organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benz­yl­oxy-2-bromo-1-meth­­oxy­benzene

aDepartment of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, People's Republic of China
*Correspondence e-mail: dr.gaof@gmail.com

(Received 29 July 2011; accepted 8 August 2011; online 11 August 2011)

In the title compound, C14H13BrO2, the phenyl ring is oriented at a dihedral angle of 72.6 (3)° with respect to the bromo­meth­oxy­phenyl ring. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the synthesis of analogues of the title compound, see: Shi et al. (2004[Shi, H.-X., Lin, H. & Mandville, G. (2004). Chin. Chem. Lett. 15, 288-291.]). The title compound could be converted to aromatic boric acid derivatives, which are significant inter­mediates of various novel bioactive compounds through Suzuki–Miyaura Coupling, see: Suzuki (2011[Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13BrO2

  • Mr = 293.15

  • Monoclinic, P 21 /c

  • a = 6.1415 (7) Å

  • b = 8.2635 (7) Å

  • c = 25.287 (2) Å

  • β = 94.401 (10)°

  • V = 1279.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.859, Tmax = 1.0

  • 3982 measured reflections

  • 3982 independent reflections

  • 2610 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.164

  • S = 1.00

  • 3982 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.54 3.453 (7) 169
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 4-(benzyloxy)-2-bromo-1-methoxybenzene was synthesize from 4-methoxyphenol through 4 steps reactions. The hydroxyl group of 4-methoxyphenol was protected by acetyl to give 4-methoxyphenyl acetate. Then ortho-position aromatic hydrogen atom of methoxy was substituted by bromidum to abtain 3-bromo-4-methoxyphenyl acetate when NBS (N-bromosuccinimide) was added in CH3CN. After hydrolysis of acetyl group and re-protection by benzyl group with benzyl bromide, the title compound was prerarated almost quantitatively.

4-(Benzyloxy)-2-bromo-1-methoxybenzene could be converted to aromatic boric acid derivates, which are significant intermediate to form various novel bioactive compounds throngh Suzuki–Miyaura Coupling. Herein, we report the crystal structure of the important compound.

The title compound have two armatic rings, which are nearly orthogonal to each other [dihedral angle 72.58°]. The central oxygen atom (O2) and carbon atom (C8) are nearly coplanar with the bromobenzoyl ring and the benzoyl rings [O2—C4—C5—C6 torsion angles = 178.5 (6)° and C8—C9—C10—C11 torsion angles = 176.5 (6)°], respectively. The crystal structure is stabilized by weak intermolecular C—H···O interactions (Table 1).

Related literature top

For the synthesis of analogues of the title compound, see: Shi et al. (2004). The title compound could be converted to aromatic boric acid derivates, which are significant intermediates of various novel bioactive compounds through Suzuki–Miyaura Coupling, see: Suzuki (2011).

Experimental top

Single crystals of 4-(benzyloxy)-2-bromo-1-methoxybenzene, C14H13BrO2 were recrystallized from acetone mounted in inert oil and transferred to the cold gas stream of the diffractometer.

Refinement top

All the H-atoms were placed in calculated positions and treated as riding atoms [C—H = 0.93 - 0.96 Å], with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO CCD (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structre showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing viewed along c axis with C—H···O interactions, indicating the dimer.
4-Benzyloxy-2-bromo-1-methoxybenzene top
Crystal data top
C14H13BrO2F(000) = 592
Mr = 293.15Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 1416 reflections
a = 6.1415 (7) Åθ = 2.9–26.3°
b = 8.2635 (7) ŵ = 3.20 mm1
c = 25.287 (2) ÅT = 293 K
β = 94.401 (10)°Block, colourless
V = 1279.5 (2) Å30.32 × 0.28 × 0.22 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3982 independent reflections
Radiation source: fine-focus sealed tube2610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.859, Tmax = 1.0l = 3031
3982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1035P)2]
where P = (Fo2 + 2Fc2)/3
3982 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C14H13BrO2V = 1279.5 (2) Å3
Mr = 293.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1415 (7) ŵ = 3.20 mm1
b = 8.2635 (7) ÅT = 293 K
c = 25.287 (2) Å0.32 × 0.28 × 0.22 mm
β = 94.401 (10)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2610 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 1.0Rint = 0.000
3982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
3982 reflectionsΔρmin = 0.42 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52954 (11)0.35775 (8)0.77207 (3)0.0720 (3)
O10.1613 (7)0.1331 (5)0.78343 (15)0.0634 (11)
O20.6766 (7)0.1821 (5)0.97133 (16)0.0691 (13)
C10.2856 (9)0.1387 (7)0.8308 (2)0.0509 (14)
C20.4647 (9)0.2388 (6)0.8329 (2)0.0478 (14)
C30.6002 (10)0.2562 (6)0.8784 (2)0.0535 (16)
H30.71970.32540.87880.064*
C40.5592 (11)0.1714 (6)0.9233 (2)0.0547 (16)
C50.3786 (10)0.0679 (7)0.9211 (2)0.0605 (16)
H50.34780.00970.95110.073*
C60.2472 (10)0.0511 (6)0.8754 (2)0.0548 (16)
H60.13010.02040.87440.066*
C70.0252 (9)0.0291 (9)0.7806 (2)0.080 (2)
H7A0.10480.04100.74670.120*
H7C0.11770.05750.80810.120*
H7B0.02170.08120.78520.120*
C80.8485 (11)0.2936 (8)0.9758 (3)0.0695 (19)
H8B0.79760.39850.96280.083*
H8A0.96480.25830.95460.083*
C90.9321 (11)0.3061 (7)1.0329 (2)0.0573 (16)
C101.1363 (11)0.2430 (7)1.0508 (3)0.0678 (19)
H101.21960.18691.02760.081*
C111.2111 (11)0.2643 (8)1.1021 (3)0.072 (2)
H111.34780.22341.11350.087*
C121.0936 (13)0.3434 (8)1.1375 (3)0.0714 (19)
H121.14670.35361.17280.086*
C130.8960 (13)0.4075 (7)1.1202 (3)0.075 (2)
H130.81540.46521.14350.091*
C140.8152 (12)0.3870 (7)1.0678 (3)0.0700 (19)
H140.67920.42921.05660.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0649 (4)0.0851 (4)0.0653 (4)0.0096 (4)0.0005 (4)0.0306 (4)
O10.058 (3)0.078 (3)0.051 (2)0.019 (2)0.015 (2)0.005 (2)
O20.085 (3)0.067 (3)0.052 (3)0.034 (2)0.016 (2)0.009 (2)
C10.052 (4)0.045 (3)0.056 (4)0.002 (3)0.003 (3)0.008 (3)
C20.050 (4)0.043 (3)0.050 (4)0.001 (3)0.003 (3)0.003 (3)
C30.056 (4)0.045 (3)0.059 (4)0.007 (3)0.002 (3)0.006 (3)
C40.070 (4)0.047 (3)0.047 (4)0.007 (3)0.001 (3)0.000 (3)
C50.081 (5)0.052 (3)0.049 (4)0.021 (4)0.009 (4)0.000 (3)
C60.060 (4)0.050 (3)0.054 (4)0.018 (3)0.001 (3)0.003 (3)
C70.071 (5)0.102 (5)0.067 (5)0.024 (4)0.004 (4)0.010 (4)
C80.071 (5)0.073 (4)0.065 (5)0.023 (4)0.005 (4)0.003 (4)
C90.064 (4)0.053 (3)0.055 (4)0.021 (3)0.006 (4)0.002 (3)
C100.059 (4)0.070 (4)0.075 (5)0.000 (4)0.008 (4)0.017 (4)
C110.056 (4)0.079 (5)0.079 (5)0.003 (4)0.014 (4)0.007 (4)
C120.093 (6)0.065 (4)0.054 (4)0.018 (5)0.006 (4)0.004 (4)
C130.083 (6)0.070 (4)0.075 (5)0.008 (4)0.015 (4)0.018 (4)
C140.059 (4)0.074 (4)0.076 (5)0.009 (4)0.003 (4)0.003 (4)
Geometric parameters (Å, º) top
Br1—C21.893 (5)C7—H7B0.9600
O1—C11.370 (6)C8—H8B0.9700
O1—C71.430 (7)C8—H8A0.9700
O2—C41.367 (7)C8—C91.499 (8)
O2—C81.399 (7)C9—C101.401 (9)
C1—C21.374 (7)C9—C141.356 (9)
C1—C61.377 (8)C10—H100.9300
C2—C31.375 (8)C10—C111.354 (9)
C3—H30.9300C11—H110.9300
C3—C41.374 (8)C11—C121.360 (9)
C4—C51.398 (8)C12—H120.9300
C5—H50.9300C12—C131.365 (9)
C5—C61.364 (8)C13—H130.9300
C6—H60.9300C13—C141.387 (9)
C7—H7A0.9600C14—H140.9300
C7—H7C0.9600
O1—C1—C2116.4 (5)C6—C5—H5119.6
O1—C1—C6125.4 (5)H7A—C7—H7C109.5
O1—C7—H7A109.5H7A—C7—H7B109.5
O1—C7—H7C109.5H7C—C7—H7B109.5
O1—C7—H7B109.5H8B—C8—H8A108.3
O2—C4—C3125.7 (6)C9—C8—H8B109.9
O2—C4—C5116.0 (5)C9—C8—H8A109.9
O2—C8—H8B109.9C9—C10—H10120.3
O2—C8—H8A109.9C9—C14—C13120.9 (7)
O2—C8—C9108.9 (5)C9—C14—H14119.6
C1—O1—C7117.0 (4)C10—C9—C8121.1 (6)
C1—C2—Br1119.9 (4)C10—C11—H11118.8
C1—C2—C3121.8 (5)C10—C11—C12122.4 (6)
C1—C6—H6119.6C11—C10—C9119.3 (6)
C2—C1—C6118.1 (5)C11—C10—H10120.3
C2—C3—H3120.0C11—C12—H12120.7
C3—C2—Br1118.3 (4)C11—C12—C13118.6 (7)
C3—C4—C5118.3 (6)C12—C11—H11118.8
C4—O2—C8117.2 (5)C12—C13—H13119.9
C4—C3—C2120.1 (6)C12—C13—C14120.2 (7)
C4—C3—H3120.0C13—C12—H12120.7
C4—C5—H5119.6C13—C14—H14119.6
C5—C6—C1120.9 (5)C14—C9—C8120.2 (6)
C5—C6—H6119.6C14—C9—C10118.6 (6)
C6—C5—C4120.8 (5)C14—C13—H13119.9
Br1—C2—C3—C4179.7 (4)C6—C1—C2—Br1178.4 (4)
O1—C1—C2—Br10.7 (7)C6—C1—C2—C31.8 (8)
O1—C1—C2—C3179.1 (5)C7—O1—C1—C2179.8 (5)
O1—C1—C6—C5178.6 (5)C7—O1—C1—C60.9 (8)
O2—C4—C5—C6178.5 (6)C8—O2—C4—C32.6 (9)
O2—C8—C9—C10109.0 (7)C8—O2—C4—C5175.4 (5)
O2—C8—C9—C1474.4 (7)C8—C9—C10—C11176.5 (6)
C1—C2—C3—C40.5 (9)C8—C9—C14—C13176.3 (6)
C2—C1—C6—C52.4 (9)C9—C10—C11—C121.0 (11)
C2—C3—C4—O2177.7 (5)C10—C9—C14—C130.2 (9)
C2—C3—C4—C50.3 (9)C10—C11—C12—C132.0 (11)
C3—C4—C5—C60.3 (9)C11—C12—C13—C142.1 (10)
C4—O2—C8—C9170.9 (5)C12—C13—C14—C91.3 (10)
C4—C5—C6—C11.7 (9)C14—C9—C10—C110.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.543.453 (7)169
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H13BrO2
Mr293.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.1415 (7), 8.2635 (7), 25.287 (2)
β (°) 94.401 (10)
V3)1279.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.859, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
3982, 3982, 2610
Rint0.000
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.164, 1.00
No. of reflections3982
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.42

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.543.453 (7)169
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

This project was supported by the NSFC (No. 81001383) and the Doctoral Foundation of Ministry of Education, China (No. 20105103120009).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis PRO CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, H.-X., Lin, H. & Mandville, G. (2004). Chin. Chem. Lett. 15, 288–291.  Google Scholar
First citationSuzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722–6737.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds