metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(2-hy­dr­oxy-5-meth­­oxy­benzoato-κO1)zinc

aSchool of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China, and bMaterial Engineering College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ltdl@sina.com

(Received 20 July 2011; accepted 1 August 2011; online 17 August 2011)

The title compound, [Zn(C8H7O4)2(H2O)2], has been synthesized by hydro­thermal methods. The ZnII atom, whose symmetry element is a twofold axis, is four coordinated by two O atoms from 5-meth­oxy­salicylate anions and two aqua O atoms in a distorted tetra­hedral geometry. In the crystal, mol­ecules are linked into a layer by O—H⋯O hydrogen bonds, which stabilize the packing.

Related literature

For coordination polymers constructed by hydrogen bonds, see: Li et al. (2006[Li, T., Hu, S. M., Li, Z. H. & Du, S. W. (2006). Chin. J. Struct. Chem. 25, 85-89.]); Jiang et al. (2011[Jiang, Y. M., Yin, Z., He, K. H., Zeng, M. H. & Kurmoo, M. (2011). Inorg. Chem. 50, 2329-2333.]). For the structure of the complex with 5-meth­oxy­salicylate ligands and its analogues, see: Púčeková-Repická et al. (2007[Púčeková-Repická, Z., Moncol, J., Valigura, D., Lis, T., Korabik, M., Melník, M., Mroziński, J. & Mazúr, M. (2007). J. Coord. Chem. 60, 2449-2460.]); Valigura et al. (2006[Valigura, D., Moncol, J., Korabik, M., Púčeková, Z., Lis, T., Mroziński, J. & Melník, M. (2006). Eur. J. Inorg. Chem. pp. 3813-3817.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H7O4)2(H2O)2]

  • Mr = 435.67

  • Monoclinic, C 2/c

  • a = 25.113 (4) Å

  • b = 5.5065 (6) Å

  • c = 12.648 (3) Å

  • β = 97.845 (12)°

  • V = 1732.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.745, Tmax = 0.752

  • 6403 measured reflections

  • 1986 independent reflections

  • 1837 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.08

  • 1986 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O1 0.87 (3) 1.76 (3) 2.5771 (19) 155 (2)
O4—H4A⋯O2i 0.73 (3) 1.93 (3) 2.643 (2) 169 (3)
O4—H4B⋯O5ii 0.84 (3) 1.97 (3) 2.790 (2) 167 (3)
Symmetry codes: (i) [-x, y+1, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005)[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Generally, the self-assembly of inorganic metal species and organic ligands can be achieved by the use of noncovalent contacts. Among the noncovalent contacts, hydrogen bonds have the great influence in determining the geometry of the obtained metal complexes (Li et al. 2006; Jiang et al. 2011). In the other hand, the reactions of transition metal ions with 5-MeOsal ligands and its analogues are relatively rare (Valigura et al., 2006; Púčeková-Repická et al.,2007). In this paper we present results of hydrothermal reactions of ZnCl2 and 5-MeOsal ligand. Title Compound was isolated as molecular complex and the intermolecular O—H—O hydrogen bonds in (I) together with intramolecular O—H—O hydrogen bonds promote the molecules into two-dimensional structure.

A single-crystal X-ray diffraction study of (I) reveals a discrete coordination complex that crystallizes in the space group C2/c. Coordination of the Zn atoms in (I) is a slightly distorted tetrahedral geometry with each Zn atom bonding to four oxygen atoms, in which two from the monodentate 5-MeOSal ligands and two from the waters (Fig.1). Further inspection into the structure reveals that there are O—H—O intramolecular and intermolecular hydrogen bonds. (Table 1). As described in Figure 2, the intramolecular hydrogen bonds from hydroxyl hydrogen atom of the 5-MeOsal anions to the coordinated carboxylate oxygen atoms O3—H—O1 with the distance of 2.577 (1) Å, then create six-memberedrings(O2C3H), and stabilize the structure. The mean deviation from the planes C(2)—C(3)—C(4)—C(5)—C(6)-(7), and O(1)—H(13)—O(3)—C(3)—C(2)—C(1)are 0.0032 and 0.0229 Å,respectively. Furthermore the dihedral angles between planes is 0.9°, indicating a planar structure for this ligand. Furthermore the uncoordinated oxygen atoms of the carboxyl group and methoxy group of the 5-MeOsal anions(O2, O5) are hydrogen bonded with the hydrogen atoms of coordinated water with the distances of 2.643 (2) and 2.790 (2) Å, respectively. As a result every coordinated water molecule is connected by two oxygen atoms through hydrogen bonds and the isolated units are to be form a 2-D layer. A prospective view of the structure packing from a direction is presented in Fig. 3.

Related literature top

For coordination polymers constructed by hydrogen bonds, see: Li et al. (2006); Jiang et al. (2011). For the structure of the complex with 5-methoxysalicylate ligands and its analogues, see: Púčeková-Repická et al. (2007); Valigura et al. (2006).

Experimental top

The title compound was hydrothermally synthesized under autogenous pressure. A mixture of ZnCl2 (68 mg, 0.5 mmol), 5-MeOsal (84 mg, 0.5 mmol), and H2O (6 ml) was sealed in a stainless reactor with Teflon liner, which was heated to 358 K for two days. After slow cooling to room temperature, prism pale yellow crystals were obtained as a major phase by filtration, which were washed with distilled water, and finally dried in air(65% yield).Anal. calc. for C16H18O10Zn: C, 44.11; H, 4.16; O, 36.72%; Found: C, 44.32; H, 4.15; O, 36.23%. IR (KBr pellet):3448(w), 3290(w), 2839(w), 2615(w), 1661(s), 1616(s), 1486(s), 1428(s), 1223(s), 1188(s), 1033(m), 824(m), 788(m), 761(m), 678(m), 555(m), 464(w).

Refinement top

All the hydrogen atoms were discernible in the difference electron density maps. However, the H atoms were situated into idealized positions and constrained by the riding model approximation: O—Hhydroxyl = 0.869, Caryl—Haryl = 0.95, Cmethyl—Hmethyl = 0.98 and UisoHaryl = 1.2Ueq(C), UisoHmethyl = 1.5Ueq(C). The highest electron-density peak is situated 1.2 Å from Zn1 and the deepest hole 0.78 Å from Zn1.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoids are drawn at the 30% probability level. (-x, y, -z + 1/2)
[Figure 2] Fig. 2. The intramolecular and intermoleclar hydrogen bonds (the dashed lines) in title compound. Symmetry codes: (A)x, -y + 2, z + 1/2; (B)x, -y + 1, z + 1/2.
[Figure 3] Fig. 3. The 2-D layer of title compound by O—H—O interactions (black dash lines) viewed from a direction.
Diaquabis(2-hydroxy-5-methoxybenzoato-κO1)zinc(II) top
Crystal data top
[Zn(C8H7O4)2(H2O)2]F(000) = 896
Mr = 435.67Dx = 1.670 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2689 reflections
a = 25.113 (4) Åθ = 2.1–27.5°
b = 5.5065 (6) ŵ = 1.47 mm1
c = 12.648 (3) ÅT = 173 K
β = 97.845 (12)°Prism, pale yellow
V = 1732.7 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
1986 independent reflections
Radiation source: fine-focus sealed tube1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 3132
Tmin = 0.745, Tmax = 0.752k = 77
6403 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
1986 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Zn(C8H7O4)2(H2O)2]V = 1732.7 (5) Å3
Mr = 435.67Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.113 (4) ŵ = 1.47 mm1
b = 5.5065 (6) ÅT = 173 K
c = 12.648 (3) Å0.20 × 0.20 × 0.20 mm
β = 97.845 (12)°
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
1986 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1837 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.752Rint = 0.027
6403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
1986 reflectionsΔρmin = 0.69 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.94430 (5)0.25000.03390 (13)
O10.07205 (5)0.8141 (2)0.23289 (10)0.0398 (3)
O20.01520 (5)0.6023 (2)0.12225 (11)0.0379 (3)
O30.17146 (5)0.6892 (3)0.27805 (10)0.0433 (3)
O40.02830 (7)1.1674 (3)0.36768 (14)0.0556 (4)
O50.12868 (6)0.0192 (3)0.03081 (11)0.0432 (3)
C10.06216 (6)0.6401 (3)0.16527 (12)0.0294 (3)
C20.10816 (6)0.4881 (3)0.14311 (13)0.0269 (3)
C30.15997 (7)0.5201 (3)0.19989 (13)0.0301 (3)
C40.20140 (7)0.3720 (4)0.17747 (14)0.0358 (4)
H40.23640.39460.21530.043*
C50.19295 (7)0.1916 (3)0.10108 (14)0.0355 (4)
H50.22190.09120.08660.043*
C60.09982 (6)0.3065 (3)0.06567 (12)0.0297 (3)
H60.06510.28480.02660.036*
C70.14159 (7)0.1582 (3)0.04532 (12)0.0307 (3)
C80.17070 (8)0.1737 (4)0.05639 (16)0.0470 (5)
H8A0.19890.07510.08180.070*
H8B0.15620.28810.11230.070*
H8C0.18590.26390.00740.070*
H10.1412 (11)0.767 (5)0.275 (2)0.065 (8)*
H4A0.0164 (10)1.283 (5)0.378 (2)0.052 (7)*
H4B0.0570 (12)1.135 (6)0.407 (2)0.081 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02475 (17)0.03398 (19)0.0432 (2)0.0000.00526 (12)0.000
O10.0334 (6)0.0375 (7)0.0492 (7)0.0006 (5)0.0087 (5)0.0142 (5)
O20.0256 (6)0.0363 (6)0.0511 (7)0.0028 (5)0.0025 (5)0.0042 (5)
O30.0319 (7)0.0497 (8)0.0462 (7)0.0039 (6)0.0015 (6)0.0164 (6)
O40.0486 (9)0.0465 (9)0.0660 (10)0.0189 (8)0.0124 (8)0.0210 (8)
O50.0393 (7)0.0429 (7)0.0464 (8)0.0083 (6)0.0020 (6)0.0165 (6)
C10.0283 (8)0.0280 (8)0.0330 (8)0.0011 (7)0.0081 (6)0.0022 (6)
C20.0244 (8)0.0279 (7)0.0288 (8)0.0005 (7)0.0051 (6)0.0021 (6)
C30.0277 (8)0.0338 (8)0.0287 (8)0.0039 (7)0.0027 (6)0.0002 (6)
C40.0237 (8)0.0458 (9)0.0366 (8)0.0012 (8)0.0002 (7)0.0002 (7)
C50.0279 (8)0.0418 (9)0.0372 (8)0.0090 (7)0.0053 (7)0.0016 (7)
C60.0251 (7)0.0330 (8)0.0302 (7)0.0006 (6)0.0015 (6)0.0004 (6)
C70.0321 (8)0.0309 (8)0.0291 (7)0.0017 (7)0.0045 (6)0.0003 (6)
C80.0519 (12)0.0448 (11)0.0466 (10)0.0112 (9)0.0155 (9)0.0063 (8)
Geometric parameters (Å, º) top
Zn1—O41.9852 (15)C2—C61.395 (2)
Zn1—O4i1.9852 (15)C2—C31.409 (2)
Zn1—O11.9854 (13)C3—C41.382 (2)
Zn1—O1i1.9854 (13)C4—C51.382 (3)
O1—C11.286 (2)C4—H40.9500
O2—C11.247 (2)C5—C71.395 (2)
O3—C31.360 (2)C5—H50.9500
O3—H10.87 (3)C6—C71.381 (2)
O4—H4A0.73 (3)C6—H60.9500
O4—H4B0.84 (3)C8—H8A0.9800
O5—C71.379 (2)C8—H8B0.9800
O5—C81.427 (2)C8—H8C0.9800
C1—C21.484 (2)
O4—Zn1—O4i103.54 (11)C4—C3—C2119.37 (16)
O4—Zn1—O193.83 (6)C3—C4—C5121.33 (15)
O4i—Zn1—O1112.34 (7)C3—C4—H4119.3
O4—Zn1—O1i112.34 (7)C5—C4—H4119.3
O4i—Zn1—O1i93.83 (6)C4—C5—C7119.43 (16)
O1—Zn1—O1i137.66 (7)C4—C5—H5120.3
C1—O1—Zn1104.20 (10)C7—C5—H5120.3
C3—O3—H1102.2 (17)C7—C6—C2120.63 (14)
Zn1—O4—H4A125 (2)C7—C6—H6119.7
Zn1—O4—H4B120 (2)C2—C6—H6119.7
H4A—O4—H4B115 (3)O5—C7—C6115.91 (14)
C7—O5—C8118.04 (15)O5—C7—C5124.02 (15)
O2—C1—O1120.00 (15)C6—C7—C5120.07 (15)
O2—C1—C2122.53 (15)O5—C8—H8A109.5
O1—C1—C2117.46 (14)O5—C8—H8B109.5
C6—C2—C3119.16 (15)H8A—C8—H8B109.5
C6—C2—C1119.38 (14)O5—C8—H8C109.5
C3—C2—C1121.45 (15)H8A—C8—H8C109.5
O3—C3—C4117.55 (15)H8B—C8—H8C109.5
O3—C3—C2123.07 (16)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O10.87 (3)1.76 (3)2.5771 (19)155 (2)
O4—H4A···O2ii0.73 (3)1.93 (3)2.643 (2)169 (3)
O4—H4B···O5iii0.84 (3)1.97 (3)2.790 (2)167 (3)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H7O4)2(H2O)2]
Mr435.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)25.113 (4), 5.5065 (6), 12.648 (3)
β (°) 97.845 (12)
V3)1732.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD/AFC
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.745, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
6403, 1986, 1837
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.08
No. of reflections1986
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.69

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O10.87 (3)1.76 (3)2.5771 (19)155 (2)
O4—H4A···O2i0.73 (3)1.93 (3)2.643 (2)169 (3)
O4—H4B···O5ii0.84 (3)1.97 (3)2.790 (2)167 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation of China (30771682).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJiang, Y. M., Yin, Z., He, K. H., Zeng, M. H. & Kurmoo, M. (2011). Inorg. Chem. 50, 2329–2333.  Google Scholar
First citationLi, T., Hu, S. M., Li, Z. H. & Du, S. W. (2006). Chin. J. Struct. Chem. 25, 85–89.  Google Scholar
First citationPúčeková-Repická, Z., Moncol, J., Valigura, D., Lis, T., Korabik, M., Melník, M., Mroziński, J. & Mazúr, M. (2007). J. Coord. Chem. 60, 2449–2460.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValigura, D., Moncol, J., Korabik, M., Púčeková, Z., Lis, T., Mroziński, J. & Melník, M. (2006). Eur. J. Inorg. Chem. pp. 3813–3817.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds