organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo­phen­yl)thia­zolo[3,2-a]benzimidazole

aSchool of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China, and bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China
*Correspondence e-mail: wzmmol@hotmail.com

(Received 17 August 2011; accepted 25 August 2011; online 31 August 2011)

The title compound, C15H9BrN2S, was prepared by the reaction of 1-bromo-2-(2,2-dibromo­vin­yl)benzene with 1H-benzo[d]imidazole-2(3H)-thione. The thia­zolo[3,2-a]benz­imidazole fused-ring system is nearly planar, the maximum atomic deviation being 0.049 (4) Å. This mean plane is oriented at a dihedral angle of 71.55 (17)° with respect ot the bromo­phenyl ring. ππ stacking is observed in the crystal structure, the centroid–centroid distance between the thia­zole and imidazole rings of adjacent mol­ecules being 3.582 (2) Å.

Related literature

For the biological activity of imidazoles and their use as inhibitors of neurodegenerative disorders and as anti­tumor drugs, see: Park et al. (1977[Park, S. W., Reid, W. & Schuckmann, W. (1977). Liebigs Ann. Chem. pp. 106-115.]); Schuckmann et al. (1979[Schuckmann, W., Fuess, H., Park, S. W. & Reid, W. (1979). Acta Cryst. B35, 96-100.]). For related imidazole compounds, see: Andreani et al. (2005[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Garaliene, V., Welsh, W., Arora, S., Farruggia, G. & Masotti, L. (2005). J. Med. Chem. 48, 5604-5607.]); Xu et al. (2010[Xu, H., Zhang, Y., Huang, J.-Q. & Chen, W.-Z. (2010). Org. Lett. 12, 3704-3707.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9BrN2S

  • Mr = 329.21

  • Monoclinic, P 21 /c

  • a = 11.2459 (19) Å

  • b = 9.1554 (16) Å

  • c = 14.2842 (18) Å

  • β = 118.159 (9)°

  • V = 1296.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SMART and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.456, Tmax = 0.483

  • 7492 measured reflections

  • 2533 independent reflections

  • 1977 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.120

  • S = 1.01

  • 2533 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −1.20 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SMART and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SMART and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to the promising biological activities as inhibitors of neurodegenerative disorders and antitumor drugs, such compound structures have been studied (Park et al., 1977; Schuckmann et al., 1979). In the past decades, most of these investigations were carried out with imidazole (Andreani et al., 2005; Xu et al., 2010). We herein present the structure of 3-(2-bromopheny)thiazolo[3,2-a]benzimidazole(Fig. 1).

In the title compound, the benzene imidazole ring and thiazole ring are almost in the same plane. In the crystal structure, π-π interactions contribute the crystal packing.

Related literature top

For the biological activity of imidazoles and their use as inhibitors of neurodegenerative disorders and as antitumor drugs, see: Park et al. (1977); Schuckmann et al. (1979). For related imidazole compounds, see: Andreani et al. (2005); Xu et al. (2010).

Experimental top

1-Bromo-2-(2,2-dibromovinyl)benzene(1.2 mmol) in 1.0 ml of DMF were added to a stirred solution of 1H-benzo[d]imidazole-2(3H)-thione(1.0 mmol), Cs2CO3(2 mmol), CuI(0.1 mmol) and dmeda(0.2 mmol) in DMF(3 ml) under nitrogen. The resulting mixture was stirred at 100 °C for 4 h. After being cooled to room temperature, the reaction mixture was diluted with water and extracted with CHCl3, the combined organic layer were dried over Na2SO4 and concentrated. The crude product was further purified by flash column chromatography using petroleum ether (PE) and CH2Cl2 as a white solid (90% yield). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, and with Uiso(H)= 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure.
3-(2-Bromophenyl)thiazolo[3,2-a]benzimidazole top
Crystal data top
C15H9BrN2SF(000) = 656
Mr = 329.21Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3173 reflections
a = 11.2459 (19) Åθ = 2.8–27.3°
b = 9.1554 (16) ŵ = 3.32 mm1
c = 14.2842 (18) ÅT = 296 K
β = 118.159 (9)°Block, colourless
V = 1296.6 (4) Å30.24 × 0.22 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2533 independent reflections
Radiation source: fine-focus sealed tube1977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1311
Tmin = 0.456, Tmax = 0.483k = 1110
7492 measured reflectionsl = 1117
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2533 reflectionsΔρmax = 0.52 e Å3
173 parametersΔρmin = 1.20 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.198 (7)
Crystal data top
C15H9BrN2SV = 1296.6 (4) Å3
Mr = 329.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2459 (19) ŵ = 3.32 mm1
b = 9.1554 (16) ÅT = 296 K
c = 14.2842 (18) Å0.24 × 0.22 × 0.22 mm
β = 118.159 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1977 reflections with I > 2σ(I)
Tmin = 0.456, Tmax = 0.483Rint = 0.073
7492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.01Δρmax = 0.52 e Å3
2533 reflectionsΔρmin = 1.20 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22834 (4)0.45478 (5)0.55293 (3)0.0445 (2)
C10.2162 (3)0.0447 (4)0.5360 (3)0.0337 (9)
H10.14600.09490.48110.040*
C20.1918 (4)0.0647 (4)0.5901 (3)0.0414 (10)
H20.10330.09010.57110.050*
C30.2968 (4)0.1382 (4)0.6728 (3)0.0407 (9)
H30.27660.21150.70820.049*
C40.4298 (4)0.1059 (4)0.7041 (3)0.0389 (9)
H40.49910.15620.75960.047*
C50.4574 (3)0.0052 (4)0.6498 (3)0.0295 (8)
C60.3489 (3)0.0771 (3)0.5661 (3)0.0239 (7)
C70.5470 (3)0.1543 (4)0.5890 (3)0.0271 (7)
C80.4831 (3)0.3354 (4)0.4467 (3)0.0315 (8)
H80.47810.40500.39750.038*
C90.3737 (3)0.2780 (4)0.4475 (3)0.0258 (7)
C100.2316 (3)0.3134 (4)0.3760 (3)0.0282 (7)
C110.1737 (4)0.2726 (5)0.2701 (3)0.0429 (9)
H110.22440.22190.24490.052*
C120.0396 (5)0.3077 (5)0.2014 (4)0.0592 (13)
H120.00140.28120.13020.071*
C130.0352 (4)0.3798 (6)0.2377 (4)0.0589 (13)
H130.12470.40200.19120.071*
C140.0187 (4)0.4208 (5)0.3418 (4)0.0474 (11)
H140.03380.46970.36620.057*
C150.1524 (3)0.3888 (4)0.4105 (3)0.0297 (8)
N10.4104 (2)0.1755 (3)0.5283 (2)0.0250 (6)
N20.5811 (3)0.0540 (3)0.6619 (2)0.0322 (7)
S10.63442 (8)0.26789 (10)0.54574 (8)0.0354 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0387 (3)0.0568 (3)0.0447 (3)0.00761 (17)0.0251 (2)0.00393 (19)
C10.0233 (18)0.041 (2)0.031 (2)0.0051 (15)0.0084 (16)0.0037 (16)
C20.031 (2)0.053 (2)0.043 (2)0.0045 (18)0.0195 (19)0.0010 (19)
C30.039 (2)0.047 (2)0.029 (2)0.0060 (18)0.0110 (18)0.0045 (18)
C40.038 (2)0.042 (2)0.0250 (19)0.0043 (18)0.0055 (17)0.0051 (17)
C50.0222 (17)0.0344 (17)0.0216 (17)0.0006 (15)0.0019 (15)0.0037 (15)
C60.0208 (16)0.0267 (16)0.0207 (16)0.0022 (13)0.0068 (14)0.0020 (13)
C70.0158 (15)0.0326 (17)0.0258 (18)0.0004 (14)0.0040 (14)0.0081 (15)
C80.0235 (17)0.0360 (19)0.034 (2)0.0002 (15)0.0129 (16)0.0026 (16)
C90.0224 (16)0.0286 (17)0.0263 (17)0.0033 (13)0.0114 (15)0.0006 (14)
C100.0226 (16)0.0301 (17)0.0272 (18)0.0010 (14)0.0078 (15)0.0053 (15)
C110.040 (2)0.049 (2)0.031 (2)0.0004 (18)0.0089 (19)0.0024 (18)
C120.043 (3)0.068 (3)0.035 (2)0.001 (2)0.008 (2)0.004 (2)
C130.025 (2)0.067 (3)0.057 (3)0.002 (2)0.003 (2)0.012 (3)
C140.025 (2)0.051 (2)0.063 (3)0.0114 (18)0.018 (2)0.014 (2)
C150.0177 (16)0.0358 (19)0.0328 (19)0.0018 (14)0.0098 (15)0.0038 (15)
N10.0135 (13)0.0307 (14)0.0253 (15)0.0040 (11)0.0046 (12)0.0023 (12)
N20.0181 (14)0.0375 (16)0.0261 (16)0.0029 (12)0.0017 (13)0.0020 (14)
S10.0167 (4)0.0451 (6)0.0409 (6)0.0022 (4)0.0107 (4)0.0042 (4)
Geometric parameters (Å, º) top
Br1—C151.895 (4)C8—C91.343 (5)
C1—C21.370 (5)C8—S11.735 (4)
C1—C61.377 (5)C8—H80.9300
C1—H10.9300C9—N11.390 (4)
C2—C31.388 (6)C9—C101.470 (5)
C2—H20.9300C10—C111.386 (5)
C3—C41.376 (6)C10—C151.388 (5)
C3—H30.9300C11—C121.395 (6)
C4—C51.400 (6)C11—H110.9300
C4—H40.9300C12—C131.351 (7)
C5—N21.392 (5)C12—H120.9300
C5—C61.405 (5)C13—C141.367 (7)
C6—N11.391 (4)C13—H130.9300
C7—N21.304 (5)C14—C151.385 (5)
C7—N11.375 (4)C14—H140.9300
C7—S11.732 (4)
C2—C1—C6117.2 (3)C8—C9—C10127.4 (3)
C2—C1—H1121.4N1—C9—C10121.7 (3)
C6—C1—H1121.4C11—C10—C15118.2 (3)
C1—C2—C3121.3 (4)C11—C10—C9119.6 (3)
C1—C2—H2119.4C15—C10—C9122.2 (3)
C3—C2—H2119.4C10—C11—C12120.0 (4)
C4—C3—C2122.0 (4)C10—C11—H11120.0
C4—C3—H3119.0C12—C11—H11120.0
C2—C3—H3119.0C13—C12—C11120.3 (4)
C3—C4—C5117.9 (3)C13—C12—H12119.8
C3—C4—H4121.1C11—C12—H12119.8
C5—C4—H4121.1C12—C13—C14121.0 (4)
N2—C5—C4129.4 (3)C12—C13—H13119.5
N2—C5—C6111.7 (3)C14—C13—H13119.5
C4—C5—C6118.8 (3)C13—C14—C15119.3 (4)
C1—C6—N1133.0 (3)C13—C14—H14120.4
C1—C6—C5122.9 (3)C15—C14—H14120.4
N1—C6—C5104.1 (3)C14—C15—C10121.2 (4)
N2—C7—N1115.0 (3)C14—C15—Br1118.8 (3)
N2—C7—S1134.9 (3)C10—C15—Br1120.0 (2)
N1—C7—S1110.1 (3)C7—N1—C9115.1 (3)
C9—C8—S1113.8 (3)C7—N1—C6106.0 (3)
C9—C8—H8123.1C9—N1—C6138.8 (3)
S1—C8—H8123.1C7—N2—C5103.1 (3)
C8—C9—N1110.9 (3)C7—S1—C890.07 (16)

Experimental details

Crystal data
Chemical formulaC15H9BrN2S
Mr329.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.2459 (19), 9.1554 (16), 14.2842 (18)
β (°) 118.159 (9)
V3)1296.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.24 × 0.22 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.456, 0.483
No. of measured, independent and
observed [I > 2σ(I)] reflections
7492, 2533, 1977
Rint0.073
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 1.01
No. of reflections2533
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 1.20

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Garaliene, V., Welsh, W., Arora, S., Farruggia, G. & Masotti, L. (2005). J. Med. Chem. 48, 5604–5607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2, SMART and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationPark, S. W., Reid, W. & Schuckmann, W. (1977). Liebigs Ann. Chem. pp. 106–115.  CrossRef Google Scholar
First citationSchuckmann, W., Fuess, H., Park, S. W. & Reid, W. (1979). Acta Cryst. B35, 96–100.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Zhang, Y., Huang, J.-Q. & Chen, W.-Z. (2010). Org. Lett. 12, 3704–3707.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds