organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-3-(2,6-di­chloro­phen­yl)-1-phenyl­propan-1-ol

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 12 August 2011; accepted 24 August 2011; online 27 August 2011)

The asymmetric unit of the title compound, C21H17Cl2N3O, contains two crystallographically independent mol­ecules with similar conformations. The benzotriazole ring is oriented at dihedral angles of 30.61 (5) and 43.36 (5)°, respectively, to the phenyl and dichloro­phenyl rings in one mol­ecule, and 32.25 (5) and 41.04 (5)° in the other. The dihedral angles between the phenyl and dichloro­phenyl rings are 66.38 (7) and 66.14 (6)° in the two mol­ecules. An intra­molecular O—H⋯N hydrogen bond links the benzotriazole ring and phenyl­propanol unit in each mol­ecule. In the crystal, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains along the a axis. ππ stacking between the dichloro­phenyl rings [centroid–centroid distances = 3.809 (1) and 3.735 (1) Å] may further stabilize the crystal structure.

Related literature

For the biological activity of azole compounds, see: Cozzi et al. (1994[Cozzi, P., Giordani, A., Menichincheri, M., Pillan, A., Pinciroli, V., Rossi, A., Tonani, R., Volpi, D., Tamburin, M., Ferrario, R., Fusar, D. & Salvati, P. (1994). J. Med. Chem. 37, 3588-3604.]) and of triazole derivatives, see: Jin et al. (2006[Jin, Z., Hu, Y., Huo, A., Tao, W., Shao, L., Liu, J. & Fang, J. (2006). J. Organomet. Chem. 691, 2340-2345.]). For related structures, see: Özel Güven et al. (2007[Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3638.], 2008[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.], 2010[Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17Cl2N3O

  • Mr = 398.28

  • Triclinic, [P \overline 1]

  • a = 9.3894 (2) Å

  • b = 9.4947 (2) Å

  • c = 21.2687 (3) Å

  • α = 91.415 (2)°

  • β = 92.324 (2)°

  • γ = 90.406 (1)°

  • V = 1893.90 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 K

  • 0.4 × 0.4 × 0.3 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.897

  • 40396 measured reflections

  • 8697 independent reflections

  • 7206 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.07

  • 8697 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.82 2.56 3.1254 (19) 127
O1′—H1B⋯N2′ 0.82 2.52 3.0881 (19) 128
C19—H19⋯N3i 0.93 2.54 3.420 (2) 158
C19′—H19′⋯N3′ii 0.93 2.53 3.410 (2) 159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azole compounds have important biological activities. In literature 2-(1H-imidazol-1-yl)-1,3-diphenylpropan-1-one and its derivatives have been reported that they show both high and selective thromboxane A2 receptor antagonist and thromboxane A2 synthase inhibitory activity (Cozzi et al., 1994). Some 1H-1,2,4-triazole derivatives have been known as antifungal and plant growth regulatory agents (Jin et al., 2006). Crystal structures of similar compounds like ketone having benzimidazole and furan rings (Özel Güven et al., 2007) and alcohols having 1,2,4-triazole and benzotriazole rings have been reported (Özel Güven et al., 2008; Özel Güven et al., 2010). Now, we report herein the crystal structure of the title benzotriazole derivative, (I).

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules, in which they differ slightly in the orientations of the 2-6-dichlorophenyl units and the bond lengths and angles are generally within normal ranges. The intramolecular O—H···N hydrogen bonds (Table 1) link the benzotriazole rings and phenylpropan units. In each molecule, the planar benzotriazole rings [A (N1-N3/C9-C14) and A' (N1'-N3'/C9'-C14')] are oriented with respect to the phenyl [B (C3-C8) and B' (C3'-C8')] and 2-6-dichlorophenyl [C (C16-C21)] and C' (C16'-C21')] rings at dihedral angles of A/B = 30.61 (5), A/C = 43.36 (5) ° and A'/B' = 32.25 (5), A'/C' = 41.04 (5) °. The dihedral angles between phenyl rings are B/C = 66.38 (7) and B'/C' = 66.14 (6) °. Atoms C1 and C1' are -0.044 (2) and 0.086 (2) Å away from the planes of the benzotriazole rings, respectively.

In the crystal structure, intermolecular C—H···N hydrogen bonds (Table 1) link the molecules into chains along the a-axis (Fig. 2). The ππ contacts between the 2-6-dichlorophenyl rings, Cg3—Cg3i and Cg3'—Cg3'ii, [symmetry codes: (i) 2 - x, 2 - y, - z, (ii) 1 - x, 1 - y, 1 - z, where Cg3 and Cg3' are the centroids of the rings C (C16-C21)] and C' (C16'-C21'), respectively], may further stabilize the structure, with centroid-centroid distances of 3.809 (1) and 3.735 (1) Å, respectively.

Related literature top

For the biological activity of azole compounds, see: Cozzi et al. (1994) and of triazole derivatives, see: Jin et al. (2006). For related structures, see: Özel Güven et al. (2007, 2008, 2010).

Experimental top

The title compound, (I), was synthesized by the reduction of 2-(1H-benzotriazol-1-yl)-3-(2,6-dichlorophenyl)-1-phenylpropane-1-one. Sodiumborohydride (38.21 mg, 1.01 mmol) was added to a solution of 2-(1H-benzotriazol-1-yl)-3-(2,6-dichlorophenyl)-1-phenylpropane-1-one (200 mg, 0.505 mmol) in ethanol (15 ml). The mixture was refluxed for 5 h. The solvent was removed and the mixture was neutralized with dilute HCl, and then refluxed for 30 min. After cooling the mixture, it was alkalinized with dilute NaOH. The precipitate was filtered and washed with ethanol. The filtrate was extracted with chloroform, then the organic phase was dried and solvents were removed by rotary evaporator. The residue was purified with column chromatography using hexane: ethyl acetate (7:3) mixture as solvent. The product was crystallized from benzene to obtain colorless single crystals suitable for X-ray analysis (yield; 82 mg, 41%).

Refinement top

H atoms were positioned geometrically with O—H = 0.82 for hydroxy H, and C—H = 0.93, 0.97 and 0.98 Å for aromatic, methylene and methine H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C,O), where k = 1.5 for hydroxy H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The intermolecular C—H···N hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
2-(1H-Benzotriazol-1-yl)-3-(2,6-dichlorophenyl)-1-phenylpropan-1-ol top
Crystal data top
C21H17Cl2N3OZ = 4
Mr = 398.28F(000) = 824
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3894 (2) ÅCell parameters from 14651 reflections
b = 9.4947 (2) Åθ = 2.9–27.5°
c = 21.2687 (3) ŵ = 0.36 mm1
α = 91.415 (2)°T = 120 K
β = 92.324 (2)°Block, colorless
γ = 90.406 (1)°0.4 × 0.4 × 0.3 mm
V = 1893.90 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
8697 independent reflections
Radiation source: fine-focus sealed tube7206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1212
Tmin = 0.866, Tmax = 0.897k = 1211
40396 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.9534P]
where P = (Fo2 + 2Fc2)/3
8697 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C21H17Cl2N3Oγ = 90.406 (1)°
Mr = 398.28V = 1893.90 (6) Å3
Triclinic, P1Z = 4
a = 9.3894 (2) ÅMo Kα radiation
b = 9.4947 (2) ŵ = 0.36 mm1
c = 21.2687 (3) ÅT = 120 K
α = 91.415 (2)°0.4 × 0.4 × 0.3 mm
β = 92.324 (2)°
Data collection top
Nonius KappaCCD
diffractometer
8697 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
7206 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.897Rint = 0.044
40396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
8697 reflectionsΔρmin = 0.73 e Å3
487 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77473 (4)1.06219 (5)0.104106 (19)0.02207 (10)
Cl20.97499 (5)0.66618 (5)0.05798 (2)0.03245 (12)
O10.42613 (13)0.61760 (13)0.02537 (6)0.0256 (3)
H1A0.40090.63800.01010.038*
N10.60715 (15)0.74669 (14)0.06575 (6)0.0162 (3)
N20.50172 (15)0.83379 (15)0.08432 (7)0.0200 (3)
N30.49164 (16)0.82583 (16)0.14548 (7)0.0206 (3)
C10.64956 (17)0.73778 (17)0.00021 (7)0.0149 (3)
H10.70610.65220.00480.018*
C20.52030 (18)0.72524 (18)0.04605 (8)0.0193 (3)
H20.46980.81520.04620.023*
C30.57040 (18)0.69279 (18)0.11180 (8)0.0197 (4)
C40.5683 (2)0.7957 (2)0.15719 (9)0.0284 (4)
H40.53180.88420.14790.034*
C50.6205 (3)0.7673 (2)0.21634 (10)0.0366 (5)
H50.61830.83660.24650.044*
C60.6758 (2)0.6356 (2)0.23049 (10)0.0338 (5)
H60.71170.61710.26990.041*
C70.6774 (2)0.5318 (2)0.18587 (9)0.0295 (4)
H70.71360.44330.19550.035*
C80.6248 (2)0.55996 (19)0.12650 (9)0.0237 (4)
H80.62600.49010.09660.028*
C90.66758 (18)0.68088 (17)0.11643 (8)0.0160 (3)
C100.7773 (2)0.58173 (18)0.12292 (8)0.0215 (4)
H100.82860.55020.08890.026*
C110.8040 (2)0.5342 (2)0.18290 (9)0.0258 (4)
H110.87480.46760.18940.031*
C120.7273 (2)0.5834 (2)0.23490 (9)0.0262 (4)
H120.74810.54720.27440.031*
C130.6226 (2)0.6834 (2)0.22842 (8)0.0237 (4)
H130.57400.71720.26280.028*
C140.59246 (18)0.73200 (17)0.16758 (8)0.0173 (3)
C150.74540 (17)0.86394 (17)0.01401 (8)0.0157 (3)
H15A0.76640.86090.05830.019*
H15B0.69480.95060.00550.019*
C160.88295 (17)0.86400 (17)0.02488 (8)0.0166 (3)
C170.90693 (18)0.94709 (18)0.07957 (8)0.0183 (3)
C181.03235 (19)0.9434 (2)0.11631 (9)0.0238 (4)
H181.04370.99980.15260.029*
C191.1407 (2)0.8542 (2)0.09808 (9)0.0289 (4)
H191.22550.85100.12220.035*
C201.12324 (19)0.7704 (2)0.04434 (10)0.0276 (4)
H201.19600.71130.03190.033*
C210.99607 (19)0.77537 (19)0.00931 (9)0.0225 (4)
Cl1'0.43627 (5)1.25631 (4)0.394633 (19)0.02133 (10)
Cl2'0.83607 (5)1.47909 (5)0.56172 (2)0.02874 (12)
O1'0.88141 (13)0.93042 (12)0.52629 (6)0.0217 (3)
H1B0.85690.89910.49120.032*
N1'0.74653 (15)1.09289 (14)0.43580 (6)0.0143 (3)
N2'0.65658 (15)0.98414 (14)0.41974 (7)0.0184 (3)
N3'0.65629 (16)0.96282 (15)0.35860 (7)0.0201 (3)
C1'0.76151 (17)1.14764 (16)0.50055 (7)0.0134 (3)
H1'0.84881.20490.50430.016*
C2'0.77665 (18)1.02758 (17)0.54764 (8)0.0163 (3)
H2'0.68490.97820.54940.020*
C3'0.81778 (18)1.08827 (17)0.61265 (8)0.0167 (3)
C4'0.95523 (19)1.14282 (18)0.62497 (8)0.0207 (4)
H4'1.02181.13850.59380.025*
C5'0.9927 (2)1.2033 (2)0.68340 (9)0.0251 (4)
H5'1.08401.24020.69110.030*
C6'0.8942 (2)1.2090 (2)0.73039 (9)0.0283 (4)
H6'0.91941.24990.76950.034*
C7'0.7588 (2)1.1537 (2)0.71895 (9)0.0278 (4)
H7'0.69321.15690.75050.033*
C8'0.7202 (2)1.09329 (19)0.66023 (8)0.0224 (4)
H8'0.62891.05620.65280.027*
C9'0.80557 (17)1.14485 (17)0.38334 (7)0.0150 (3)
C10'0.90362 (19)1.25377 (18)0.37405 (8)0.0200 (4)
H10'0.94121.31000.40720.024*
C11'0.9407 (2)1.2722 (2)0.31273 (9)0.0272 (4)
H11'1.00591.34270.30420.033*
C12'0.8824 (2)1.1869 (2)0.26232 (9)0.0309 (4)
H12'0.91071.20290.22170.037*
C13'0.7850 (2)1.08096 (19)0.27169 (8)0.0262 (4)
H13'0.74651.02570.23840.031*
C14'0.74682 (19)1.06059 (17)0.33400 (8)0.0180 (3)
C15'0.63528 (17)1.24411 (16)0.51530 (7)0.0146 (3)
H15C0.54661.19290.50660.017*
H15D0.64031.27060.55970.017*
C16'0.63594 (18)1.37529 (16)0.47679 (8)0.0160 (3)
C17'0.55197 (18)1.39105 (17)0.42163 (8)0.0167 (3)
C18'0.5560 (2)1.51185 (18)0.38579 (8)0.0213 (4)
H18'0.49901.51840.34920.026*
C19'0.6460 (2)1.62216 (18)0.40542 (9)0.0237 (4)
H19'0.64941.70320.38180.028*
C20'0.7307 (2)1.61274 (18)0.45971 (9)0.0238 (4)
H20'0.79031.68710.47310.029*
C21'0.72545 (19)1.49006 (18)0.49406 (8)0.0193 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0183 (2)0.0301 (2)0.0176 (2)0.00322 (16)0.00066 (16)0.00500 (16)
Cl20.0273 (2)0.0317 (3)0.0388 (3)0.00458 (19)0.0124 (2)0.0105 (2)
O10.0194 (6)0.0270 (7)0.0307 (7)0.0052 (5)0.0077 (5)0.0054 (5)
N10.0161 (7)0.0160 (7)0.0170 (7)0.0044 (5)0.0052 (5)0.0029 (5)
N20.0157 (7)0.0215 (7)0.0233 (8)0.0046 (6)0.0058 (6)0.0001 (6)
N30.0177 (7)0.0252 (8)0.0190 (7)0.0010 (6)0.0038 (6)0.0031 (6)
C10.0155 (8)0.0155 (8)0.0139 (8)0.0033 (6)0.0034 (6)0.0018 (6)
C20.0154 (8)0.0177 (8)0.0244 (9)0.0001 (6)0.0000 (7)0.0025 (7)
C30.0174 (8)0.0211 (8)0.0202 (9)0.0008 (7)0.0030 (7)0.0031 (7)
C40.0334 (11)0.0256 (10)0.0256 (10)0.0024 (8)0.0051 (8)0.0002 (8)
C50.0459 (13)0.0398 (12)0.0240 (10)0.0039 (10)0.0013 (9)0.0067 (9)
C60.0345 (11)0.0463 (12)0.0205 (10)0.0060 (9)0.0039 (8)0.0059 (8)
C70.0299 (11)0.0288 (10)0.0295 (10)0.0005 (8)0.0044 (8)0.0115 (8)
C80.0251 (9)0.0219 (9)0.0239 (9)0.0022 (7)0.0029 (7)0.0040 (7)
C90.0177 (8)0.0145 (8)0.0158 (8)0.0008 (6)0.0018 (6)0.0006 (6)
C100.0256 (9)0.0210 (9)0.0183 (8)0.0065 (7)0.0037 (7)0.0012 (7)
C110.0294 (10)0.0244 (9)0.0238 (9)0.0067 (8)0.0019 (8)0.0052 (7)
C120.0298 (10)0.0321 (10)0.0167 (9)0.0015 (8)0.0021 (7)0.0052 (7)
C130.0231 (9)0.0308 (10)0.0170 (8)0.0040 (7)0.0038 (7)0.0035 (7)
C140.0150 (8)0.0186 (8)0.0184 (8)0.0027 (6)0.0029 (6)0.0023 (6)
C150.0155 (8)0.0176 (8)0.0140 (8)0.0000 (6)0.0010 (6)0.0005 (6)
C160.0139 (8)0.0198 (8)0.0165 (8)0.0003 (6)0.0028 (6)0.0038 (6)
C170.0134 (8)0.0232 (9)0.0185 (8)0.0002 (6)0.0032 (6)0.0040 (7)
C180.0175 (9)0.0347 (10)0.0191 (9)0.0029 (7)0.0022 (7)0.0059 (7)
C190.0139 (9)0.0434 (12)0.0298 (10)0.0001 (8)0.0012 (7)0.0144 (9)
C200.0148 (9)0.0320 (10)0.0373 (11)0.0061 (7)0.0081 (8)0.0102 (8)
C210.0174 (9)0.0256 (9)0.0250 (9)0.0005 (7)0.0072 (7)0.0028 (7)
Cl1'0.0268 (2)0.0159 (2)0.0207 (2)0.00349 (16)0.00538 (17)0.00179 (15)
Cl2'0.0305 (3)0.0212 (2)0.0332 (3)0.00356 (17)0.01093 (19)0.00507 (18)
O1'0.0232 (6)0.0154 (6)0.0258 (7)0.0046 (5)0.0037 (5)0.0032 (5)
N1'0.0161 (7)0.0123 (6)0.0146 (7)0.0029 (5)0.0016 (5)0.0021 (5)
N2'0.0200 (7)0.0137 (7)0.0211 (7)0.0041 (5)0.0005 (6)0.0042 (5)
N3'0.0253 (8)0.0154 (7)0.0189 (7)0.0010 (6)0.0030 (6)0.0025 (5)
C1'0.0147 (8)0.0121 (7)0.0133 (7)0.0023 (6)0.0008 (6)0.0014 (6)
C2'0.0158 (8)0.0136 (8)0.0193 (8)0.0012 (6)0.0009 (6)0.0027 (6)
C3'0.0186 (8)0.0140 (8)0.0173 (8)0.0019 (6)0.0024 (6)0.0040 (6)
C4'0.0184 (9)0.0237 (9)0.0200 (9)0.0011 (7)0.0011 (7)0.0009 (7)
C5'0.0218 (9)0.0266 (9)0.0262 (10)0.0010 (7)0.0061 (7)0.0016 (7)
C6'0.0340 (11)0.0314 (10)0.0189 (9)0.0071 (8)0.0046 (8)0.0028 (7)
C7'0.0307 (10)0.0322 (10)0.0210 (9)0.0047 (8)0.0052 (8)0.0021 (8)
C8'0.0194 (9)0.0243 (9)0.0236 (9)0.0008 (7)0.0014 (7)0.0046 (7)
C9'0.0152 (8)0.0149 (8)0.0148 (8)0.0025 (6)0.0014 (6)0.0005 (6)
C10'0.0203 (9)0.0204 (8)0.0192 (8)0.0046 (7)0.0017 (7)0.0008 (6)
C11'0.0325 (11)0.0261 (10)0.0235 (9)0.0057 (8)0.0074 (8)0.0045 (7)
C12'0.0500 (13)0.0278 (10)0.0157 (9)0.0001 (9)0.0088 (8)0.0034 (7)
C13'0.0429 (12)0.0204 (9)0.0148 (8)0.0000 (8)0.0025 (8)0.0017 (7)
C14'0.0217 (9)0.0145 (8)0.0177 (8)0.0025 (6)0.0018 (7)0.0005 (6)
C15'0.0170 (8)0.0129 (7)0.0140 (8)0.0005 (6)0.0022 (6)0.0007 (6)
C16'0.0199 (8)0.0114 (7)0.0170 (8)0.0022 (6)0.0045 (6)0.0008 (6)
C17'0.0207 (8)0.0125 (7)0.0170 (8)0.0000 (6)0.0041 (6)0.0009 (6)
C18'0.0289 (10)0.0178 (8)0.0176 (8)0.0037 (7)0.0051 (7)0.0033 (6)
C19'0.0334 (10)0.0126 (8)0.0259 (9)0.0000 (7)0.0105 (8)0.0040 (7)
C20'0.0272 (10)0.0125 (8)0.0321 (10)0.0037 (7)0.0082 (8)0.0026 (7)
C21'0.0201 (9)0.0165 (8)0.0212 (9)0.0003 (6)0.0012 (7)0.0036 (6)
Geometric parameters (Å, º) top
Cl1—C171.7467 (17)Cl1'—C17'1.7435 (17)
Cl2—C211.7500 (19)Cl2'—C21'1.7460 (18)
O1—C21.435 (2)O1'—C2'1.433 (2)
O1—H1A0.8200O1'—H1B0.8200
N1—N21.3591 (19)N1'—C1'1.461 (2)
N1—C11.466 (2)N1'—C9'1.367 (2)
N1—C91.365 (2)N2'—N1'1.3576 (19)
N2—N31.312 (2)N2'—N3'1.311 (2)
N3—C141.381 (2)N3'—C14'1.381 (2)
C1—C21.533 (2)C1'—C2'1.540 (2)
C1—C151.536 (2)C1'—C15'1.541 (2)
C1—H10.9800C1'—H1'0.9800
C2—H20.9800C2'—C3'1.519 (2)
C3—C21.519 (2)C2'—H2'0.9800
C3—C41.390 (3)C3'—C4'1.400 (2)
C3—C81.397 (2)C3'—C8'1.393 (2)
C4—C51.389 (3)C4'—C5'1.387 (3)
C4—H40.9300C4'—H4'0.9300
C5—H50.9300C5'—H5'0.9300
C6—C51.388 (3)C6'—C7'1.382 (3)
C6—H60.9300C6'—C5'1.389 (3)
C7—C61.385 (3)C6'—H6'0.9300
C7—H70.9300C7'—H7'0.9300
C8—C71.395 (3)C8'—C7'1.395 (3)
C8—H80.9300C8'—H8'0.9300
C9—C101.405 (2)C9'—C10'1.403 (2)
C9—C141.399 (2)C9'—C14'1.397 (2)
C10—C111.378 (3)C10'—C11'1.379 (2)
C10—H100.9300C10'—H10'0.9300
C11—H110.9300C11'—C12'1.418 (3)
C12—C111.415 (3)C11'—H11'0.9300
C12—H120.9300C12'—H12'0.9300
C13—C121.377 (3)C13'—C12'1.378 (3)
C13—C141.403 (2)C13'—H13'0.9300
C13—H130.9300C14'—C13'1.404 (2)
C15—H15A0.9700C15'—H15C0.9700
C15—H15B0.9700C15'—H15D0.9700
C16—C151.505 (2)C16'—C15'1.508 (2)
C16—C171.399 (2)C16'—C17'1.398 (2)
C16—C211.405 (2)C16'—C21'1.404 (2)
C17—C181.388 (2)C17'—C18'1.394 (2)
C18—C191.390 (3)C18'—C19'1.387 (3)
C18—H180.9300C18'—H18'0.9300
C19—H190.9300C19'—H19'0.9300
C20—C191.380 (3)C20'—C19'1.380 (3)
C20—H200.9300C20'—C21'1.392 (2)
C21—C201.383 (3)C20'—H20'0.9300
C2—O1—H1A109.5C2'—O1'—H1B109.5
N2—N1—C1121.83 (13)N2'—N1'—C1'121.39 (13)
N2—N1—C9110.25 (13)N2'—N1'—C9'110.31 (13)
C9—N1—C1127.81 (13)C9'—N1'—C1'128.08 (13)
N3—N2—N1108.75 (13)N3'—N2'—N1'108.85 (13)
N2—N3—C14108.35 (13)N2'—N3'—C14'108.13 (13)
N1—C1—C2111.92 (13)N1'—C1'—C2'111.37 (12)
N1—C1—C15110.06 (13)N1'—C1'—C15'110.12 (13)
N1—C1—H1107.6N1'—C1'—H1'107.8
C2—C1—C15111.85 (13)C2'—C1'—C15'111.68 (13)
C2—C1—H1107.6C2'—C1'—H1'107.8
C15—C1—H1107.6C15'—C1'—H1'107.8
O1—C2—C3111.67 (14)O1'—C2'—C3'111.31 (13)
O1—C2—C1108.97 (14)O1'—C2'—C1'109.00 (13)
O1—C2—H2108.9O1'—C2'—H2'108.9
C1—C2—H2108.9C1'—C2'—H2'108.9
C3—C2—C1109.52 (13)C3'—C2'—C1'109.66 (13)
C3—C2—H2108.9C3'—C2'—H2'108.9
C4—C3—C2120.78 (16)C4'—C3'—C2'119.74 (15)
C4—C3—C8119.18 (17)C8'—C3'—C2'121.20 (15)
C8—C3—C2119.99 (16)C8'—C3'—C4'119.05 (16)
C3—C4—H4119.8C3'—C4'—H4'119.8
C5—C4—C3120.48 (18)C5'—C4'—C3'120.41 (17)
C5—C4—H4119.8C5'—C4'—H4'119.8
C4—C5—H5119.9C4'—C5'—C6'120.11 (18)
C6—C5—C4120.11 (19)C4'—C5'—H5'119.9
C6—C5—H5119.9C6'—C5'—H5'119.9
C5—C6—H6120.0C5'—C6'—H6'120.0
C7—C6—C5119.98 (19)C7'—C6'—C5'119.91 (18)
C7—C6—H6120.0C7'—C6'—H6'120.0
C6—C7—C8120.03 (18)C6'—C7'—C8'120.28 (18)
C6—C7—H7120.0C6'—C7'—H7'119.9
C8—C7—H7120.0C8'—C7'—H7'119.9
C3—C8—H8119.9C3'—C8'—C7'120.22 (17)
C7—C8—C3120.21 (18)C3'—C8'—H8'119.9
C7—C8—H8119.9C7'—C8'—H8'119.9
N1—C9—C10133.02 (15)N1'—C9'—C10'133.11 (15)
N1—C9—C14104.37 (14)N1'—C9'—C14'104.09 (14)
C14—C9—C10122.61 (15)C14'—C9'—C10'122.80 (15)
C9—C10—H10122.1C9'—C10'—H10'122.1
C11—C10—C9115.72 (16)C11'—C10'—C9'115.79 (16)
C11—C10—H10122.1C11'—C10'—H10'122.1
C10—C11—C12122.25 (17)C10'—C11'—C12'121.91 (18)
C10—C11—H11118.9C10'—C11'—H11'119.0
C12—C11—H11118.9C12'—C11'—H11'119.0
C11—C12—H12119.2C11'—C12'—H12'119.0
C13—C12—C11121.64 (17)C13'—C12'—C11'122.00 (17)
C13—C12—H12119.2C13'—C12'—H12'119.0
C12—C13—C14117.06 (16)C12'—C13'—C14'116.67 (17)
C12—C13—H13121.5C12'—C13'—H13'121.7
C14—C13—H13121.5C14'—C13'—H13'121.7
N3—C14—C9108.29 (14)N3'—C14'—C9'108.62 (15)
N3—C14—C13130.99 (16)N3'—C14'—C13'130.53 (16)
C9—C14—C13120.68 (16)C9'—C14'—C13'120.83 (16)
C1—C15—H15A109.2C1'—C15'—H15C109.3
C1—C15—H15B109.2C1'—C15'—H15D109.3
C16—C15—C1111.91 (13)C16'—C15'—C1'111.63 (13)
C16—C15—H15A109.2C16'—C15'—H15C109.3
C16—C15—H15B109.2C16'—C15'—H15D109.3
H15A—C15—H15B107.9H15C—C15'—H15D108.0
C17—C16—C15123.48 (15)C17'—C16'—C15'123.46 (15)
C17—C16—C21115.01 (16)C17'—C16'—C21'115.44 (15)
C21—C16—C15121.47 (15)C21'—C16'—C15'121.08 (15)
C16—C17—Cl1119.61 (13)C16'—C17'—Cl1'120.24 (12)
C18—C17—Cl1117.19 (14)C18'—C17'—Cl1'116.96 (14)
C18—C17—C16123.21 (16)C18'—C17'—C16'122.80 (16)
C17—C18—C19118.98 (18)C17'—C18'—H18'120.4
C17—C18—H18120.5C19'—C18'—C17'119.14 (17)
C19—C18—H18120.5C19'—C18'—H18'120.4
C18—C19—H19119.8C18'—C19'—H19'119.7
C20—C19—C18120.31 (17)C20'—C19'—C18'120.56 (16)
C20—C19—H19119.8C20'—C19'—H19'119.7
C19—C20—C21119.15 (17)C19'—C20'—C21'118.90 (16)
C19—C20—H20120.4C19'—C20'—H20'120.6
C21—C20—H20120.4C21'—C20'—H20'120.6
C16—C21—Cl2118.25 (14)C20'—C21'—C16'123.15 (16)
C20—C21—Cl2118.42 (14)C20'—C21'—Cl2'118.11 (14)
C20—C21—C16123.33 (17)C16'—C21'—Cl2'118.74 (13)
C1—N1—N2—N3176.70 (14)N2'—N1'—C1'—C2'45.82 (19)
C9—N1—N2—N30.29 (19)N2'—N1'—C1'—C15'78.65 (17)
N2—N1—C1—C246.4 (2)C9'—N1'—C1'—C2'140.11 (16)
N2—N1—C1—C1578.61 (18)C9'—N1'—C1'—C15'95.42 (18)
C9—N1—C1—C2137.85 (17)N2'—N1'—C9'—C10'179.53 (17)
C9—N1—C1—C1597.12 (18)N2'—N1'—C9'—C14'0.33 (17)
N2—N1—C9—C10179.28 (18)C1'—N1'—C9'—C10'5.9 (3)
N2—N1—C9—C140.33 (18)C1'—N1'—C9'—C14'174.94 (15)
C1—N1—C9—C104.6 (3)N3'—N2'—N1'—C9'0.62 (18)
C1—N1—C9—C14176.47 (15)N3'—N2'—N1'—C1'175.64 (13)
N1—N2—N3—C140.12 (18)N1'—N2'—N3'—C14'0.63 (17)
N2—N3—C14—C90.09 (19)N2'—N3'—C14'—C9'0.42 (18)
N2—N3—C14—C13177.81 (18)N2'—N3'—C14'—C13'179.01 (18)
N1—C1—C2—O148.50 (17)N1'—C1'—C2'—O1'48.02 (17)
N1—C1—C2—C3170.92 (13)N1'—C1'—C2'—C3'170.11 (13)
C15—C1—C2—O1172.54 (13)C15'—C1'—C2'—O1'171.61 (13)
C15—C1—C2—C365.04 (17)C15'—C1'—C2'—C3'66.30 (17)
N1—C1—C15—C1663.47 (17)N1'—C1'—C15'—C16'65.81 (17)
C2—C1—C15—C16171.46 (13)C2'—C1'—C15'—C16'169.90 (13)
C4—C3—C2—O1133.27 (17)O1'—C2'—C3'—C4'49.0 (2)
C4—C3—C2—C1105.93 (19)O1'—C2'—C3'—C8'132.25 (16)
C8—C3—C2—O149.4 (2)C1'—C2'—C3'—C4'71.69 (19)
C8—C3—C2—C171.4 (2)C1'—C2'—C3'—C8'107.05 (17)
C8—C3—C4—C50.4 (3)C2'—C3'—C4'—C5'177.60 (15)
C2—C3—C4—C5176.99 (18)C8'—C3'—C4'—C5'1.2 (3)
C2—C3—C8—C7176.87 (17)C2'—C3'—C8'—C7'177.86 (16)
C4—C3—C8—C70.5 (3)C4'—C3'—C8'—C7'0.9 (3)
C3—C4—C5—C60.3 (3)C3'—C4'—C5'—C6'0.6 (3)
C7—C6—C5—C40.8 (3)C7'—C6'—C5'—C4'0.3 (3)
C8—C7—C6—C50.6 (3)C5'—C6'—C7'—C8'0.5 (3)
C3—C8—C7—C60.0 (3)C3'—C8'—C7'—C6'0.0 (3)
N1—C9—C10—C11176.93 (18)N1'—C9'—C10'—C11'178.29 (18)
C14—C9—C10—C111.9 (3)C14'—C9'—C10'—C11'0.8 (3)
N1—C9—C14—N30.25 (18)N1'—C9'—C14'—N3'0.05 (18)
N1—C9—C14—C13177.90 (16)N1'—C9'—C14'—C13'178.80 (16)
C10—C9—C14—N3179.34 (16)C10'—C9'—C14'—N3'179.25 (15)
C10—C9—C14—C131.2 (3)C10'—C9'—C14'—C13'0.5 (3)
C9—C10—C11—C120.8 (3)C9'—C10'—C11'—C12'0.4 (3)
C13—C12—C11—C100.9 (3)C10'—C11'—C12'—C13'0.2 (3)
C14—C13—C12—C111.6 (3)C14'—C13'—C12'—C11'0.5 (3)
C12—C13—C14—N3177.08 (18)N3'—C14'—C13'—C12'178.28 (18)
C12—C13—C14—C90.6 (3)C9'—C14'—C13'—C12'0.2 (3)
C17—C16—C15—C199.63 (18)C17'—C16'—C15'—C1'98.63 (18)
C21—C16—C15—C178.26 (19)C21'—C16'—C15'—C1'79.95 (19)
C15—C16—C17—Cl12.1 (2)C15'—C16'—C17'—Cl1'1.2 (2)
C15—C16—C17—C18177.91 (16)C15'—C16'—C17'—C18'178.60 (15)
C21—C16—C17—Cl1179.90 (12)C21'—C16'—C17'—Cl1'179.83 (12)
C21—C16—C17—C180.1 (2)C21'—C16'—C17'—C18'0.1 (2)
C15—C16—C21—Cl21.3 (2)C15'—C16'—C21'—C20'179.40 (16)
C15—C16—C21—C20178.87 (16)C17'—C16'—C21'—C20'0.7 (2)
C17—C16—C21—Cl2179.38 (12)C15'—C16'—C21'—Cl2'0.5 (2)
C17—C16—C21—C200.8 (3)C17'—C16'—C21'—Cl2'179.16 (12)
Cl1—C17—C18—C19179.39 (14)Cl1'—C17'—C18'—C19'179.82 (13)
C16—C17—C18—C190.6 (3)C16'—C17'—C18'—C19'0.4 (3)
C17—C18—C19—C200.2 (3)C17'—C18'—C19'—C20'0.0 (3)
C21—C20—C19—C180.6 (3)C21'—C20'—C19'—C18'0.7 (3)
Cl2—C21—C20—C19179.01 (14)C19'—C20'—C21'—Cl2'178.75 (14)
C16—C21—C20—C191.2 (3)C19'—C20'—C21'—C16'1.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.822.563.1254 (19)127
O1—H1B···N20.822.523.0881 (19)128
C19—H19···N3i0.932.543.420 (2)158
C19—H19···N3ii0.932.533.410 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H17Cl2N3O
Mr398.28
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.3894 (2), 9.4947 (2), 21.2687 (3)
α, β, γ (°)91.415 (2), 92.324 (2), 90.406 (1)
V3)1893.90 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.866, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
40396, 8697, 7206
Rint0.044
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.07
No. of reflections8697
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.73

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.822.563.1254 (19)127
O1'—H1B···N2'0.822.523.0881 (19)128
C19—H19···N3i0.932.543.420 (2)158
C19'—H19'···N3'ii0.932.533.410 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge Zonguldak Karaelmas University Research Fund (project No: 2010-13-02-06).

References

First citationCozzi, P., Giordani, A., Menichincheri, M., Pillan, A., Pinciroli, V., Rossi, A., Tonani, R., Volpi, D., Tamburin, M., Ferrario, R., Fusar, D. & Salvati, P. (1994). J. Med. Chem. 37, 3588–3604.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJin, Z., Hu, Y., Huo, A., Tao, W., Shao, L., Liu, J. & Fang, J. (2006). J. Organomet. Chem. 691, 2340–2345.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3638.  CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds