260.0370 (7)0.0469 (8)0.0578 (9)0.0028 (6)0.0141 (6)0.0135 (7)
C270.0434 (7)0.0443 (8)0.0428 (8)0.0079 (6)0.0064 (6)0.0026 (6)
Geometric parameters (Å, º) top
O1—C111.2073 (18)C11—C121.483 (2)
O2—C181.2092 (18)C12—C131.393 (2)
O3—C201.2102 (18)C12—C171.393 (2)
N1—C101.4432 (19)C13—C141.375 (2)
N1—C91.454 (2)C13—H13A0.9300
N1—C81.459 (2)C14—C151.389 (3)
C1—C61.362 (3)C14—H14A0.9300
C1—C21.388 (3)C15—C161.384 (2)
C1—H1A0.9300C15—H15A0.9300
C2—C31.344 (4)C16—C171.389 (2)
C2—H2A0.9300C16—H16A0.9300
C3—C41.346 (4)C17—C181.475 (2)
C3—H3A0.9300C19—C271.5411 (19)
C4—C51.387 (3)C19—C201.5438 (19)
C4—H4A0.9300C20—C211.470 (2)
C5—C61.366 (3)C21—C261.384 (2)
C5—H5A0.9300C21—C221.400 (2)
C6—C71.515 (2)C22—C231.370 (3)
C7—C81.542 (2)C22—H22A0.9300
C7—C191.549 (2)C23—C241.390 (4)
C7—H7A0.9800C23—H23A0.9300
C8—H8A0.9700C24—C251.390 (3)
C8—H8B0.9700C24—H24A0.9300
C9—H9A0.9600C25—C261.389 (2)
C9—H9B0.9600C25—H25A0.9300
C9—H9C0.9600C26—C271.508 (2)
C10—C181.542 (2)C27—H27A0.9700
C10—C111.551 (2)C27—H27B0.9700
C10—C191.5766 (19)
C10—N1—C9117.49 (14)C14—C13—C12117.91 (16)
C10—N1—C8109.06 (12)C14—C13—H13A121.0
C9—N1—C8115.95 (15)C12—C13—H13A121.0
C6—C1—C2121.8 (2)C13—C14—C15121.34 (16)
C6—C1—H1A119.1C13—C14—H14A119.3
C2—C1—H1A119.1C15—C14—H14A119.3
C3—C2—C1120.8 (2)C16—C15—C14121.36 (16)
C3—C2—H2A119.6C16—C15—H15A119.3
C1—C2—H2A119.6C14—C15—H15A119.3
C2—C3—C4118.2 (2)C15—C16—C17117.45 (15)
C2—C3—H3A120.9C15—C16—H16A121.3
C4—C3—H3A120.9C17—C16—H16A121.3
C3—C4—C5121.4 (2)C16—C17—C12121.24 (14)
C3—C4—H4A119.3C16—C17—C18128.89 (14)
C5—C4—H4A119.3C12—C17—C18109.83 (13)
C6—C5—C4121.1 (2)O2—C18—C17126.70 (14)
C6—C5—H5A119.4O2—C18—C10125.44 (14)
C4—C5—H5A119.4C17—C18—C10107.82 (12)
C1—C6—C5116.57 (17)C27—C19—C20103.96 (11)
C1—C6—C7120.11 (15)C27—C19—C7116.64 (11)
C5—C6—C7123.30 (16)C20—C19—C7114.48 (12)
C6—C7—C8116.63 (13)C27—C19—C10111.13 (11)
C6—C7—C19115.67 (12)C20—C19—C10110.71 (11)
C8—C7—C19103.73 (12)C7—C19—C10100.09 (11)
C6—C7—H7A106.7O3—C20—C21127.61 (14)
C8—C7—H7A106.7O3—C20—C19125.02 (14)
C19—C7—H7A106.7C21—C20—C19107.37 (12)
N1—C8—C7106.11 (12)C26—C21—C22122.67 (16)
N1—C8—H8A110.5C26—C21—C20109.10 (13)
C7—C8—H8A110.5C22—C21—C20128.23 (17)
N1—C8—H8B110.5C23—C22—C21117.4 (2)
C7—C8—H8B110.5C23—C22—H22A121.3
H8A—C8—H8B108.7C21—C22—H22A121.3
N1—C9—H9A109.5C22—C23—C24120.5 (2)
N1—C9—H9B109.5C22—C23—H23A119.7
H9A—C9—H9B109.5C24—C23—H23A119.7
N1—C9—H9C109.5C23—C24—C25122.1 (2)
H9A—C9—H9C109.5C23—C24—H24A119.0
H9B—C9—H9C109.5C25—C24—H24A119.0
N1—C10—C18113.94 (12)C26—C25—C24117.9 (2)
N1—C10—C11117.22 (13)C26—C25—H25A121.0
C18—C10—C11101.33 (11)C24—C25—H25A121.0
N1—C10—C19101.41 (11)C21—C26—C25119.43 (17)
C18—C10—C19112.68 (12)C21—C26—C27111.98 (13)
C11—C10—C19110.70 (11)C25—C26—C27128.58 (17)
O1—C11—C12127.32 (14)C26—C27—C19104.01 (12)
O1—C11—C10125.30 (15)C26—C27—H27A111.0
C12—C11—C10107.33 (12)C19—C27—H27A111.0
C13—C12—C17120.70 (14)C26—C27—H27B111.0
C13—C12—C11129.62 (14)C19—C27—H27B111.0
C17—C12—C11109.66 (13)H27A—C27—H27B109.0
C6—C1—C2—C32.3 (5)N1—C10—C18—O232.0 (2)
C1—C2—C3—C42.5 (5)C11—C10—C18—O2158.81 (16)
C2—C3—C4—C50.7 (5)C19—C10—C18—O282.9 (2)
C3—C4—C5—C61.5 (5)N1—C10—C18—C17145.92 (13)
C2—C1—C6—C50.0 (4)C11—C10—C18—C1719.09 (15)
C2—C1—C6—C7178.7 (2)C19—C10—C18—C1799.24 (14)
C4—C5—C6—C11.8 (4)C6—C7—C19—C2742.73 (18)
C4—C5—C6—C7176.8 (2)C8—C7—C19—C2786.27 (15)
C1—C6—C7—C8176.65 (19)C6—C7—C19—C2078.95 (15)
C5—C6—C7—C81.9 (3)C8—C7—C19—C20152.06 (13)
C1—C6—C7—C1961.0 (2)C6—C7—C19—C10162.65 (12)
C5—C6—C7—C19120.5 (2)C8—C7—C19—C1033.65 (14)
C10—N1—C8—C716.59 (18)N1—C10—C19—C2780.25 (14)
C9—N1—C8—C7151.92 (17)C18—C10—C19—C2741.96 (16)
C6—C7—C8—N1140.91 (14)C11—C10—C19—C27154.64 (12)
C19—C7—C8—N112.50 (17)N1—C10—C19—C20164.75 (12)
C9—N1—C10—C1866.1 (2)C18—C10—C19—C2073.04 (15)
C8—N1—C10—C18159.39 (14)C11—C10—C19—C2039.63 (16)
C9—N1—C10—C1152.0 (2)N1—C10—C19—C743.60 (13)
C8—N1—C10—C1182.57 (16)C18—C10—C19—C7165.81 (12)
C9—N1—C10—C19172.61 (16)C11—C10—C19—C781.52 (13)
C8—N1—C10—C1938.06 (16)C27—C19—C20—O3162.64 (14)
N1—C10—C11—O134.0 (2)C7—C19—C20—O334.26 (19)
C18—C10—C11—O1158.66 (17)C10—C19—C20—O377.95 (18)
C19—C10—C11—O181.6 (2)C27—C19—C20—C2117.88 (14)
N1—C10—C11—C12143.58 (13)C7—C19—C20—C21146.26 (12)
C18—C10—C11—C1218.94 (15)C10—C19—C20—C21101.54 (13)
C19—C10—C11—C12100.80 (14)O3—C20—C21—C26169.99 (15)
O1—C11—C12—C1313.2 (3)C19—C20—C21—C2610.55 (16)
C10—C11—C12—C13169.23 (15)O3—C20—C21—C2210.7 (3)
O1—C11—C12—C17165.01 (17)C19—C20—C21—C22168.81 (15)
C10—C11—C12—C1712.52 (16)C26—C21—C22—C230.6 (2)
C17—C12—C13—C140.4 (2)C20—C21—C22—C23179.92 (17)
C11—C12—C13—C14177.69 (16)C21—C22—C23—C240.3 (3)
C12—C13—C14—C150.0 (2)C22—C23—C24—C250.5 (3)
C13—C14—C15—C160.4 (3)C23—C24—C25—C260.9 (3)
C14—C15—C16—C170.3 (3)C22—C21—C26—C250.2 (2)
C15—C16—C17—C120.0 (2)C20—C21—C26—C25179.63 (14)
C15—C16—C17—C18177.50 (16)C22—C21—C26—C27179.01 (14)
C13—C12—C17—C160.4 (2)C20—C21—C26—C271.59 (17)
C11—C12—C17—C16178.01 (14)C24—C25—C26—C210.5 (3)
C13—C12—C17—C18178.31 (13)C24—C25—C26—C27178.03 (16)
C11—C12—C17—C180.12 (17)C21—C26—C27—C1912.89 (16)
C16—C17—C18—O212.6 (3)C25—C26—C27—C19168.47 (16)
C12—C17—C18—O2165.04 (16)C20—C19—C27—C2618.05 (14)
C16—C17—C18—C10169.50 (15)C7—C19—C27—C26145.09 (12)
C12—C17—C18—C1012.82 (16)C10—C19—C27—C26101.08 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···O20.972.423.069 (2)124

Experimental details

Crystal data
Chemical formulaC27H21NO3
Mr407.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4578 (7), 11.6194 (9), 22.6360 (16)
β (°) 109.693 (2)
V3)2094.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.26 × 0.15
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.972, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
23854, 6084, 3982
Rint0.035
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.163, 1.03
No. of reflections6084
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···O20.972.423.069 (2)124
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM), Penang, Malaysia for providing research facilities. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuncan, K. & Barry, C. E. (2004). Curr Opin Microbiol. 7, 460–465.  CrossRef CAS Google Scholar
First citationKarthikeyan, S. V., Devi Bala, B., Alex Raja, V. P., Perumal, S., Yogeeswari, P. & Sriram, D. (2010). Bioorg. Med. Chem. Lett. 20, 350–353.  CrossRef CAS Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Priya, D. Y. (2009). Biomed. Pharmacother. 63, 36–39.  CAS Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381–o2382.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds