organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–4-(p-toluene­sulfonamido)­benzoic acid (1/2)

aCollege of Chemistry and Life Sciences, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 18 August 2011; accepted 22 August 2011; online 27 August 2011)

In the title compound, C14H13NO4S·0.5C10H8N2, the two benzene rings are nearly perpendicular to each other [dihedral angle = 83.21 (10)°]. The bipyridine mol­ecule is centrosymmetric, the mid-point of the C—C bond linking the pyridine rings being located on an inversion center. Inter­molecular N—H⋯O and O—H⋯N hydrogen bonds and weak inter­molecular C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For the background to the compound, see: Antolini et al. (1984[Antolini, L., Menabue, L., Saladini, M., Pellacani, G. C., Battaglia, L. P., Sola, M. & Bonamartini Corradi, A. (1984). J. Chem. Soc. Dalton Trans. pp. 2319-2323.]); Menabue & Saladini (1988[Menabue, L. & Saladini, M. (1988). Acta Cryst. C44, 2087-2089.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO4S·0.5C10H8N2

  • Mr = 369.41

  • Monoclinic, P 21 /n

  • a = 5.8732 (7) Å

  • b = 8.124 (1) Å

  • c = 36.806 (5) Å

  • β = 94.137 (2)°

  • V = 1751.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.39 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.957

  • 7704 measured reflections

  • 3234 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 0.99

  • 3234 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.861 (2) 162
O2—H2A⋯N2ii 0.82 1.87 2.691 (2) 175
C2—H2⋯O4ii 0.93 2.51 3.413 (2) 163
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Protected amino acids possess R-CONH-R' group analogous to the structure of O-terminal of peptide and proteins (Menabue & Saladini, 1988, Antolini et al., 1984). The substitution of an Ar—SO2-group on amine makes the 4-aminobenzeoic acid increase the coordination donors to three types-O, N donors from carboxyl, sulfoxyl and amine respectively, which may result in different coordination mode. In this paper, we attempt synthesizing the N-p-tolysulfonyl-4-amionbenzoic acid adduct of Erbium and 4,4'-bipyridine, but the result to get the title compound.

The title compound contains of one N-p-tolysulfonyl-4-amionbenzoic acid molecule and one 4,4'-bipyridine in the asymmetric unit (Fig.1). The molecule has a C4—N1—S1—C8 of 74.247 (2) °, and the dihedral angle between the benzene rings is 83.213 (6) °. There exit intermolecular hydrogen bonds between carboxylate group oxygen atoms, secondary amine nitrogen atoms and pyridine ring nitrogen atoms of N—H···O and O—H···N. Then, an extended one-dimensional chain structure along b axis is formed (Fig.2). It is interesting that the hydrogen bonds play an important role in forming the one-dimensional structure and stabilize the superamolecular structure(Fig.3).

Related literature top

For the background to the compound, see: Antolini et al. (1984); Menabue & Saladini (1988).

Experimental top

A mixture of N-p-tolysulfonylchloride (1 mmol) and 4-amionbenzoic acid (1 mmol) in water (20 mL) was stirred at room temperature for 10 h. Then HCl (12 mol/L) was slowly added to the resulting solution. The mixture was stirred for 5 min and filtrated. The precipitate was washed by distilled water, and dried to constant heavy [product 1].

To a solution of the product 1 (1 mmol) in water-DMF 1:1 (10 mL), an aqueous solution (5 ml) of Er(NO3)3.6H2O (0.5 mmol) and a solution of 4,4'-bipyridine (0.25 mmol) in ethanol (95%, 5 ml) was added. After refluxing for 12 h at 343 K, the mixture was filtered off while hot. The block colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of the filtrate at room temperature after one week.

Refinement top

H atoms were placed in calculated positions and treated as riding on their parent atoms (C—H = 0.93–0.96 Å, N—H = 0.86 Å, O—H = 0.82 Å) and Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. All hydrogen atams have been omitted for reasons of clarity.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in the crystal structure of the title compound (I).
[Figure 3] Fig. 3. The crystal packing of the title compound (I), viewed along the c axis.
4,4'-Bipyridine–4-(p-toluenesulfonamido)benzoic acid (1/2) top
Crystal data top
C14H13NO4S·0.5C10H8N2F(000) = 772
Mr = 369.41Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2422 reflections
a = 5.8732 (7) Åθ = 2.6–23.6°
b = 8.124 (1) ŵ = 0.21 mm1
c = 36.806 (5) ÅT = 296 K
β = 94.137 (2)°Block, colourless
V = 1751.6 (4) Å30.39 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3234 independent reflections
Radiation source: fine-focus sealed tube2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 67
Tmin = 0.922, Tmax = 0.957k = 97
7704 measured reflectionsl = 4444
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3234 reflectionsΔρmax = 0.21 e Å3
237 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (11)
Crystal data top
C14H13NO4S·0.5C10H8N2V = 1751.6 (4) Å3
Mr = 369.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8732 (7) ŵ = 0.21 mm1
b = 8.124 (1) ÅT = 296 K
c = 36.806 (5) Å0.39 × 0.24 × 0.21 mm
β = 94.137 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2255 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.957Rint = 0.026
7704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.99Δρmax = 0.21 e Å3
3234 reflectionsΔρmin = 0.24 e Å3
237 parameters
Special details top

Experimental. IR(KBr): 3439(s), 3214(versus), 2493(w), 1922(w), 1668(s), 1603(versus), 1511 (w), 1477(vw), 1409(m), 1341(s), 1314(s), 1289(s), 1232(m), 1216(m), 1158(versus), 1092(versus), 1004(m), 923(m), 860(m), 803(m), 779(m), 699(m), 668(m), 626(s), 574(s), 548(s), 521(s), 502(m)cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5273 (3)1.1613 (2)0.09831 (5)0.0455 (5)
C20.3358 (4)1.1518 (2)0.11792 (6)0.0572 (6)
H20.25831.24780.12320.069*
C30.2574 (4)1.0027 (3)0.12985 (6)0.0571 (6)
H30.12700.99830.14270.069*
C40.3736 (3)0.8592 (2)0.12256 (5)0.0450 (5)
C50.5699 (3)0.8680 (2)0.10403 (5)0.0495 (5)
H50.65160.77270.09980.059*
C60.6449 (3)1.0172 (2)0.09175 (5)0.0495 (5)
H60.77561.02150.07890.059*
C70.5983 (4)1.3224 (3)0.08396 (6)0.0544 (5)
C80.3248 (3)0.6500 (2)0.20402 (5)0.0432 (5)
C90.5294 (3)0.5665 (2)0.20487 (6)0.0569 (6)
H90.57450.51470.18400.068*
C100.6658 (4)0.5605 (3)0.23665 (7)0.0622 (6)
H100.80450.50520.23700.075*
C110.6024 (4)0.6350 (3)0.26843 (6)0.0558 (6)
C120.3979 (4)0.7180 (3)0.26679 (6)0.0606 (6)
H120.35210.76960.28760.073*
C130.2597 (3)0.7264 (2)0.23507 (6)0.0541 (5)
H130.12230.78360.23460.065*
C140.7556 (4)0.6262 (3)0.30290 (7)0.0854 (8)
H14A0.88930.56320.29860.128*0.50
H14B0.67550.57430.32170.128*0.50
H14C0.79970.73540.31050.128*0.50
H14D0.68700.68540.32190.128*0.50
H14E0.90080.67430.29880.128*0.50
H14F0.77660.51320.31000.128*0.50
C150.7243 (5)0.6866 (3)0.00908 (8)0.0912 (9)
H150.58640.63780.00110.109*
C160.7715 (4)0.8401 (3)0.00428 (7)0.0784 (8)
H160.66710.89140.02080.094*
C170.9707 (3)0.9168 (2)0.00662 (5)0.0447 (5)
C181.1119 (4)0.8311 (3)0.03098 (6)0.0745 (7)
H181.25010.87720.03970.089*
C191.0513 (5)0.6771 (3)0.04270 (7)0.0818 (8)
H191.15280.62200.05900.098*
N10.2922 (3)0.70046 (19)0.13109 (4)0.0559 (5)
H10.32810.62240.11680.067*
N20.8605 (4)0.6044 (2)0.03226 (5)0.0681 (5)
O10.5113 (3)1.45211 (18)0.09093 (5)0.0797 (5)
O20.7586 (3)1.31137 (17)0.06109 (5)0.0780 (5)
H2A0.78771.40330.05350.117*
O30.0355 (2)0.76526 (18)0.16802 (4)0.0655 (4)
O40.0804 (3)0.47892 (17)0.15660 (4)0.0686 (5)
S10.14014 (9)0.64661 (6)0.164306 (13)0.05199 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0551 (12)0.0388 (12)0.0428 (10)0.0030 (9)0.0042 (9)0.0038 (9)
C20.0691 (14)0.0414 (13)0.0628 (13)0.0050 (11)0.0161 (11)0.0028 (10)
C30.0639 (14)0.0463 (13)0.0638 (14)0.0018 (11)0.0220 (11)0.0019 (10)
C40.0599 (12)0.0394 (11)0.0357 (10)0.0014 (10)0.0032 (9)0.0032 (8)
C50.0593 (12)0.0385 (12)0.0507 (11)0.0077 (10)0.0053 (10)0.0044 (9)
C60.0541 (12)0.0481 (13)0.0470 (11)0.0033 (10)0.0093 (9)0.0035 (9)
C70.0638 (14)0.0444 (13)0.0556 (13)0.0003 (11)0.0078 (11)0.0016 (10)
C80.0475 (11)0.0334 (10)0.0504 (11)0.0002 (9)0.0148 (9)0.0041 (9)
C90.0587 (13)0.0550 (14)0.0591 (13)0.0085 (11)0.0190 (11)0.0022 (10)
C100.0499 (13)0.0563 (14)0.0808 (17)0.0067 (11)0.0077 (12)0.0102 (12)
C110.0587 (13)0.0477 (13)0.0606 (13)0.0144 (11)0.0025 (10)0.0115 (11)
C120.0684 (14)0.0596 (14)0.0551 (13)0.0068 (12)0.0126 (11)0.0109 (11)
C130.0549 (12)0.0498 (13)0.0591 (13)0.0062 (10)0.0140 (10)0.0053 (10)
C140.0839 (17)0.092 (2)0.0770 (17)0.0257 (15)0.0137 (14)0.0242 (14)
C150.0822 (19)0.0621 (17)0.127 (2)0.0281 (14)0.0092 (17)0.0158 (16)
C160.0726 (16)0.0589 (16)0.0998 (19)0.0182 (13)0.0212 (14)0.0224 (13)
C170.0542 (12)0.0437 (11)0.0364 (10)0.0062 (10)0.0049 (9)0.0006 (8)
C180.0802 (16)0.0666 (16)0.0721 (15)0.0210 (13)0.0252 (13)0.0218 (12)
C190.110 (2)0.0661 (17)0.0666 (16)0.0104 (16)0.0159 (15)0.0225 (13)
N10.0848 (12)0.0381 (10)0.0466 (9)0.0041 (9)0.0182 (9)0.0006 (7)
N20.0893 (15)0.0513 (12)0.0658 (12)0.0105 (11)0.0208 (11)0.0070 (10)
O10.1032 (13)0.0362 (9)0.1041 (13)0.0068 (9)0.0379 (10)0.0035 (8)
O20.1009 (13)0.0472 (9)0.0918 (12)0.0005 (9)0.0475 (10)0.0116 (9)
O30.0551 (8)0.0692 (10)0.0733 (10)0.0123 (8)0.0112 (7)0.0181 (8)
O40.0911 (11)0.0506 (9)0.0640 (9)0.0236 (8)0.0055 (8)0.0020 (7)
S10.0603 (3)0.0455 (3)0.0507 (3)0.0042 (3)0.0078 (2)0.0067 (2)
Geometric parameters (Å, º) top
C1—C21.382 (3)C12—H120.9300
C1—C61.389 (2)C13—H130.9300
C1—C71.482 (3)C14—H14A0.9600
C2—C31.379 (3)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.387 (3)C14—H14D0.9600
C3—H30.9300C14—H14E0.9600
C4—C51.383 (3)C14—H14F0.9600
C4—N11.419 (2)C15—N21.309 (3)
C5—C61.377 (3)C15—C161.376 (3)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—C171.360 (3)
C7—O11.207 (2)C16—H160.9300
C7—O21.310 (2)C17—C181.367 (3)
C8—C91.378 (3)C17—C17i1.485 (3)
C8—C131.379 (3)C18—C191.379 (3)
C8—S11.7563 (19)C18—H180.9300
C9—C101.370 (3)C19—N21.300 (3)
C9—H90.9300C19—H190.9300
C10—C111.391 (3)N1—S11.6253 (16)
C10—H100.9300N1—H10.8600
C11—C121.375 (3)O2—H2A0.8200
C11—C141.503 (3)O3—S11.4254 (14)
C12—C131.375 (3)O4—S11.4300 (14)
C2—C1—C6118.52 (18)H14A—C14—H14C109.5
C2—C1—C7119.73 (18)H14B—C14—H14C109.5
C6—C1—C7121.73 (18)C11—C14—H14D109.5
C3—C2—C1121.22 (19)H14A—C14—H14D141.1
C3—C2—H2119.4H14B—C14—H14D56.3
C1—C2—H2119.4H14C—C14—H14D56.3
C2—C3—C4119.8 (2)C11—C14—H14E109.5
C2—C3—H3120.1H14A—C14—H14E56.3
C4—C3—H3120.1H14B—C14—H14E141.1
C5—C4—C3119.45 (18)H14C—C14—H14E56.3
C5—C4—N1117.54 (17)H14D—C14—H14E109.5
C3—C4—N1122.87 (19)C11—C14—H14F109.5
C6—C5—C4120.33 (18)H14A—C14—H14F56.3
C6—C5—H5119.8H14B—C14—H14F56.3
C4—C5—H5119.8H14C—C14—H14F141.1
C5—C6—C1120.66 (19)H14D—C14—H14F109.5
C5—C6—H6119.7H14E—C14—H14F109.5
C1—C6—H6119.7N2—C15—C16124.4 (2)
O1—C7—O2122.1 (2)N2—C15—H15117.8
O1—C7—C1124.1 (2)C16—C15—H15117.8
O2—C7—C1113.71 (18)C17—C16—C15120.1 (2)
C9—C8—C13119.75 (19)C17—C16—H16120.0
C9—C8—S1119.75 (15)C15—C16—H16120.0
C13—C8—S1120.35 (15)C16—C17—C18115.33 (19)
C10—C9—C8119.48 (19)C16—C17—C17i122.4 (2)
C10—C9—H9120.3C18—C17—C17i122.3 (2)
C8—C9—H9120.3C17—C18—C19120.6 (2)
C9—C10—C11121.8 (2)C17—C18—H18119.7
C9—C10—H10119.1C19—C18—H18119.7
C11—C10—H10119.1N2—C19—C18123.8 (2)
C12—C11—C10117.5 (2)N2—C19—H19118.1
C12—C11—C14121.9 (2)C18—C19—H19118.1
C10—C11—C14120.6 (2)C4—N1—S1128.58 (14)
C11—C12—C13121.5 (2)C4—N1—H1115.7
C11—C12—H12119.3S1—N1—H1115.7
C13—C12—H12119.3C19—N2—C15115.7 (2)
C12—C13—C8119.96 (19)C7—O2—H2A109.5
C12—C13—H13120.0O3—S1—O4119.64 (10)
C8—C13—H13120.0O3—S1—N1109.31 (9)
C11—C14—H14A109.5O4—S1—N1104.32 (9)
C11—C14—H14B109.5O3—S1—C8108.50 (9)
H14A—C14—H14B109.5O4—S1—C8107.93 (9)
C11—C14—H14C109.5N1—S1—C8106.38 (9)
C6—C1—C2—C32.1 (3)C9—C8—C13—C120.5 (3)
C7—C1—C2—C3176.19 (18)S1—C8—C13—C12175.18 (15)
C1—C2—C3—C40.9 (3)N2—C15—C16—C170.2 (5)
C2—C3—C4—C51.3 (3)C15—C16—C17—C180.2 (4)
C2—C3—C4—N1174.24 (18)C15—C16—C17—C17i179.4 (3)
C3—C4—C5—C62.3 (3)C16—C17—C18—C190.7 (4)
N1—C4—C5—C6173.49 (16)C17i—C17—C18—C19179.9 (2)
C4—C5—C6—C11.1 (3)C17—C18—C19—N20.9 (4)
C2—C1—C6—C51.1 (3)C5—C4—N1—S1153.34 (15)
C7—C1—C6—C5177.15 (18)C3—C4—N1—S131.0 (3)
C2—C1—C7—O17.0 (3)C18—C19—N2—C150.5 (4)
C6—C1—C7—O1174.8 (2)C16—C15—N2—C190.1 (4)
C2—C1—C7—O2169.59 (19)C4—N1—S1—O342.72 (19)
C6—C1—C7—O28.6 (3)C4—N1—S1—O4171.78 (16)
C13—C8—C9—C100.0 (3)C4—N1—S1—C874.25 (18)
S1—C8—C9—C10175.72 (15)C9—C8—S1—O3169.22 (15)
C8—C9—C10—C110.8 (3)C13—C8—S1—O315.07 (18)
C9—C10—C11—C121.0 (3)C9—C8—S1—O459.76 (17)
C9—C10—C11—C14179.9 (2)C13—C8—S1—O4115.95 (17)
C10—C11—C12—C130.5 (3)C9—C8—S1—N151.71 (17)
C14—C11—C12—C13179.54 (19)C13—C8—S1—N1132.58 (16)
C11—C12—C13—C80.3 (3)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.032.861 (2)162
O2—H2A···N2iii0.821.872.691 (2)175
C2—H2···O4iii0.932.513.413 (2)163
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13NO4S·0.5C10H8N2
Mr369.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.8732 (7), 8.124 (1), 36.806 (5)
β (°) 94.137 (2)
V3)1751.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.39 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.922, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
7704, 3234, 2255
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 0.99
No. of reflections3234
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.032.861 (2)162
O2—H2A···N2ii0.821.872.691 (2)175
C2—H2···O4ii0.932.513.413 (2)163
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Master Construction Project of Quanzhou Normal University, China.

References

First citationAntolini, L., Menabue, L., Saladini, M., Pellacani, G. C., Battaglia, L. P., Sola, M. & Bonamartini Corradi, A. (1984). J. Chem. Soc. Dalton Trans. pp. 2319–2323.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMenabue, L. & Saladini, M. (1988). Acta Cryst. C44, 2087–2089.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds