organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloro­bis­­(naphthalen-1-yl)phosphane

aDepartamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
*Correspondence e-mail: doctorovich@qi.fcen.uba.ar

(Received 29 July 2011; accepted 18 August 2011; online 31 August 2011)

In the title compound, C20H14ClP, the dihedral angle between the naphthyl rings is 81.77 (6)°. The crystal packing suggests weak ππ stacking inter­actions between the naphthyl rings in adjacent units [minimum ring centroid separation 3.7625 (13) Å].

Related literature

For the structure of a similar compound, see: Schiemenz et al. (2003[Schiemenz, G. P., Nather, C. & Porksen, S. (2003). Z. Naturforsch. Teil B, 58, 59-73.]). For details of the synthetic procedures, see: Wesemann et al. (1992[Wesemann, J., Jones, P. G., Schomburg, D., Hauer, L. & Schmutzler, R. (1992). Chem. Ber. 125, 2187-2197.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14ClP

  • Mr = 320.76

  • Monoclinic, P 21 /c

  • a = 12.4335 (6) Å

  • b = 10.4510 (4) Å

  • c = 11.9293 (7) Å

  • β = 93.180 (5)°

  • V = 1547.74 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Oxford Gemini E CCD diffractometer

  • 8306 measured reflections

  • 3531 independent reflections

  • 1723 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.079

  • S = 0.78

  • 3531 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C20H14ClP, was obtained in the course of our continuing studies on the synthesis of phosphonium salts, with the aim of using them as building blocks in crystal engineering. In the structure (Fig. 1), the dihedral angle between the naphthyl rings is 81.77 (6)°, corresponding to torsion angles C1—P1—C11—C12 and C11—P1—C1—C2 of 100.58 (18)° and 2.03 (18)° respectively while an intramolecular C—H···Cl hydrogen-bonding interaction [C12—H12···Cl1, 3.128 (2) Å] stabilizes the conformation of one of the naphthyl rings [torsion angle Cl1—P1—C11—C12 = -1.68 (18)°]. Both of these naphthyl ring systems are essentially planar, with mean deviations from their least-square planes of 0.071 (2) Å for the C1–C10 system and 0.021 (2) Å for the C11–C20 system. The structural analysis of the title compound shows no significant bond differences compared to those found in similar structures, e.g. the P—Cl distance [2.0867 (8) Å cf. 2.10 (6) Å] and the P—C distances [P1—C1, 1.8294 (18) Å and P1–C11, 1.8309 (19) Å] comparing with 1.84 (3) Å.

A comparison with the previously reported structure of bis(8-diethylaminonaphth-1-yl)phosphine (Schiemenz et al., 2003) which shows no evidence of ππ stacking interactions, differs from that of the title compound which shows weak interactions between the naphthalene rings in adjacent molecules [minimum ring centroid separation, 3.7625 (13) Å]. It is likely that due to the presence of Cl instead of the group N(CH3)2 there is less steric repulsion between the substituents, which is evidenced by a smaller separation between the naphthyl moieties, allowing the ππ interactions between the aromatic rings to take place.

Related literature top

For the structure of a similar compound, see: Schiemenz et al. (2003). For details of the synthetic procedures, see: Wesemann et al. (1992).

Experimental top

The title compound was obtained as a by product in the synthesis of tris(1-naphthyl)phosphine (Wesemann et al., 1992). The synthesis was carried out in two steps. 7.27 mmol of 2-bromonaphthalene and 7.37 mmol of n-butyllithium were added to 20 ml of diethyl ether at -30°C, in order to obtain the naphthyllithium intermediate. 2.4 mmol of PCl3 dissolved in 10 ml of diethyl ether were added to the reaction mixture and refluxed for 2 h. The by product chlorobis(1-naphthyl)phosphine was separated from the major product of the synthesis (tris(1-naphthyl)phosphine), after recrystallization of the reaction mixture from toluene.

Refinement top

Several H atoms were detected at approximate locations in a difference Fourier map. Subsequently, however, they were positioned stereochemically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for the title compound viewed along a (A) and along b (B)
[Figure 3] Fig. 3. Packing arrangement for different bis(1-naphthyl)phosphines. A = the title compound; B = bis(8-diethylaminonaphth-1-yl)phosphine.
Chlorobis(naphthalen-1-yl)phosphane top
Crystal data top
C20H14ClPF(000) = 664
Mr = 320.76Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2101 reflections
a = 12.4335 (6) Åθ = 3.6–28.6°
b = 10.4510 (4) ŵ = 0.34 mm1
c = 11.9293 (7) ÅT = 298 K
β = 93.180 (5)°Prism, colourless
V = 1547.74 (13) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Gemini E CCD
diffractometer
Rint = 0.041
Graphite monochromatorθmax = 28.7°, θmin = 3.7°
ω scansh = 1616
8306 measured reflectionsk = 1412
3531 independent reflectionsl = 1511
1723 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.78 w = 1/[σ2(Fo2) + (0.0359P)2]
where P = (Fo2 + 2Fc2)/3
3531 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H14ClPV = 1547.74 (13) Å3
Mr = 320.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4335 (6) ŵ = 0.34 mm1
b = 10.4510 (4) ÅT = 298 K
c = 11.9293 (7) Å0.30 × 0.20 × 0.10 mm
β = 93.180 (5)°
Data collection top
Oxford Gemini E CCD
diffractometer
1723 reflections with I > 2σ(I)
8306 measured reflectionsRint = 0.041
3531 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.78Δρmax = 0.24 e Å3
3531 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85651 (5)0.90729 (5)0.04716 (6)0.0721 (2)
P10.80969 (4)0.75005 (5)0.05171 (5)0.04255 (16)
C60.60540 (16)0.85615 (17)0.10376 (16)0.0369 (5)
C120.89415 (16)0.63352 (18)0.14784 (19)0.0462 (6)
H120.89790.71540.17830.055*
C50.49261 (17)0.86465 (19)0.09499 (18)0.0444 (6)
C10.66389 (14)0.76001 (17)0.03965 (15)0.0357 (5)
C170.79619 (16)0.46293 (19)0.11219 (18)0.0470 (6)
H170.76930.52960.15720.056*
C160.84215 (14)0.49050 (17)0.00446 (17)0.0335 (5)
C150.88282 (15)0.38650 (17)0.06173 (19)0.0403 (5)
C140.92955 (17)0.4102 (2)0.1698 (2)0.0509 (6)
H140.95730.34240.21270.061*
C70.65511 (18)0.94555 (18)0.17321 (17)0.0468 (6)
H70.72910.9410.18080.056*
C40.44061 (17)0.7756 (2)0.02860 (19)0.0532 (6)
H40.36630.78010.02420.064*
C20.60878 (16)0.67670 (18)0.02485 (17)0.0454 (5)
H20.64670.61450.06650.054*
C200.87568 (16)0.26148 (18)0.0175 (2)0.0511 (6)
H200.90250.19320.06050.061*
C130.93470 (16)0.5302 (2)0.21200 (18)0.0526 (6)
H130.96520.54420.28390.063*
C190.83054 (17)0.2391 (2)0.0863 (2)0.0593 (6)
H190.82630.15590.11390.071*
C90.4862 (2)1.0482 (2)0.2178 (2)0.0663 (7)
H90.44751.11320.25480.08*
C30.49639 (18)0.6832 (2)0.02937 (19)0.0551 (6)
H30.46020.62430.0720.066*
C110.84924 (15)0.61702 (16)0.04156 (17)0.0352 (5)
C180.79022 (18)0.3405 (2)0.1522 (2)0.0580 (6)
H180.75920.32470.22350.07*
C80.5971 (2)1.0381 (2)0.22923 (19)0.0602 (7)
H80.63141.09510.27540.072*
C100.43458 (19)0.9638 (2)0.1532 (2)0.0589 (7)
H100.36060.97090.1470.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0613 (4)0.0341 (3)0.1182 (6)0.0056 (3)0.0207 (4)0.0046 (3)
P10.0398 (3)0.0334 (3)0.0549 (4)0.0021 (3)0.0067 (2)0.0070 (3)
C60.0423 (13)0.0346 (10)0.0333 (13)0.0041 (10)0.0034 (10)0.0071 (10)
C120.0440 (13)0.0444 (12)0.0503 (16)0.0002 (11)0.0027 (11)0.0071 (11)
C50.0425 (13)0.0484 (12)0.0412 (14)0.0072 (11)0.0072 (11)0.0142 (11)
C10.0362 (11)0.0328 (10)0.0380 (12)0.0014 (10)0.0018 (9)0.0063 (10)
C170.0461 (13)0.0416 (11)0.0529 (15)0.0009 (10)0.0000 (11)0.0017 (11)
C160.0280 (11)0.0334 (10)0.0393 (13)0.0003 (9)0.0025 (9)0.0014 (9)
C150.0331 (12)0.0357 (11)0.0527 (16)0.0050 (9)0.0097 (11)0.0059 (10)
C140.0430 (13)0.0547 (13)0.0550 (16)0.0107 (12)0.0028 (11)0.0173 (12)
C70.0523 (14)0.0397 (11)0.0479 (15)0.0039 (11)0.0019 (11)0.0005 (11)
C40.0331 (12)0.0712 (16)0.0551 (15)0.0007 (12)0.0019 (11)0.0176 (13)
C20.0436 (13)0.0438 (12)0.0490 (15)0.0001 (11)0.0050 (11)0.0024 (11)
C200.0451 (12)0.0332 (11)0.0761 (18)0.0052 (11)0.0132 (12)0.0090 (12)
C130.0489 (14)0.0661 (15)0.0416 (15)0.0051 (13)0.0094 (11)0.0038 (12)
C190.0557 (14)0.0374 (12)0.086 (2)0.0037 (12)0.0155 (14)0.0115 (14)
C90.081 (2)0.0539 (15)0.0604 (19)0.0191 (15)0.0293 (15)0.0065 (13)
C30.0475 (14)0.0598 (14)0.0590 (17)0.0084 (12)0.0114 (12)0.0032 (13)
C110.0297 (11)0.0346 (11)0.0414 (14)0.0005 (9)0.0030 (10)0.0017 (10)
C180.0612 (16)0.0551 (14)0.0568 (17)0.0069 (13)0.0050 (12)0.0136 (13)
C80.0814 (19)0.0456 (13)0.0519 (16)0.0036 (14)0.0105 (14)0.0060 (12)
C100.0493 (15)0.0670 (15)0.0583 (18)0.0176 (14)0.0157 (13)0.0184 (14)
Geometric parameters (Å, º) top
Cl1—P12.0867 (8)C14—H140.93
P1—C11.8293 (18)C7—C81.360 (3)
P1—C111.8309 (18)C7—H70.93
C6—C51.415 (3)C4—C31.356 (3)
C6—C71.414 (3)C4—H40.93
C6—C11.436 (2)C2—C31.403 (3)
C12—C111.368 (3)C2—H20.93
C12—C131.401 (3)C20—C191.351 (3)
C12—H120.93C20—H200.93
C5—C41.403 (3)C13—H130.93
C5—C101.422 (3)C19—C181.396 (3)
C1—C21.370 (2)C19—H190.93
C17—C181.366 (3)C9—C101.356 (3)
C17—C161.407 (3)C9—C81.397 (3)
C17—H170.93C9—H90.93
C16—C151.420 (2)C3—H30.93
C16—C111.433 (2)C18—H180.93
C15—C141.406 (3)C8—H80.93
C15—C201.410 (3)C10—H100.93
C14—C131.352 (3)
C1—P1—C11103.26 (9)C5—C4—H4119.3
C1—P1—Cl199.06 (6)C1—C2—C3121.38 (19)
C11—P1—Cl1101.38 (7)C1—C2—H2119.3
C5—C6—C7117.98 (19)C3—C2—H2119.3
C5—C6—C1118.65 (19)C19—C20—C15121.2 (2)
C7—C6—C1123.35 (18)C19—C20—H20119.4
C11—C12—C13121.68 (18)C15—C20—H20119.4
C11—C12—H12119.2C14—C13—C12120.2 (2)
C13—C12—H12119.2C14—C13—H13119.9
C4—C5—C6119.33 (19)C12—C13—H13119.9
C4—C5—C10121.5 (2)C20—C19—C18120.1 (2)
C6—C5—C10119.2 (2)C20—C19—H19119.9
C2—C1—C6119.30 (17)C18—C19—H19119.9
C2—C1—P1122.45 (14)C10—C9—C8120.5 (2)
C6—C1—P1118.21 (14)C10—C9—H9119.7
C18—C17—C16121.5 (2)C8—C9—H9119.7
C18—C17—H17119.3C4—C3—C2119.8 (2)
C16—C17—H17119.3C4—C3—H3120.1
C17—C16—C15117.73 (18)C2—C3—H3120.1
C17—C16—C11123.52 (18)C12—C11—C16119.01 (17)
C15—C16—C11118.75 (18)C12—C11—P1123.34 (14)
C14—C15—C20121.36 (19)C16—C11—P1117.34 (15)
C14—C15—C16119.43 (18)C17—C18—C19120.3 (2)
C20—C15—C16119.2 (2)C17—C18—H18119.9
C13—C14—C15120.92 (19)C19—C18—H18119.9
C13—C14—H14119.5C7—C8—C9120.3 (2)
C15—C14—H14119.5C7—C8—H8119.8
C8—C7—C6121.4 (2)C9—C8—H8119.8
C8—C7—H7119.3C9—C10—C5120.5 (2)
C6—C7—H7119.3C9—C10—H10119.7
C3—C4—C5121.44 (19)C5—C10—H10119.7
C3—C4—H4119.3
C7—C6—C5—C4178.67 (18)P1—C1—C2—C3177.53 (15)
C1—C6—C5—C43.0 (3)C14—C15—C20—C19179.9 (2)
C7—C6—C5—C101.7 (3)C16—C15—C20—C190.3 (3)
C1—C6—C5—C10176.61 (17)C15—C14—C13—C120.6 (3)
C5—C6—C1—C22.3 (3)C11—C12—C13—C140.4 (3)
C7—C6—C1—C2179.54 (18)C15—C20—C19—C180.2 (3)
C5—C6—C1—P1179.99 (13)C5—C4—C3—C21.0 (3)
C7—C6—C1—P11.8 (2)C1—C2—C3—C41.8 (3)
C11—P1—C1—C22.03 (18)C13—C12—C11—C160.9 (3)
Cl1—P1—C1—C2106.09 (15)C13—C12—C11—P1172.55 (16)
C11—P1—C1—C6179.72 (14)C17—C16—C11—C12179.13 (19)
Cl1—P1—C1—C676.22 (14)C15—C16—C11—C120.5 (3)
C18—C17—C16—C150.3 (3)C17—C16—C11—P17.0 (3)
C18—C17—C16—C11179.33 (19)C15—C16—C11—P1173.42 (14)
C17—C16—C15—C14179.87 (18)C1—P1—C11—C12100.58 (18)
C11—C16—C15—C140.5 (3)Cl1—P1—C11—C121.68 (18)
C17—C16—C15—C200.0 (3)C1—P1—C11—C1685.83 (16)
C11—C16—C15—C20179.64 (18)Cl1—P1—C11—C16171.91 (14)
C20—C15—C14—C13179.1 (2)C16—C17—C18—C190.3 (3)
C16—C15—C14—C131.1 (3)C20—C19—C18—C170.0 (3)
C5—C6—C7—C80.7 (3)C6—C7—C8—C91.0 (3)
C1—C6—C7—C8177.49 (18)C10—C9—C8—C71.7 (3)
C6—C5—C4—C31.5 (3)C8—C9—C10—C50.7 (3)
C10—C5—C4—C3178.2 (2)C4—C5—C10—C9179.4 (2)
C6—C1—C2—C30.1 (3)C6—C5—C10—C91.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.932.583.128 (2)118

Experimental details

Crystal data
Chemical formulaC20H14ClP
Mr320.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.4335 (6), 10.4510 (4), 11.9293 (7)
β (°) 93.180 (5)
V3)1547.74 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerOxford Gemini E CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8306, 3531, 1723
Rint0.041
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.079, 0.78
No. of reflections3531
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank ANPCyT for grant No. PME-2006-01113 and R. Baggio for his helpful suggestions.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchiemenz, G. P., Nather, C. & Porksen, S. (2003). Z. Naturforsch. Teil B, 58, 59–73.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWesemann, J., Jones, P. G., Schomburg, D., Hauer, L. & Schmutzler, R. (1992). Chem. Ber. 125, 2187–2197.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds