metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,3-di-2-pyridyl­pyrazine-κ2N2,N3)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 11 August 2011; accepted 20 August 2011; online 27 August 2011)

The PtII ion in the title complex, [PtBr2(C14H10N4)], has a slightly distorted square-planar environment defined by the two pyridyl N atoms of the chelating 2,3-di-2-pyridyl­pyrazine ligand and two bromide anions. In the crystal, the pyridyl rings are considerably inclined to the least-squares plane of the PtBr2N2 unit [maximum deviation = 0.064 (2) Å] with dihedral angles of 65.2 (2) and 66.0 (2)°. The nearly planar pyrazine ring [maximum deviation = 0.020 (5) Å] is almost perpendicular to the unit plane with a dihedral angle of 89.2 (2)°. Two independent weak inter­molecular C—H⋯Br hydrogen bonds, both involving the same Br atom as a hydrogen-bond acceptor, give rise to chains running along the a and b axes, forming a layer structure extending parallel to (001). The complexes are stacked in columns along the a axis. When viewed down the b axis, the successive complexes stack in the opposite direction.

Related literature

For an isomer of the title complex, see: Ha (2011[Ha, K. (2011). Acta Cryst. E67, m1230.]). For crystal structures of the related PtII complexes, see: Granifo et al. (2000[Granifo, J., Vargas, M. E., Garland, M. T. & Baggio, R. (2000). Inorg. Chim. Acta, 305, 143-150.]); Cai et al. (2009[Cai, X., Donzello, M. P., Viola, E., Rizzoli, C., Ercolani, C. & Kadish, K. M. (2009). Inorg. Chem. 48, 7086-7098.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr2(C14H10N4)]

  • Mr = 589.17

  • Monoclinic, P 21 /n

  • a = 8.4989 (12) Å

  • b = 15.348 (2) Å

  • c = 12.0277 (16) Å

  • β = 101.403 (3)°

  • V = 1538.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.32 mm−1

  • T = 200 K

  • 0.18 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.105, Tmax = 0.156

  • 10118 measured reflections

  • 3323 independent reflections

  • 2484 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.067

  • S = 0.99

  • 3323 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.66 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N3 2.026 (5)
Pt1—N4 2.029 (5)
Pt1—Br1 2.4202 (8)
Pt1—Br2 2.4335 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br1i 0.95 2.88 3.524 (6) 126
C11—H11⋯Br1ii 0.95 2.88 3.688 (7) 143
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PtBr2(dpp)] (dpp is 2,3-di-2-pyridylpyrazine, C14H10N4), is a structural isomer of the previously reported Pt(II) complex (Ha, 2011). The PtII ion has a slightly distorted square-planar environment defined by the two pyridyl N atoms of the chelating dpp ligand and two bromide anions (Fig. 1). The coordination mode of the dpp ligand is similar to that found in the mononuclear Pt(II) complexes [PtCl2(dpq)] (dpq = 2,3-di-2-pyridylquinoxaline) (Granifo et al., 2000) and [PtCl2(dcdpp)] (dcdpp = 2,3-dicyano-5,6-di-2-pyridylpyrazine) (Cai et al., 2009).

The N3—Pt1—N4 chelate angle of 87.7 (2)° and Br—Br repelling contribute the distortion of square, and therefore the trans axes are slightly bent [<Br1—Pt1—N4 = 174.08 (15)° and <Br2—Pt1—N3 = 178.19 (14)°]. The Pt—N and Pt—Br bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the two pyridyl rings are considerably inclined to the least-squares plane of the PtBr2N2 unit [maximum deviation = 0.064 (2) Å] with dihedral angles of 65.2 (2)° and 66.0 (2)°, respectively. The nearly planar pyrazine ring [maximum deviation = 0.020 (5) Å] is almost perpendicular to the unit plane with a dihedral angle of 89.2 (2)°. The dihedral angle between the two pyridyl rings is 80.5 (2)°. Two independent intermolecular C—H···Br hydrogen bonds, both involving the same Br atom as an H-bond acceptor, give rise to chains running along the a and b axes, forming a layer structure extending parallel to the ab plane (Fig. 2 and Table 2). The complexes are stacked in columns along the a axis. When viewed down the b axis, the successive complexes stack in the opposite direction. In the columns, numerous inter- and intramolecular π-π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.833 (4) Å.

Related literature top

For the structural isomer of the title complex, see: Ha (2011). For crystal structures of the related PtII complexes, see: Granifo et al. (2000); Cai et al. (2009).

Experimental top

The title complex was obtained as a byproduct from the reaction of K2PtBr4 (0.2967 g, 0.500 mmol) with 2,3-di-2-pyridylpyrazine (0.1173 g, 0.501 mmol) in H2O (20 ml). After stirring of the reaction mixture for 3 h at room temperature, the formed precipitate was separated by filtration, washed with H2O and acetone, to give the main product as a red-brown powder (0.1326 g) (Ha, 2011). The yellow byproduct (0.0299 g) was obtained from the mixture of filtrate and washing solution. Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2 solution of the byproduct.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.66 e Å-3) and the deepest hole (-0.84 e Å-3) in the difference Fourier map are located 1.95 Å and 0.89 Å from the atoms H12 and Pt1, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the hydrogen-bond interactions of the title complex. Hydrogen-bonds are drawn with dashed lines.
Dibromido(2,3-di-2-pyridylpyrazine-κ2N2,N3)platinum(II) top
Crystal data top
[PtBr2(C14H10N4)]F(000) = 1080
Mr = 589.17Dx = 2.544 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4242 reflections
a = 8.4989 (12) Åθ = 2.7–27.0°
b = 15.348 (2) ŵ = 14.32 mm1
c = 12.0277 (16) ÅT = 200 K
β = 101.403 (3)°Block, yellow
V = 1538.0 (4) Å30.18 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3323 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.105, Tmax = 0.156k = 1119
10118 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
3323 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 1.66 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[PtBr2(C14H10N4)]V = 1538.0 (4) Å3
Mr = 589.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4989 (12) ŵ = 14.32 mm1
b = 15.348 (2) ÅT = 200 K
c = 12.0277 (16) Å0.18 × 0.18 × 0.13 mm
β = 101.403 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3323 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2484 reflections with I > 2σ(I)
Tmin = 0.105, Tmax = 0.156Rint = 0.046
10118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.99Δρmax = 1.66 e Å3
3323 reflectionsΔρmin = 0.84 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.52128 (3)0.060963 (16)0.31708 (2)0.02517 (9)
Br10.38241 (9)0.07734 (4)0.30704 (6)0.03471 (18)
Br20.27287 (9)0.14353 (5)0.26735 (6)0.0413 (2)
N10.8219 (7)0.0077 (3)0.0833 (5)0.0314 (14)
N20.7631 (7)0.1861 (4)0.0810 (5)0.0368 (15)
N30.7311 (6)0.0055 (3)0.3550 (4)0.0238 (12)
N40.6520 (7)0.1724 (3)0.3406 (4)0.0284 (13)
C10.8029 (8)0.0499 (4)0.1780 (5)0.0265 (15)
C20.7701 (8)0.1400 (4)0.1755 (6)0.0304 (16)
C30.7799 (10)0.1437 (5)0.0117 (6)0.042 (2)
H30.77380.17550.08020.051*
C40.8060 (9)0.0552 (5)0.0126 (6)0.0394 (19)
H40.81280.02720.08190.047*
C50.8339 (8)0.0057 (4)0.2819 (5)0.0231 (14)
C60.9675 (8)0.0587 (4)0.3011 (6)0.0305 (16)
H61.03860.05900.24920.037*
C70.9973 (9)0.1111 (5)0.3954 (6)0.0392 (18)
H71.08810.14850.40870.047*
C80.8944 (8)0.1088 (4)0.4708 (6)0.0333 (17)
H80.91490.14360.53750.040*
C90.7622 (8)0.0557 (4)0.4483 (5)0.0266 (15)
H90.69090.05440.49990.032*
C100.7583 (9)0.1933 (4)0.2760 (5)0.0307 (16)
C110.8525 (9)0.2669 (4)0.3000 (6)0.0397 (19)
H110.92740.28150.25400.048*
C120.8379 (10)0.3187 (5)0.3903 (6)0.043 (2)
H120.90260.36930.40730.052*
C130.7293 (10)0.2969 (5)0.4557 (6)0.044 (2)
H130.71860.33220.51870.053*
C140.6361 (9)0.2243 (4)0.4303 (5)0.0352 (18)
H140.55980.20960.47530.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02370 (16)0.02954 (16)0.02362 (14)0.00465 (12)0.00797 (11)0.00200 (11)
Br10.0235 (4)0.0404 (4)0.0414 (4)0.0026 (3)0.0092 (3)0.0002 (3)
Br20.0357 (5)0.0529 (5)0.0367 (4)0.0204 (4)0.0108 (3)0.0100 (3)
N10.035 (4)0.029 (3)0.033 (3)0.004 (3)0.014 (3)0.002 (3)
N20.043 (4)0.035 (4)0.033 (3)0.001 (3)0.009 (3)0.012 (3)
N30.026 (3)0.024 (3)0.021 (3)0.004 (2)0.003 (2)0.000 (2)
N40.032 (4)0.025 (3)0.028 (3)0.004 (3)0.005 (3)0.003 (2)
C10.019 (4)0.036 (4)0.025 (4)0.003 (3)0.005 (3)0.001 (3)
C20.023 (4)0.028 (4)0.042 (4)0.001 (3)0.009 (3)0.004 (3)
C30.058 (6)0.041 (5)0.033 (4)0.002 (4)0.021 (4)0.013 (3)
C40.042 (5)0.051 (5)0.029 (4)0.006 (4)0.014 (3)0.014 (3)
C50.023 (4)0.027 (4)0.018 (3)0.002 (3)0.001 (3)0.000 (3)
C60.017 (4)0.035 (4)0.042 (4)0.003 (3)0.012 (3)0.006 (3)
C70.024 (4)0.044 (5)0.050 (5)0.008 (3)0.010 (4)0.013 (4)
C80.030 (4)0.031 (4)0.038 (4)0.004 (3)0.005 (3)0.006 (3)
C90.025 (4)0.031 (4)0.024 (3)0.006 (3)0.004 (3)0.004 (3)
C100.035 (4)0.022 (4)0.032 (4)0.001 (3)0.001 (3)0.008 (3)
C110.042 (5)0.032 (4)0.046 (5)0.001 (4)0.012 (4)0.003 (4)
C120.045 (5)0.029 (4)0.048 (5)0.000 (4)0.009 (4)0.004 (4)
C130.067 (6)0.030 (5)0.031 (4)0.009 (4)0.002 (4)0.005 (3)
C140.055 (5)0.030 (4)0.019 (4)0.009 (4)0.007 (3)0.002 (3)
Geometric parameters (Å, º) top
Pt1—N32.026 (5)C4—H40.9500
Pt1—N42.029 (5)C5—C61.380 (8)
Pt1—Br12.4202 (8)C6—C71.373 (9)
Pt1—Br22.4335 (8)C6—H60.9500
N1—C11.347 (8)C7—C81.379 (9)
N1—C41.349 (8)C7—H70.9500
N2—C31.323 (8)C8—C91.371 (9)
N2—C21.329 (8)C8—H80.9500
N3—C91.344 (7)C9—H90.9500
N3—C51.357 (7)C10—C111.381 (9)
N4—C101.341 (8)C11—C121.372 (9)
N4—C141.368 (8)C11—H110.9500
C1—C21.410 (9)C12—C131.367 (10)
C1—C51.493 (8)C12—H120.9500
C2—C101.479 (9)C13—C141.366 (10)
C3—C41.376 (9)C13—H130.9500
C3—H30.9500C14—H140.9500
N3—Pt1—N487.7 (2)C6—C5—C1118.7 (6)
N3—Pt1—Br188.20 (14)C7—C6—C5119.7 (6)
N4—Pt1—Br1174.08 (15)C7—C6—H6120.2
N3—Pt1—Br2178.19 (14)C5—C6—H6120.2
N4—Pt1—Br291.13 (15)C6—C7—C8119.5 (7)
Br1—Pt1—Br293.08 (3)C6—C7—H7120.3
C1—N1—C4117.0 (6)C8—C7—H7120.3
C3—N2—C2117.7 (6)C9—C8—C7119.1 (6)
C9—N3—C5119.6 (5)C9—C8—H8120.5
C9—N3—Pt1119.7 (4)C7—C8—H8120.5
C5—N3—Pt1120.4 (4)N3—C9—C8121.7 (6)
C10—N4—C14120.0 (6)N3—C9—H9119.2
C10—N4—Pt1122.2 (4)C8—C9—H9119.2
C14—N4—Pt1117.6 (5)N4—C10—C11120.2 (6)
N1—C1—C2120.7 (6)N4—C10—C2120.3 (6)
N1—C1—C5113.7 (6)C11—C10—C2119.5 (6)
C2—C1—C5125.4 (6)C12—C11—C10120.0 (7)
N2—C2—C1121.0 (6)C12—C11—H11120.0
N2—C2—C10113.9 (6)C10—C11—H11120.0
C1—C2—C10124.7 (6)C13—C12—C11119.3 (7)
N2—C3—C4122.4 (6)C13—C12—H12120.3
N2—C3—H3118.8C11—C12—H12120.3
C4—C3—H3118.8C14—C13—C12119.9 (7)
N1—C4—C3121.1 (7)C14—C13—H13120.0
N1—C4—H4119.4C12—C13—H13120.0
C3—C4—H4119.4C13—C14—N4120.5 (7)
N3—C5—C6120.5 (6)C13—C14—H14119.8
N3—C5—C1120.8 (6)N4—C14—H14119.8
N4—Pt1—N3—C9115.6 (5)N1—C1—C5—C645.0 (8)
Br1—Pt1—N3—C960.1 (4)C2—C1—C5—C6129.7 (7)
N4—Pt1—N3—C570.2 (5)N3—C5—C6—C70.6 (10)
Br1—Pt1—N3—C5114.1 (4)C1—C5—C6—C7179.3 (6)
N3—Pt1—N4—C1062.4 (5)C5—C6—C7—C81.1 (11)
Br2—Pt1—N4—C10116.2 (5)C6—C7—C8—C91.6 (11)
N3—Pt1—N4—C14113.5 (5)C5—N3—C9—C81.2 (9)
Br2—Pt1—N4—C1467.8 (5)Pt1—N3—C9—C8173.0 (5)
C4—N1—C1—C20.9 (9)C7—C8—C9—N30.4 (10)
C4—N1—C1—C5175.9 (6)C14—N4—C10—C110.3 (10)
C3—N2—C2—C13.3 (10)Pt1—N4—C10—C11175.6 (5)
C3—N2—C2—C10177.1 (6)C14—N4—C10—C2176.9 (6)
N1—C1—C2—N22.5 (10)Pt1—N4—C10—C27.3 (9)
C5—C1—C2—N2171.9 (6)N2—C2—C10—N4128.9 (7)
N1—C1—C2—C10175.6 (6)C1—C2—C10—N457.6 (10)
C5—C1—C2—C101.2 (11)N2—C2—C10—C1148.3 (9)
C2—N2—C3—C40.8 (11)C1—C2—C10—C11125.3 (7)
C1—N1—C4—C33.3 (10)N4—C10—C11—C120.2 (11)
N2—C3—C4—N12.6 (12)C2—C10—C11—C12177.4 (6)
C9—N3—C5—C61.7 (9)C10—C11—C12—C130.1 (11)
Pt1—N3—C5—C6172.5 (5)C11—C12—C13—C140.3 (11)
C9—N3—C5—C1179.6 (6)C12—C13—C14—N40.8 (11)
Pt1—N3—C5—C16.2 (8)C10—N4—C14—C130.8 (10)
N1—C1—C5—N3133.7 (6)Pt1—N4—C14—C13175.3 (5)
C2—C1—C5—N351.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.952.883.524 (6)126
C11—H11···Br1ii0.952.883.688 (7)143
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PtBr2(C14H10N4)]
Mr589.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.4989 (12), 15.348 (2), 12.0277 (16)
β (°) 101.403 (3)
V3)1538.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)14.32
Crystal size (mm)0.18 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.105, 0.156
No. of measured, independent and
observed [I > 2σ(I)] reflections
10118, 3323, 2484
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 0.99
No. of reflections3323
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 0.84

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N32.026 (5)Pt1—Br12.4202 (8)
Pt1—N42.029 (5)Pt1—Br22.4335 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.952.883.524 (6)126.0
C11—H11···Br1ii0.952.883.688 (7)143.2
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Donzello, M. P., Viola, E., Rizzoli, C., Ercolani, C. & Kadish, K. M. (2009). Inorg. Chem. 48, 7086–7098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGranifo, J., Vargas, M. E., Garland, M. T. & Baggio, R. (2000). Inorg. Chim. Acta, 305, 143–150.  Web of Science CSD CrossRef CAS Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, m1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds