organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­benzo­yl)-3-(3-methyl­pyridin-2-yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 17 July 2011; accepted 10 August 2011; online 17 August 2011)

The mol­ecule of the title compound, C14H12ClN3OS, consists of three approximately planar fragments: the central thio­urea group, the chloro­phenyl group and the picolyl (3-methyl­pyridin-2-yl) group with a maximum of 0.035 (2)° for an N atom from the mean square plane of the central thiourea group. The central fragment forms dihedral angles of 33.30 (8) and 76.78 (8)° with the chloro­phenyl and picolyl groups, respectively. With respect to the thio­urea C—N bonds, the 4-chloro­benzoyl group is positioned trans to the thiono S atoms, whereas the picolyl group lies in a cis position to it. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N hydrogen bonds, forming chains along the a axis.

Related literature

For applications of thio­urea derivatives, see: Cunha et al. (2007[Cunha, S., Macedo, F. C. M., Costa, G. A. N., Rodrigues, M. T., Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem. 138, 511-516.]); Srivastava et al. (2010[Srivastava, A. K., Suprasanna, P., Srivastava, S. & D'Souza, S. F. (2010). Plant Sci. 178, 517-522.]); Manjula et al. (2009[Manjula, S. N., Noolvi, N. M., Parihar, K. V., Reddy, S. A. M., Ramani, V., Gadad, A. K., Singh, G., Kutty, N. G. & Rao, C. M. (2009). Eur. J. Med. Chem. 44, 2923-2929.]); Chen et al. (2006[Chen, W., Li, R., Han, B., Bang-Jing, L., Ying-Chun, C., Wu, Y., Li-Sheng, D. & Yang, D. (2006). Eur. J. Org. Chem. pp. 1177-1184.]). For related structures, see: Estévez-Hernández et al. (2009[Estévez-Hernández, O., Duque, J., Pérez, H., Santos Jr, S. & Mascarenhas, Y. (2009). Acta Cryst. E65, o929-o930.]); Binzet et al. (2009[Binzet, G., Emen, F. M., Flörke, U., Yeşilkaynak, T., Külcü, N. & Arslan, H. (2009). Acta Cryst. E65, o81-o82.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3OS

  • Mr = 305.78

  • Monoclinic, P 21 /c

  • a = 7.8417 (15) Å

  • b = 7.1058 (13) Å

  • c = 25.585 (5) Å

  • β = 93.405 (4)°

  • V = 1423.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 K

  • 0.44 × 0.31 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.944

  • 9917 measured reflections

  • 3421 independent reflections

  • 2188 reflections with I > 2/s(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.139

  • S = 1.04

  • 3421 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.98 2.655 (2) 135
C2—H2B⋯N3i 0.93 2.59 3.417 (3) 148
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of new thiourea derivatives has attracted great interest because of their wide range applications in research and technology, such as in pharmacology (Cunha et al., 2007), catalysis (Chen et al., 2006) and agriculture (Srivastava et al., 2010). The title compound, (I), is an isomer of the previously reported compound, 4-chloro-N-[N-(6-methyl-2-pyridyl)-carbamothioyl]benzamide (Binzet et al., 2009) except the methyl group is attached at the third position of the pyridine ring. The molecule adopts trans-cis configuration with respect to the position of 4-chlorobenzoyl and 2-picolyl groups relative to the thiono S atom across the thiourea C—N bonds. The bond lengths and angles are within normal ranges (Allen et al., 1987) and agree with previously reported analogous molecules (Estévez-Hernández et al., 2009; Binzet et al., 2009). The molecule consists of central thiourea fragment (N2/C8/S1/N1), pyridine (C9—C13/N3) and phenyl (C1—C6) rings which are nearly planar with largest deviation from the least square plane of 0.035 (2)Å for N1 atom.

The molecule is stabilized by intramolecular hydrogen bond, O1···H2A—N2, forming a pseudo-six membered ring, O1···H2A—N2—C8—N1—C7—O1 (Table 1). In crystal the molecules are linked by intermolecular hydrogen bond C2—H2···N3i, forming chains along the a axis (Fig. 2).

Related literature top

For applications of thiourea derivatives, see: Cunha et al. (2007); Srivastava et al. (2010); Manjula et al. (2009); Chen et al. (2006). For related structures, see: Estévez-Hernández et al. (2009); Binzet et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

2-amino-3-picoline (1.0 g, 0.5 mmol) was added dropwise into the mixture of ammonium thiocyanate (0.62 g, 0.5 mmol) and 4-chlorobenzoyl chloride (0.44 g, 0.5 mmol) diluted by 50 ml of dry acetone. The reaction mixture was refluxed with permanent stirring for 3 h. The resulting precipitate was filtered off and washed with cold methanol. The colorless crystals were obtained by recrystallization from acetonitrile. Yield: 46%; m.p. 170.1–171.1°C

Refinement top

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH groups.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the b axis. Hydrogen bonds are shown by dashed lines.
1-(4-Chlorobenzoyl)-3-(3-methylpyridin-2-yl)thiourea top
Crystal data top
C14H12ClN3OSF(000) = 632
Mr = 305.78Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 699 reflections
a = 7.8417 (15) Åθ = 1.6–28.0°
b = 7.1058 (13) ŵ = 0.41 mm1
c = 25.585 (5) ÅT = 298 K
β = 93.405 (4)°Slab, colourless
V = 1423.1 (5) Å30.44 × 0.31 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3421 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.030
Detector resolution: 83.66 pixels mm-1θmax = 28.0°, θmin = 1.6°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 99
Tmin = 0.839, Tmax = 0.944l = 3033
9917 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.0755P]
where P = (Fo2 + 2Fc2)/3
3421 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H12ClN3OSV = 1423.1 (5) Å3
Mr = 305.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8417 (15) ŵ = 0.41 mm1
b = 7.1058 (13) ÅT = 298 K
c = 25.585 (5) Å0.44 × 0.31 × 0.14 mm
β = 93.405 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2188 reflections with I > 2/s(I)
Tmin = 0.839, Tmax = 0.944Rint = 0.030
9917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
3421 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.21606 (9)0.54075 (13)0.35489 (3)0.0897 (3)
S10.45565 (8)0.34425 (9)0.08001 (2)0.0597 (2)
O10.4546 (2)0.6680 (3)0.23221 (6)0.0657 (5)
N10.5639 (2)0.4758 (3)0.17178 (7)0.0496 (5)
H1A0.64800.40140.16690.060*
N20.3126 (2)0.6067 (3)0.13694 (7)0.0501 (5)
H2A0.31160.66880.16580.060*
N30.0289 (2)0.5707 (3)0.10740 (8)0.0604 (5)
C20.8891 (3)0.5112 (3)0.23027 (9)0.0485 (5)
H2B0.89320.48860.19460.058*
C31.0381 (3)0.5047 (3)0.26218 (10)0.0537 (6)
H3A1.14210.47720.24830.064*
C41.0291 (3)0.5398 (3)0.31489 (9)0.0552 (6)
C50.8769 (3)0.5791 (3)0.33639 (9)0.0582 (6)
H5A0.87340.60160.37210.070*
C60.7299 (3)0.5850 (3)0.30452 (8)0.0537 (6)
H6A0.62640.61200.31880.064*
C10.7344 (3)0.5511 (3)0.25111 (8)0.0429 (5)
C70.5720 (3)0.5711 (3)0.21855 (8)0.0465 (5)
C80.4375 (3)0.4836 (3)0.13118 (8)0.0446 (5)
C90.1793 (3)0.6406 (3)0.09725 (8)0.0437 (5)
C100.0985 (3)0.6033 (4)0.07152 (12)0.0758 (8)
H10A0.20620.55650.07770.091*
C110.0802 (4)0.7006 (4)0.02671 (12)0.0784 (9)
H11A0.17230.71800.00260.094*
C120.0767 (4)0.7723 (4)0.01786 (10)0.0689 (7)
H12A0.09190.83980.01270.083*
C130.2135 (3)0.7461 (3)0.05369 (8)0.0508 (5)
C140.3859 (4)0.8282 (4)0.04571 (12)0.0781 (8)
H14A0.38230.89600.01320.117*
H14B0.46860.72890.04480.117*
H14C0.41720.91250.07400.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0655 (5)0.1158 (7)0.0829 (5)0.0260 (4)0.0364 (4)0.0270 (4)
S10.0599 (4)0.0634 (4)0.0533 (4)0.0146 (3)0.0178 (3)0.0192 (3)
O10.0578 (10)0.0846 (13)0.0529 (10)0.0209 (9)0.0111 (8)0.0216 (9)
N10.0472 (10)0.0533 (11)0.0462 (10)0.0133 (8)0.0145 (8)0.0115 (8)
N20.0474 (10)0.0602 (12)0.0416 (10)0.0094 (9)0.0065 (8)0.0091 (8)
N30.0439 (11)0.0756 (14)0.0614 (12)0.0035 (10)0.0013 (9)0.0011 (10)
C20.0529 (13)0.0471 (13)0.0443 (12)0.0004 (10)0.0076 (10)0.0045 (9)
C30.0443 (13)0.0532 (14)0.0629 (15)0.0014 (10)0.0043 (11)0.0023 (11)
C40.0547 (14)0.0499 (14)0.0579 (14)0.0154 (11)0.0227 (12)0.0120 (11)
C50.0666 (16)0.0654 (16)0.0411 (12)0.0146 (13)0.0087 (11)0.0011 (11)
C60.0521 (13)0.0615 (15)0.0467 (13)0.0054 (11)0.0057 (10)0.0036 (11)
C10.0483 (12)0.0382 (11)0.0408 (11)0.0016 (9)0.0078 (9)0.0026 (9)
C70.0478 (12)0.0487 (13)0.0423 (12)0.0026 (10)0.0046 (10)0.0046 (10)
C80.0431 (12)0.0467 (12)0.0429 (11)0.0010 (9)0.0068 (9)0.0021 (9)
C90.0426 (12)0.0454 (12)0.0422 (11)0.0077 (9)0.0047 (9)0.0048 (9)
C100.0441 (14)0.092 (2)0.090 (2)0.0071 (14)0.0097 (14)0.0119 (18)
C110.074 (2)0.083 (2)0.0737 (19)0.0307 (16)0.0323 (15)0.0139 (16)
C120.096 (2)0.0565 (16)0.0528 (15)0.0230 (15)0.0098 (14)0.0027 (12)
C130.0644 (15)0.0406 (12)0.0471 (12)0.0067 (11)0.0003 (11)0.0024 (10)
C140.088 (2)0.0666 (18)0.0811 (19)0.0112 (15)0.0187 (16)0.0070 (15)
Geometric parameters (Å, º) top
Cl1—C41.738 (2)C5—C61.372 (3)
S1—C81.654 (2)C5—H5A0.9300
O1—C71.218 (3)C6—C11.390 (3)
N1—C71.373 (3)C6—H6A0.9300
N1—C81.394 (2)C1—C71.487 (3)
N1—H1A0.8600C9—C131.382 (3)
N2—C81.328 (3)C10—C111.354 (4)
N2—C91.434 (3)C10—H10A0.9300
N2—H2A0.8600C11—C121.363 (4)
N3—C91.320 (3)C11—H11A0.9300
N3—C101.337 (3)C12—C131.382 (3)
C2—C31.385 (3)C12—H12A0.9300
C2—C11.383 (3)C13—C141.498 (4)
C2—H2B0.9300C14—H14A0.9600
C3—C41.377 (3)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.372 (4)
C7—N1—C8128.59 (18)O1—C7—C1122.05 (18)
C7—N1—H1A115.7N1—C7—C1115.77 (19)
C8—N1—H1A115.7N2—C8—N1116.12 (18)
C8—N2—C9122.93 (17)N2—C8—S1125.52 (16)
C8—N2—H2A118.5N1—C8—S1118.34 (15)
C9—N2—H2A118.5N3—C9—C13125.6 (2)
C9—N3—C10116.1 (2)N3—C9—N2114.81 (19)
C3—C2—C1120.5 (2)C13—C9—N2119.6 (2)
C3—C2—H2B119.7N3—C10—C11123.9 (3)
C1—C2—H2B119.7N3—C10—H10A118.1
C4—C3—C2118.7 (2)C11—C10—H10A118.1
C4—C3—H3A120.6C10—C11—C12118.3 (3)
C2—C3—H3A120.6C10—C11—H11A120.9
C3—C4—C5121.7 (2)C12—C11—H11A120.9
C3—C4—Cl1119.1 (2)C11—C12—C13120.8 (2)
C5—C4—Cl1119.12 (19)C11—C12—H12A119.6
C6—C5—C4119.2 (2)C13—C12—H12A119.6
C6—C5—H5A120.4C9—C13—C12115.3 (2)
C4—C5—H5A120.4C9—C13—C14122.8 (2)
C5—C6—C1120.6 (2)C12—C13—C14121.9 (2)
C5—C6—H6A119.7C13—C14—H14A109.5
C1—C6—H6A119.7C13—C14—H14B109.5
C6—C1—C2119.2 (2)H14A—C14—H14B109.5
C6—C1—C7117.6 (2)C13—C14—H14C109.5
C2—C1—C7123.05 (19)H14A—C14—H14C109.5
O1—C7—N1122.2 (2)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.982.655 (2)135
C2—H2B···N3i0.932.593.417 (3)148
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClN3OS
Mr305.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.8417 (15), 7.1058 (13), 25.585 (5)
β (°) 93.405 (4)
V3)1423.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.44 × 0.31 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.839, 0.944
No. of measured, independent and
observed [I > 2/s(I)] reflections
9917, 3421, 2188
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.04
No. of reflections3421
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.17

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.982.655 (2)135
C2—H2B···N3i0.932.593.417 (3)148
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Faculty of Science and Technology, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia, for research grants UKM-GUP-NBT-08–27–110 and FRGS 59178.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBinzet, G., Emen, F. M., Flörke, U., Yeşilkaynak, T., Külcü, N. & Arslan, H. (2009). Acta Cryst. E65, o81–o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Li, R., Han, B., Bang-Jing, L., Ying-Chun, C., Wu, Y., Li-Sheng, D. & Yang, D. (2006). Eur. J. Org. Chem. pp. 1177–1184.  Google Scholar
First citationCunha, S., Macedo, F. C. M., Costa, G. A. N., Rodrigues, M. T., Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem. 138, 511–516.  Google Scholar
First citationEstévez-Hernández, O., Duque, J., Pérez, H., Santos Jr, S. & Mascarenhas, Y. (2009). Acta Cryst. E65, o929–o930.  Google Scholar
First citationManjula, S. N., Noolvi, N. M., Parihar, K. V., Reddy, S. A. M., Ramani, V., Gadad, A. K., Singh, G., Kutty, N. G. & Rao, C. M. (2009). Eur. J. Med. Chem. 44, 2923–2929.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A. K., Suprasanna, P., Srivastava, S. & D'Souza, S. F. (2010). Plant Sci. 178, 517–522.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds