metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(10,11,12,13-tetra­hydro-4,5,9,14-tetra­aza­benzo[b]tri­phenyl­ene-κ2N4,N5)copper(I)

aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 August 2011; accepted 25 August 2011; online 31 August 2011)

The CuI atom in the title compound, [CuCl(C18H14N4)], is N,N′-chelated by the N-heterocyclic ligand and coordinated by one Cl anion in a distorted trigonal geometry. In the crystal, the CuI atom is disordered over two positions in a 0.667 (6):0.333 (6) ratio. The deviation of the Cu atom from the N/N/Cl coordination plane is 0.013 (3) Å for the major component and 0.073 (6) Å for the minor component. Two methyl­ene C atoms are also disordered over two positions in a 0.667 (6):0.333 (6) ratio.

Related literature

For the synthesis of the N-heterocyclic ligand, see: Che et al. (2006[Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519-2524.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C18H14N4)]

  • Mr = 385.32

  • Monoclinic, P 21 /c

  • a = 7.9405 (10) Å

  • b = 15.8861 (19) Å

  • c = 12.6312 (16) Å

  • β = 99.531 (2)°

  • V = 1571.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.799, Tmax = 0.859

  • 8464 measured reflections

  • 3064 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 0.99

  • 3064 reflections

  • 233 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—Cl1 2.102 (3)
Cu1—N1 1.928 (4)
Cu1—N2 2.236 (4)
Cu1′—Cl1 2.112 (6)
Cu1′—N1 2.268 (7)
Cu1′—N2 1.858 (6)

Data collection: APEX2 (Bruker, 2002[Bruker (2002). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is extensive literature on the chelating ability of 1,10-phenanthroline and its derivatives. The N-heterocycle, 10,11,12,13-tetrahydro-4,5,9,14-tetraazabenzo[b]triphenylene, is a new addition to this class of chelates. It reacts with copper(II) chloride under hydrothermal conditions to yield a 1:1 copper(I) chloride adduct (Scheme I). The CuI atom is N,N'-chelated by the N-heterocycle, and it shows trigonal coordination. The atom lies on the trigonal plane defined by the two chelating N atoms and the chlorine atom (Fig. 1). The aromatic ring system is planar; however, the N-heterocycle is buckled in the region of the cyclohexene part owing to the sp3 nature of the methylene C atoms.

Related literature top

For the synthesis of the N-heterocyclic ligand, see: Che et al. (2006).

Experimental top

The N-heterocycle was synthesized according to a literature method (Che et al., 2006). To a copper(II) chloride dihydrate (0.5 mmol), the ligand (0.5 mmol) and water (5 ml) was added triethylamine to a final pH of 5.5. The mixture was heated in a Teflon-lined, stainless-steel Paar bomb at 423 K for 3 days. The Parr bomb was then cooled slowly; yellow blocks were isolated by hand.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The copper atom is disordered over two positions in an approximate 2:1 ratio. The cyclohexene portion of the N-heterocycle is disordered with respect to the two methylene C atoms that are not directly connected to an aromatic C atom. For this cyclohexene portion, 1,2-related distances involving all four methylene C atoms were restrained to 1.54±0.01 Å and the 1,3-related ones to 2.51±0.01 Å. The temperature factors of the primed atoms (C16', C17') were set to those of the unprimed ones. The disorder refined to nearly 2:1. As such, the occupancy of the primed C atoms were regarded as that of the Cu1' atom. The disorder then refined to 66.8 (6): 33.2.

Computing details top

Data collection: APEX (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of CuCl(C18H14N4) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
Chlorido(10,11,12,13-tetrahydro-4,5,9,14-tetraazabenzo[b]triphenylene- κ2N4,N5)copper(I) top
Crystal data top
[CuCl(C18H14N4)]F(000) = 784
Mr = 385.32Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1330 reflections
a = 7.9405 (10) Åθ = 2.6–21.7°
b = 15.8861 (19) ŵ = 1.57 mm1
c = 12.6312 (16) ÅT = 293 K
β = 99.531 (2)°Prism, yellow
V = 1571.4 (3) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3064 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.799, Tmax = 0.859k = 1911
8464 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0591P)2]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.26 e Å3
16 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuCl(C18H14N4)]V = 1571.4 (3) Å3
Mr = 385.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9405 (10) ŵ = 1.57 mm1
b = 15.8861 (19) ÅT = 293 K
c = 12.6312 (16) Å0.15 × 0.10 × 0.10 mm
β = 99.531 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1957 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.859Rint = 0.036
8464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04216 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
3064 reflectionsΔρmin = 0.34 e Å3
233 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.5949 (4)0.27795 (17)0.5683 (2)0.0588 (5)0.667 (6)
Cu1'0.6063 (7)0.2766 (4)0.5259 (5)0.0618 (10)0.333 (6)
Cl10.54512 (13)0.14874 (5)0.54499 (7)0.0650 (3)
N10.6098 (3)0.38256 (15)0.6466 (2)0.0497 (7)
N20.6947 (3)0.36198 (16)0.4508 (2)0.0500 (7)
N30.7722 (3)0.67671 (15)0.64582 (18)0.0409 (6)
N40.8683 (3)0.65335 (15)0.44444 (18)0.0411 (6)
C10.5643 (4)0.3927 (2)0.7432 (3)0.0567 (9)
H10.52310.34630.77590.068*
C20.5758 (4)0.4695 (2)0.7973 (3)0.0538 (8)
H20.54260.47380.86430.065*
C30.6361 (4)0.5382 (2)0.7512 (2)0.0479 (8)
H30.64400.58980.78620.058*
C40.6863 (4)0.53036 (18)0.6501 (2)0.0392 (7)
C50.7535 (3)0.60072 (18)0.5960 (2)0.0381 (7)
C60.8016 (3)0.58937 (18)0.4953 (2)0.0365 (7)
C70.7847 (3)0.50718 (18)0.4442 (2)0.0392 (7)
C80.8325 (4)0.49183 (19)0.3433 (2)0.0478 (8)
H80.87950.53470.30730.057*
C90.8091 (4)0.4130 (2)0.2986 (3)0.0560 (9)
H90.84030.40160.23220.067*
C100.7377 (4)0.3504 (2)0.3545 (3)0.0584 (9)
H100.71900.29770.32280.070*
C110.7182 (4)0.43948 (18)0.4953 (2)0.0416 (7)
C120.6714 (4)0.45138 (18)0.6012 (2)0.0410 (7)
C130.8372 (4)0.73873 (17)0.5965 (2)0.0396 (7)
C140.8849 (4)0.72754 (17)0.4930 (2)0.0399 (7)
C150.9599 (4)0.79779 (18)0.4360 (2)0.0517 (8)
H15A0.89910.80090.36290.062*0.667 (6)
H15B1.07810.78430.43270.062*0.667 (6)
H15C0.87210.82060.38100.062*0.333 (6)
H15D1.04980.77520.40080.062*0.333 (6)
C160.9535 (7)0.8843 (3)0.4885 (4)0.0508 (16)0.667 (6)
H16A0.83990.90790.46970.061*0.667 (6)
H16B1.03350.92210.46240.061*0.667 (6)
C170.9997 (7)0.8754 (3)0.6111 (4)0.0549 (16)0.667 (6)
H17A1.11040.84860.62960.066*0.667 (6)
H17B1.00590.93060.64430.066*0.667 (6)
C16'1.0331 (12)0.8687 (5)0.5113 (7)0.0508 (16)0.33
H16C1.14040.85060.55330.061*0.333 (6)
H16D1.05590.91720.46920.061*0.333 (6)
C17'0.9110 (14)0.8937 (4)0.5862 (7)0.0549 (16)0.33
H17C0.96320.93780.63380.066*0.333 (6)
H17D0.80800.91660.54400.066*0.333 (6)
C180.8636 (5)0.82230 (19)0.6522 (2)0.0569 (9)
H18A0.89720.81310.72870.068*0.667 (6)
H18B0.75650.85300.64140.068*0.667 (6)
H18C0.75920.83720.67830.068*0.333 (6)
H18D0.95250.81600.71430.068*0.333 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0555 (6)0.0341 (5)0.0832 (13)0.0029 (4)0.0005 (9)0.0019 (9)
Cu1'0.0573 (12)0.0405 (11)0.085 (3)0.0055 (8)0.004 (2)0.009 (2)
Cl10.0841 (7)0.0418 (5)0.0688 (6)0.0144 (4)0.0114 (5)0.0013 (4)
N10.0432 (15)0.0390 (16)0.0676 (18)0.0012 (12)0.0107 (14)0.0075 (14)
N20.0509 (16)0.0357 (15)0.0606 (18)0.0034 (12)0.0012 (14)0.0063 (13)
N30.0453 (14)0.0362 (14)0.0418 (14)0.0020 (11)0.0089 (11)0.0008 (12)
N40.0440 (15)0.0365 (15)0.0424 (14)0.0003 (11)0.0059 (11)0.0005 (12)
C10.049 (2)0.047 (2)0.077 (2)0.0021 (16)0.0190 (18)0.0199 (19)
C20.053 (2)0.056 (2)0.056 (2)0.0043 (17)0.0174 (16)0.0070 (18)
C30.0487 (19)0.0446 (19)0.0511 (19)0.0014 (15)0.0101 (15)0.0003 (16)
C40.0343 (16)0.0392 (18)0.0426 (18)0.0016 (13)0.0020 (13)0.0017 (14)
C50.0357 (16)0.0355 (16)0.0421 (17)0.0003 (13)0.0033 (13)0.0002 (14)
C60.0333 (15)0.0341 (16)0.0404 (17)0.0011 (12)0.0008 (13)0.0002 (13)
C70.0349 (16)0.0368 (17)0.0431 (17)0.0041 (13)0.0014 (13)0.0006 (14)
C80.055 (2)0.0420 (19)0.0451 (18)0.0063 (15)0.0041 (15)0.0017 (15)
C90.064 (2)0.052 (2)0.050 (2)0.0103 (17)0.0035 (17)0.0109 (17)
C100.065 (2)0.039 (2)0.066 (2)0.0043 (17)0.0037 (19)0.0141 (18)
C110.0380 (16)0.0367 (17)0.0467 (18)0.0047 (13)0.0025 (14)0.0018 (15)
C120.0320 (15)0.0346 (17)0.0549 (19)0.0017 (13)0.0029 (14)0.0049 (15)
C130.0419 (17)0.0336 (16)0.0430 (18)0.0013 (13)0.0064 (14)0.0040 (14)
C140.0381 (17)0.0368 (18)0.0432 (17)0.0001 (13)0.0023 (13)0.0006 (14)
C150.063 (2)0.045 (2)0.0504 (19)0.0068 (16)0.0176 (16)0.0015 (16)
C160.062 (4)0.033 (3)0.060 (3)0.001 (3)0.017 (3)0.007 (2)
C170.059 (4)0.046 (3)0.057 (3)0.012 (3)0.002 (3)0.009 (2)
C16'0.062 (4)0.033 (3)0.060 (3)0.001 (3)0.017 (3)0.007 (2)
C17'0.059 (4)0.046 (3)0.057 (3)0.012 (3)0.002 (3)0.009 (2)
C180.081 (2)0.0390 (19)0.054 (2)0.0103 (17)0.0197 (18)0.0048 (16)
Geometric parameters (Å, º) top
Cu1—Cl12.102 (3)C9—H90.9300
Cu1—N11.928 (4)C10—H100.9300
Cu1—N22.236 (4)C11—C121.458 (4)
Cu1'—Cl12.112 (6)C13—C141.431 (4)
Cu1'—N12.268 (7)C13—C181.501 (4)
Cu1'—N21.858 (6)C14—C151.504 (4)
N1—C11.339 (4)C15—C16'1.526 (7)
N1—C121.362 (4)C15—C161.530 (5)
N2—C101.329 (4)C15—H15A0.9700
N2—C111.353 (4)C15—H15B0.9700
N3—C131.316 (4)C15—H15C0.9700
N3—C51.358 (3)C15—H15D0.9700
N4—C141.325 (3)C16—C171.538 (6)
N4—C61.356 (4)C16—H16A0.9700
C1—C21.393 (4)C16—H16B0.9700
C1—H10.9300C17—C181.528 (5)
C2—C31.361 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.404 (4)C16'—C17'1.515 (8)
C3—H30.9300C16'—H16C0.9700
C4—C121.395 (4)C16'—H16D0.9700
C4—C51.457 (4)C17'—C181.492 (7)
C5—C61.399 (4)C17'—H17C0.9700
C6—C71.453 (4)C17'—H17D0.9700
C7—C111.402 (4)C18—H18A0.9700
C7—C81.411 (4)C18—H18B0.9700
C8—C91.374 (4)C18—H18C0.9700
C8—H80.9300C18—H18D0.9700
C9—C101.394 (5)
N1—Cu1—Cl1155.21 (19)N3—C13—C14121.6 (2)
N1—Cu1—N280.06 (15)N3—C13—C18118.4 (3)
Cl1—Cu1—N2124.71 (15)C14—C13—C18120.0 (2)
N2—Cu1'—Cl1150.9 (4)N4—C14—C13120.8 (2)
N2—Cu1'—N180.7 (2)N4—C14—C15117.1 (3)
Cl1—Cu1'—N1127.9 (3)C13—C14—C15122.1 (2)
C1—N1—C12117.2 (3)C14—C15—C16'112.9 (4)
C1—N1—Cu1124.7 (2)C14—C15—C16114.5 (3)
C12—N1—Cu1118.1 (2)C14—C15—H15A108.6
C1—N1—Cu1'136.7 (3)C16—C15—H15A108.6
C12—N1—Cu1'106.1 (2)C14—C15—H15B108.6
C10—N2—C11117.8 (3)C16—C15—H15B108.6
C10—N2—Cu1'122.8 (3)H15A—C15—H15B107.6
C11—N2—Cu1'119.3 (3)C14—C15—H15C109.0
C10—N2—Cu1134.2 (2)C16'—C15—H15C109.0
C11—N2—Cu1107.9 (2)C14—C15—H15D109.0
C13—N3—C5117.9 (2)C16'—C15—H15D109.0
C14—N4—C6117.7 (2)H15C—C15—H15D107.8
N1—C1—C2123.2 (3)C15—C16—C17109.5 (3)
N1—C1—H1118.4C15—C16—H16A109.8
C2—C1—H1118.4C17—C16—H16A109.8
C3—C2—C1119.4 (3)C15—C16—H16B109.8
C3—C2—H2120.3C17—C16—H16B109.8
C1—C2—H2120.3H16A—C16—H16B108.2
C2—C3—C4119.4 (3)C18—C17—C16109.2 (4)
C2—C3—H3120.3C18—C17—H17A109.8
C4—C3—H3120.3C16—C17—H17A109.8
C12—C4—C3117.8 (3)C18—C17—H17B109.8
C12—C4—C5119.5 (3)C16—C17—H17B109.8
C3—C4—C5122.7 (3)H17A—C17—H17B108.3
N3—C5—C6120.7 (3)C17'—C16'—C15111.4 (6)
N3—C5—C4119.0 (3)C17'—C16'—H16C109.3
C6—C5—C4120.3 (3)C15—C16'—H16C109.3
N4—C6—C5121.4 (3)C17'—C16'—H16D109.3
N4—C6—C7118.6 (3)C15—C16'—H16D109.3
C5—C6—C7120.0 (3)H16C—C16'—H16D108.0
C11—C7—C8117.5 (3)C18—C17'—C16'113.4 (6)
C11—C7—C6120.0 (3)C18—C17'—H17C108.9
C8—C7—C6122.5 (3)C16'—C17'—H17C108.9
C9—C8—C7119.4 (3)C18—C17'—H17D108.9
C9—C8—H8120.3C16'—C17'—H17D108.9
C7—C8—H8120.3H17C—C17'—H17D107.7
C8—C9—C10118.7 (3)C17'—C18—C13116.0 (4)
C8—C9—H9120.6C13—C18—C17112.4 (3)
C10—C9—H9120.6C13—C18—H18A109.1
N2—C10—C9123.6 (3)C17—C18—H18A109.1
N2—C10—H10118.2C13—C18—H18B109.1
C9—C10—H10118.2C17—C18—H18B109.1
N2—C11—C7122.9 (3)H18A—C18—H18B107.9
N2—C11—C12117.4 (3)C17'—C18—H18C108.3
C7—C11—C12119.7 (3)C13—C18—H18C108.3
N1—C12—C4123.0 (3)C17'—C18—H18D108.3
N1—C12—C11116.5 (3)C13—C18—H18D108.3
C4—C12—C11120.5 (3)H18C—C18—H18D107.4
N1—Cu1—Cl1—Cu1'175.5 (12)C7—C8—C9—C100.3 (5)
N2—Cu1—Cl1—Cu1'6.9 (7)C11—N2—C10—C91.7 (5)
N2—Cu1'—Cl1—Cu1165.8 (15)Cu1'—N2—C10—C9177.9 (3)
N1—Cu1'—Cl1—Cu12.1 (6)Cu1—N2—C10—C9175.5 (3)
Cl1—Cu1—N1—C13.3 (6)C8—C9—C10—N21.9 (5)
N2—Cu1—N1—C1178.7 (3)C10—N2—C11—C70.2 (4)
Cl1—Cu1—N1—C12176.5 (3)Cu1'—N2—C11—C7179.8 (3)
N2—Cu1—N1—C121.5 (2)Cu1—N2—C11—C7178.1 (2)
Cl1—Cu1—N1—Cu1'174.7 (14)C10—N2—C11—C12179.7 (3)
N2—Cu1—N1—Cu1'7.3 (10)Cu1'—N2—C11—C120.1 (4)
N2—Cu1'—N1—C1178.5 (3)Cu1—N2—C11—C121.8 (3)
Cl1—Cu1'—N1—C17.5 (6)C8—C7—C11—N21.7 (4)
N2—Cu1'—N1—C120.7 (3)C6—C7—C11—N2178.1 (3)
Cl1—Cu1'—N1—C12174.7 (3)C8—C7—C11—C12178.2 (3)
N2—Cu1'—N1—Cu1171.3 (12)C6—C7—C11—C122.0 (4)
Cl1—Cu1'—N1—Cu12.8 (8)C1—N1—C12—C40.8 (4)
Cl1—Cu1'—N2—C109.0 (8)Cu1—N1—C12—C4179.4 (2)
N1—Cu1'—N2—C10179.3 (3)Cu1'—N1—C12—C4177.5 (3)
Cl1—Cu1'—N2—C11170.6 (6)C1—N1—C12—C11179.2 (3)
N1—Cu1'—N2—C110.3 (3)Cu1—N1—C12—C111.0 (4)
Cl1—Cu1'—N2—Cu1162.4 (18)Cu1'—N1—C12—C110.9 (3)
N1—Cu1'—N2—Cu17.9 (11)C3—C4—C12—N10.4 (4)
N1—Cu1—N2—C10179.2 (3)C5—C4—C12—N1180.0 (3)
Cl1—Cu1—N2—C100.2 (4)C3—C4—C12—C11178.8 (3)
N1—Cu1—N2—C111.8 (2)C5—C4—C12—C111.6 (4)
Cl1—Cu1—N2—C11177.18 (19)N2—C11—C12—N10.8 (4)
N1—Cu1—N2—Cu1'170.7 (13)C7—C11—C12—N1179.1 (3)
Cl1—Cu1—N2—Cu1'10.3 (11)N2—C11—C12—C4177.7 (3)
C12—N1—C1—C20.6 (5)C7—C11—C12—C42.4 (4)
Cu1—N1—C1—C2179.6 (3)C5—N3—C13—C140.8 (4)
Cu1'—N1—C1—C2177.0 (3)C5—N3—C13—C18178.1 (3)
N1—C1—C2—C30.1 (5)C6—N4—C14—C131.3 (4)
C1—C2—C3—C40.3 (5)C6—N4—C14—C15179.7 (3)
C2—C3—C4—C120.1 (4)N3—C13—C14—N41.4 (4)
C2—C3—C4—C5179.4 (3)C18—C13—C14—N4177.5 (3)
C13—N3—C5—C60.2 (4)N3—C13—C14—C15179.7 (3)
C13—N3—C5—C4178.3 (3)C18—C13—C14—C150.8 (4)
C12—C4—C5—N3178.1 (3)N4—C14—C15—C16'159.2 (5)
C3—C4—C5—N31.5 (4)C13—C14—C15—C16'19.2 (6)
C12—C4—C5—C60.5 (4)N4—C14—C15—C16172.1 (3)
C3—C4—C5—C6180.0 (3)C13—C14—C15—C169.5 (5)
C14—N4—C6—C50.7 (4)C14—C15—C16—C1741.6 (5)
C14—N4—C6—C7179.1 (2)C15—C16—C17—C1864.6 (5)
N3—C5—C6—N40.1 (4)C14—C15—C16'—C17'46.3 (9)
C4—C5—C6—N4178.4 (2)C16—C15—C16'—C17'53.0 (8)
N3—C5—C6—C7178.5 (2)C15—C16'—C17'—C1857.2 (11)
C4—C5—C6—C70.0 (4)C16'—C17'—C18—C1338.7 (10)
N4—C6—C7—C11179.2 (2)C16'—C17'—C18—C1751.3 (7)
C5—C6—C7—C110.8 (4)N3—C13—C18—C17'170.6 (5)
N4—C6—C7—C81.0 (4)C14—C13—C18—C17'10.4 (7)
C5—C6—C7—C8179.4 (3)N3—C13—C18—C17156.8 (3)
C11—C7—C8—C91.4 (4)C14—C13—C18—C1722.1 (5)
C6—C7—C8—C9178.4 (3)C16—C17—C18—C1354.5 (5)

Experimental details

Crystal data
Chemical formula[CuCl(C18H14N4)]
Mr385.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9405 (10), 15.8861 (19), 12.6312 (16)
β (°) 99.531 (2)
V3)1571.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.799, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
8464, 3064, 1957
Rint0.036
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 0.99
No. of reflections3064
No. of parameters233
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: APEX (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—Cl12.102 (3)Cu1'—Cl12.112 (6)
Cu1—N11.928 (4)Cu1'—N12.268 (7)
Cu1—N22.236 (4)Cu1'—N21.858 (6)
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519–2524.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds