organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phen­yl)-2,3,3a,4,5,11c-hexa­hydro­benzo[f]furo[3,2-c]quinoline

aDepartment of Aviation Oil and Materials, Xuzhou Airforce College, Xuzhou Jiangsu 221110, People's Republic of China, and bDepartment of Chemistry, Xuzhou Medical College, Xuzhou Jiangsu 221004, People's Republic of China
*Correspondence e-mail: xuzhou@xzmc.edu.cn

(Received 14 April 2011; accepted 2 August 2011; online 11 August 2011)

In the title compound, C21H18BrNO, both heterocyclic rings, viz. the hydro­pyridine ring and the adjacent hydro­furan ring, adopt envelope conformations. These two heterocycles make a dihedral angle of 37.3 (1)°. The dihedral angle between the hydro­pyridine and benzene rings is 69.6 (1)°. In the crystal, adjacent mol­ecules are linked by pairs of inter­molecular C—H⋯O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the biological properties of quinoline derivatives, see: Nesterova et al. (1995[Nesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31-34.]); Yamada et al. (1992[Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211-1213.]); Faber et al. (1984[Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocyl. Chem. 21, 1177-1178.]); Johnson et al. (1989[Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942-1949.]). For related structures, see: Ramesh et al. (2008[Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891.]); Zhao & Teng (2008[Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772-o1773.]); Bai et al. (2009[Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.]); Du et al. (2010[Du, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622.]); Wang et al. (2010[Wang, X.-S., Zhou, J., Yin, M.-Y., Yang, K. & Tu, S.-J. (2010). J. Comb. Chem. 12, 266-269.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18BrNO

  • Mr = 380.27

  • Triclinic, [P \overline 1]

  • a = 9.4019 (2) Å

  • b = 9.6025 (2) Å

  • c = 10.4660 (2) Å

  • α = 103.888 (1)°

  • β = 114.075 (1)°

  • γ = 92.469 (1)°

  • V = 826.81 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 296 K

  • 0.20 × 0.09 × 0.04 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.899

  • 10901 measured reflections

  • 2921 independent reflections

  • 2301 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.04

  • 2921 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.69 3.462 (3) 141
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatives has been extensively studied due to its varies of biological properties, such as psychotropic activity (Nesterova, et al., 1995), anti-allergic (Yamada et al., 1992) and anti-inflammatory activity (Faber et al., 1984 and Johnson et al., 1989). The title compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. Herein, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), the hydropyridine ring of the furoquinoline moiety adopts an envelope conformation (Fig. 1). The atom C1 deviates from the plane defined by the atoms C2/C5/C6/C15/N1 by 0.646 (3) Å. This conformation is different from those reported in other hydropyridine derivatives (For related structrues, see Ramesh, et al., 2008; Zhao & Teng, 2008; Bai et al., 2009; Du, et al., 2010). In the adjacent hydrofuran ring, the atoms C2—C4 and O1 are coplanar, while the atom C5 deviates from the plane by 0.522 (3) Å. This data indicates that the above hydrofuran ring also adopts an envelope conformation. These two heterocycles make a dihedral angle of 37.3 (1)°. The basal plane of the hydropyridine ring is nearly coplanar to the naphthalene ring C6—C15, forming a dihedral angle of 6.0 (1)°. The dihedral angle between the phenyl and the hydropyridine ring is 69.6 (1)°. The hydrogen bond of C9—H9···O1 links the adjacent moleclues forming dimmers along a axis (Figure 2). This hydrogen bonding pattern is same with the one reported in literature (Wang et al., 2010).

Related literature top

For the biological properties of quinoline derivatives, see: Nesterova et al. (1995); Yamada et al. (1992); Faber et al. (1984); Johnson et al. (1989). For related structures, see: Ramesh et al. (2008); Zhao & Teng (2008); Bai et al. (2009); Du et al. (2010); Wang et al. (2010).

Experimental top

The title compound, (I), was prepared by the reaction of 4-bromobenzaldehyde (0.361 g, 2.0 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol), 2,3-dihydrofuran (0.252 g, 3.0 mmol), I2 (0.026 g, 0.1 mmol) and THF (10 ml) for 18 h (yield 87%, mp. 523–525 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a DMF solution.

Refinement top

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å, except for H1, and with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINTT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing shows 30% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram of (I). Dashed lines indicate hydrogen bonds of type C9—H9···O1 which links the adjacent molecules forming dimmers along a.
4-(4-Bromophenyl)-2,3,3a,4,5,11c-hexahydrobenzo[f]furo[3,2- c]quinoline top
Crystal data top
C21H18BrNOZ = 2
Mr = 380.27F(000) = 388
Triclinic, P1Dx = 1.527 Mg m3
Hall symbol: -P 1Melting point = 523–525 K
a = 9.4019 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6025 (2) ÅCell parameters from 2885 reflections
c = 10.4660 (2) Åθ = 2.2–22.9°
α = 103.888 (1)°µ = 2.49 mm1
β = 114.075 (1)°T = 296 K
γ = 92.469 (1)°Block, colourless
V = 826.81 (3) Å30.20 × 0.09 × 0.04 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2921 independent reflections
Radiation source: fine-focus sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.793, Tmax = 0.899k = 1111
10901 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.242P]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C21H18BrNOγ = 92.469 (1)°
Mr = 380.27V = 826.81 (3) Å3
Triclinic, P1Z = 2
a = 9.4019 (2) ÅMo Kα radiation
b = 9.6025 (2) ŵ = 2.49 mm1
c = 10.4660 (2) ÅT = 296 K
α = 103.888 (1)°0.20 × 0.09 × 0.04 mm
β = 114.075 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2301 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.899Rint = 0.037
10901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2921 reflectionsΔρmin = 0.32 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.51042 (4)0.37481 (4)0.64000 (4)0.05334 (14)
O10.7657 (2)0.0345 (2)0.8561 (2)0.0463 (5)
C161.1935 (3)0.2498 (3)0.8548 (3)0.0360 (6)
C191.3806 (3)0.3222 (3)0.7264 (3)0.0364 (6)
N11.1406 (3)0.3070 (3)1.0684 (3)0.0457 (7)
C60.8940 (3)0.2371 (3)1.0725 (3)0.0335 (6)
C11.0888 (3)0.2098 (3)0.9222 (3)0.0387 (7)
H1B1.09590.10990.92830.046*
C211.2412 (3)0.1435 (3)0.7724 (3)0.0430 (7)
H211.21000.04620.76050.052*
C120.8804 (3)0.2858 (3)1.3089 (3)0.0387 (7)
C201.3343 (3)0.1788 (3)0.7073 (3)0.0446 (7)
H201.36470.10630.65150.054*
C151.0518 (3)0.2965 (3)1.1442 (3)0.0377 (7)
C70.8052 (3)0.2325 (3)1.1546 (3)0.0330 (6)
C50.8148 (3)0.1891 (3)0.9095 (3)0.0350 (6)
H50.72110.23610.87650.042*
C20.9162 (3)0.2214 (3)0.8341 (3)0.0400 (7)
H20.90750.31810.81900.048*
C171.2421 (3)0.3929 (3)0.8702 (3)0.0480 (8)
H171.21060.46610.92420.058*
C80.6415 (3)0.1764 (3)1.0879 (3)0.0383 (7)
H80.58930.14010.98690.046*
C90.5593 (3)0.1746 (3)1.1694 (3)0.0434 (7)
H90.45190.13851.12310.052*
C110.7913 (4)0.2808 (3)1.3891 (3)0.0478 (8)
H110.84070.31531.49030.057*
C100.6344 (4)0.2263 (3)1.3208 (3)0.0491 (8)
H100.57760.22371.37530.059*
C141.1242 (3)0.3524 (3)1.2979 (3)0.0473 (8)
H141.23000.39431.34520.057*
C181.3365 (3)0.4302 (3)0.8073 (3)0.0453 (7)
H181.36950.52730.81990.054*
C131.0424 (4)0.3462 (3)1.3777 (3)0.0471 (8)
H131.09320.38201.47880.057*
C30.8387 (4)0.1035 (4)0.6873 (3)0.0576 (9)
H3A0.77790.14500.60970.069*
H3B0.91800.05690.66390.069*
C40.7334 (4)0.0034 (4)0.7062 (3)0.0610 (9)
H4A0.62360.00020.64720.073*
H4B0.75380.10110.67580.073*
H1A1.234 (4)0.323 (3)1.114 (3)0.052 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0485 (2)0.0682 (2)0.0570 (2)0.00705 (16)0.03258 (16)0.02427 (18)
O10.0560 (12)0.0410 (12)0.0405 (12)0.0063 (10)0.0247 (10)0.0045 (10)
N10.0306 (14)0.0645 (18)0.0388 (15)0.0024 (13)0.0144 (12)0.0120 (14)
C10.0387 (16)0.0397 (16)0.0401 (17)0.0031 (13)0.0190 (14)0.0126 (14)
C20.0389 (16)0.0452 (17)0.0399 (17)0.0026 (13)0.0179 (13)0.0182 (15)
C30.0471 (18)0.083 (3)0.0358 (18)0.0093 (17)0.0177 (15)0.0092 (18)
C40.082 (2)0.053 (2)0.046 (2)0.0024 (18)0.0342 (18)0.0023 (17)
C50.0334 (15)0.0381 (16)0.0351 (16)0.0025 (12)0.0156 (12)0.0122 (14)
C60.0351 (15)0.0335 (15)0.0318 (15)0.0037 (12)0.0141 (12)0.0099 (13)
C70.0399 (15)0.0264 (14)0.0353 (15)0.0054 (12)0.0186 (13)0.0089 (13)
C80.0417 (16)0.0342 (16)0.0405 (17)0.0027 (13)0.0202 (13)0.0093 (14)
C90.0457 (17)0.0352 (16)0.057 (2)0.0028 (13)0.0314 (16)0.0097 (15)
C100.066 (2)0.0423 (18)0.055 (2)0.0022 (16)0.0432 (18)0.0111 (16)
C110.068 (2)0.0406 (18)0.0398 (18)0.0021 (16)0.0305 (17)0.0085 (15)
C120.0494 (17)0.0340 (16)0.0348 (16)0.0040 (13)0.0200 (14)0.0105 (14)
C130.0525 (19)0.0485 (19)0.0331 (16)0.0013 (15)0.0138 (15)0.0084 (15)
C140.0383 (17)0.0534 (19)0.0400 (18)0.0042 (14)0.0112 (14)0.0074 (16)
C150.0348 (15)0.0414 (17)0.0380 (16)0.0038 (13)0.0162 (13)0.0126 (14)
C160.0328 (15)0.0365 (16)0.0410 (17)0.0043 (12)0.0169 (13)0.0134 (14)
C170.059 (2)0.0356 (17)0.063 (2)0.0094 (15)0.0400 (17)0.0116 (16)
C180.0505 (18)0.0342 (16)0.059 (2)0.0015 (14)0.0324 (16)0.0116 (16)
C190.0318 (14)0.0437 (17)0.0367 (16)0.0046 (13)0.0162 (13)0.0141 (14)
C200.0472 (17)0.0413 (18)0.0517 (19)0.0104 (14)0.0297 (15)0.0087 (15)
C210.0442 (17)0.0337 (16)0.0562 (19)0.0061 (13)0.0255 (15)0.0146 (15)
Geometric parameters (Å, º) top
Br1—C191.905 (3)C7—C81.420 (4)
O1—C41.420 (3)C5—C21.527 (3)
O1—C51.436 (3)C5—H50.9800
C16—C171.379 (4)C2—C31.534 (4)
C16—C211.386 (4)C2—H20.9800
C16—C11.510 (3)C17—C181.383 (4)
C19—C181.366 (4)C17—H170.9300
C19—C201.368 (4)C8—C91.367 (4)
N1—C151.381 (3)C8—H80.9300
N1—C11.454 (4)C9—C101.391 (4)
N1—H1A0.80 (3)C9—H90.9300
C6—C151.379 (4)C11—C101.362 (4)
C6—C71.428 (3)C11—H110.9300
C6—C51.494 (4)C10—H100.9300
C1—C21.529 (4)C14—C131.355 (4)
C1—H1B0.9800C14—H140.9300
C21—C201.384 (4)C18—H180.9300
C21—H210.9300C13—H130.9300
C12—C111.414 (4)C3—C41.497 (4)
C12—C131.415 (4)C3—H3A0.9700
C12—C71.417 (4)C3—H3B0.9700
C20—H200.9300C4—H4A0.9700
C15—C141.415 (4)C4—H4B0.9700
C4—O1—C5105.9 (2)C5—C2—C3102.0 (2)
C17—C16—C21117.7 (2)C1—C2—C3112.5 (2)
C17—C16—C1121.3 (2)C5—C2—H2110.3
C21—C16—C1121.0 (2)C1—C2—H2110.3
C18—C19—C20121.5 (2)C3—C2—H2110.3
C18—C19—Br1118.6 (2)C16—C17—C18121.6 (3)
C20—C19—Br1119.9 (2)C16—C17—H17119.2
C15—N1—C1118.9 (2)C18—C17—H17119.2
C15—N1—H1A117 (2)C9—C8—C7121.3 (3)
C1—N1—H1A113 (2)C9—C8—H8119.4
C15—C6—C7119.5 (2)C7—C8—H8119.4
C15—C6—C5119.7 (2)C8—C9—C10120.7 (3)
C7—C6—C5120.6 (2)C8—C9—H9119.6
N1—C1—C16109.9 (2)C10—C9—H9119.6
N1—C1—C2107.6 (2)C10—C11—C12121.2 (3)
C16—C1—C2112.3 (2)C10—C11—H11119.4
N1—C1—H1B109.0C12—C11—H11119.4
C16—C1—H1B109.0C11—C10—C9119.9 (3)
C2—C1—H1B109.0C11—C10—H10120.1
C20—C21—C16121.5 (3)C9—C10—H10120.1
C20—C21—H21119.3C13—C14—C15121.3 (3)
C16—C21—H21119.3C13—C14—H14119.3
C11—C12—C13122.0 (3)C15—C14—H14119.3
C11—C12—C7119.4 (3)C19—C18—C17118.9 (3)
C13—C12—C7118.6 (3)C19—C18—H18120.5
C19—C20—C21118.8 (3)C17—C18—H18120.5
C19—C20—H20120.6C14—C13—C12120.7 (3)
C21—C20—H20120.6C14—C13—H13119.6
C6—C15—N1121.3 (3)C12—C13—H13119.6
C6—C15—C14119.9 (3)C4—C3—C2105.5 (2)
N1—C15—C14118.8 (2)C4—C3—H3A110.6
C12—C7—C8117.5 (2)C2—C3—H3A110.6
C12—C7—C6119.9 (2)C4—C3—H3B110.6
C8—C7—C6122.6 (2)C2—C3—H3B110.6
O1—C5—C6110.8 (2)H3A—C3—H3B108.8
O1—C5—C2104.9 (2)O1—C4—C3107.6 (3)
C6—C5—C2115.6 (2)O1—C4—H4A110.2
O1—C5—H5108.4C3—C4—H4A110.2
C6—C5—H5108.4O1—C4—H4B110.2
C2—C5—H5108.4C3—C4—H4B110.2
C5—C2—C1111.1 (2)H4A—C4—H4B108.5
C15—N1—C1—C16174.5 (2)C7—C6—C5—C2170.7 (2)
C15—N1—C1—C252.0 (3)O1—C5—C2—C188.2 (3)
C17—C16—C1—N141.8 (3)C6—C5—C2—C134.2 (3)
C21—C16—C1—N1139.6 (3)O1—C5—C2—C331.8 (3)
C17—C16—C1—C277.9 (3)C6—C5—C2—C3154.2 (2)
C21—C16—C1—C2100.6 (3)N1—C1—C2—C555.6 (3)
C17—C16—C21—C200.1 (4)C16—C1—C2—C5176.6 (2)
C1—C16—C21—C20178.5 (3)N1—C1—C2—C3169.2 (2)
C18—C19—C20—C210.3 (4)C16—C1—C2—C369.7 (3)
Br1—C19—C20—C21179.4 (2)C21—C16—C17—C180.6 (4)
C16—C21—C20—C190.6 (4)C1—C16—C17—C18179.2 (3)
C7—C6—C15—N1178.0 (2)C12—C7—C8—C90.4 (4)
C5—C6—C15—N12.8 (4)C6—C7—C8—C9179.4 (2)
C7—C6—C15—C140.1 (4)C7—C8—C9—C100.9 (4)
C5—C6—C15—C14175.1 (2)C13—C12—C11—C10178.0 (3)
C1—N1—C15—C623.0 (4)C7—C12—C11—C100.3 (4)
C1—N1—C15—C14159.1 (3)C12—C11—C10—C90.1 (4)
C11—C12—C7—C80.2 (4)C8—C9—C10—C110.7 (4)
C13—C12—C7—C8178.2 (2)C6—C15—C14—C131.5 (4)
C11—C12—C7—C6180.0 (2)N1—C15—C14—C13179.4 (3)
C13—C12—C7—C61.6 (4)C20—C19—C18—C170.4 (4)
C15—C6—C7—C121.4 (4)Br1—C19—C18—C17179.9 (2)
C5—C6—C7—C12176.5 (2)C16—C17—C18—C190.9 (4)
C15—C6—C7—C8178.4 (2)C15—C14—C13—C121.3 (4)
C5—C6—C7—C83.3 (4)C11—C12—C13—C14178.6 (3)
C4—O1—C5—C6164.3 (2)C7—C12—C13—C140.3 (4)
C4—O1—C5—C238.9 (3)C5—C2—C3—C413.9 (3)
C15—C6—C5—O1114.7 (3)C1—C2—C3—C4105.2 (3)
C7—C6—C5—O170.2 (3)C5—O1—C4—C329.8 (3)
C15—C6—C5—C24.4 (4)C2—C3—C4—O18.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.693.462 (3)141
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC21H18BrNO
Mr380.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.4019 (2), 9.6025 (2), 10.4660 (2)
α, β, γ (°)103.888 (1), 114.075 (1), 92.469 (1)
V3)826.81 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.20 × 0.09 × 0.04
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.793, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
10901, 2921, 2301
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.04
No. of reflections2921
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: SMART (Bruker, 2001), SAINTT (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.693.462 (3)141.0
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ24) for financial support.

References

First citationBai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocyl. Chem. 21, 1177–1178.  CrossRef CAS Google Scholar
First citationJohnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31–34.  CAS Google Scholar
First citationRamesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Zhou, J., Yin, M.-Y., Yang, K. & Tu, S.-J. (2010). J. Comb. Chem. 12, 266–269.  Web of Science CSD CrossRef PubMed Google Scholar
First citationYamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211–1213.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds