metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Aqua­bis­­(2,2′-bi­pyrimidine-κ2N1,N1′)iodidomanganese(II) iodide dihydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 30 August 2011; accepted 15 September 2011; online 30 September 2011)

The asymmetric unit of the title compound, [MnI(C8H6N4)2(H2O)]I·2H2O, contains a cationic MnII complex, an I anion and two solvent water mol­ecules. In the complex, the MnII ion is six-coordinated in a considerably distorted octa­hedral environment defined by four N atoms of the two chelating 2,2′-bipyrimidine (bpym) ligands, one I anion and one O atom of a water ligand. As a result of the different trans effects of the I and O atoms, the Mn—N bond trans to the I atom is slightly longer than the Mn—N bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.088 (4) Å] is 76.48 (6)°. In the crystal, the complex cation, the anion and the solvent water mol­ecules are linked by inter­molecular O—H⋯O, O—H⋯I and O—H⋯N hydrogen bonds.

Related literature

For the crystal structures of mononuclear 2,2′-bipyrimidine MnII complexes, see: Hong et al. (1996[Hong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335-2340.]); Smith et al. (2001[Smith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727-1734.]); Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 267-268.]).

[Scheme 1]

Experimental

Crystal data
  • [MnI(C8H6N4)2(H2O)]I·2H2O

  • Mr = 679.12

  • Monoclinic, P 21 /c

  • a = 14.2105 (12) Å

  • b = 21.5452 (19) Å

  • c = 7.7064 (7) Å

  • β = 102.063 (2)°

  • V = 2307.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 200 K

  • 0.25 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 1.000

  • 17004 measured reflections

  • 5707 independent reflections

  • 3555 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.05

  • 5707 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.131 (3)
Mn1—N1 2.253 (4)
Mn1—N4 2.266 (4)
Mn1—N5 2.270 (4)
Mn1—N8 2.310 (4)
Mn1—I1 2.8070 (8)
N1—Mn1—N4 72.96 (13)
N5—Mn1—N8 72.47 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.84 1.93 2.753 (4) 166
O1—H1B⋯O2i 0.84 1.87 2.693 (4) 166
O2—H2A⋯I2 0.84 2.63 3.419 (3) 157
O2—H2B⋯N6ii 0.84 2.16 2.948 (5) 157
O2—H2B⋯N7ii 0.84 2.29 2.884 (5) 128
O3—H3A⋯I2 0.84 2.82 3.624 (4) 161
O3—H3B⋯I2iii 0.84 2.73 3.517 (4) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Mononuclear MnII complexes of 2,2'-bipyrimidine (bpym, C8H6N4) ligand, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996), [Mn(bpym)2(H2O)2](BF4)2.2H2O (Smith et al., 2001) and [MnBr2(bpym)2].CH3CN (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(bpym)2(H2O)]I.2H2O, contains a cationic MnII complex, an I- anion and two solvate water molecules (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted octahedral environment defined by four N atoms of the two chelating bpym ligands, one I- anion and one O atom of a water ligand in a cis-N4IO coordination geometry. The main contribution to the distortion of the ocataheron is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans axes [<O1—Mn1—N1 = 167.23 (13)°, <I1—Mn1—N8 = 172.44 (9)° and <N4—Mn1—N5 = 158.58 (13)°]. The Mn—N(bpym) bond lengths are slightly different and longer than the Mn—O(H2O) bond (Table 1). Because of the different trans effects of the I and O atoms, the Mn1—N8 bond trans to the I atom is somewhat longer than the Mn1—N1 bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.088 (4) Å] is 76.48 (6)°. In the crystal structure, the complex, anion and solvate water molecules are linked by intermolecular O—H···O, O—H···I and O—H···N hydrogen bonds (Fig. 2, Table 2). In addition, the complexes display numerous inter- and intramolecular π-π interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.611 (2) Å.

Related literature top

For the crystal structures of mononuclear 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Smith et al. (2001); Ha (2011).

Experimental top

To a solution of 2,2'-bipyrimidine (0.1587 g, 1.003 mmol) in acetone (40 ml) was added MnI2 (0.1540 g, 0.499 mmol) and refluxed for 3 h. The formed precipitate was separated by filtration, washed with acetone and dried at 50 °C, to give a yellow powder (0.0701 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand and solvent molecules were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (0.97 e Å-3) and the deepest hole (-1.15 e Å-3) in the difference Fourier map are located 1.38 Å and 0.85 Å from the I1 atom, respectively.

Structure description top

Mononuclear MnII complexes of 2,2'-bipyrimidine (bpym, C8H6N4) ligand, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996), [Mn(bpym)2(H2O)2](BF4)2.2H2O (Smith et al., 2001) and [MnBr2(bpym)2].CH3CN (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(bpym)2(H2O)]I.2H2O, contains a cationic MnII complex, an I- anion and two solvate water molecules (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted octahedral environment defined by four N atoms of the two chelating bpym ligands, one I- anion and one O atom of a water ligand in a cis-N4IO coordination geometry. The main contribution to the distortion of the ocataheron is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans axes [<O1—Mn1—N1 = 167.23 (13)°, <I1—Mn1—N8 = 172.44 (9)° and <N4—Mn1—N5 = 158.58 (13)°]. The Mn—N(bpym) bond lengths are slightly different and longer than the Mn—O(H2O) bond (Table 1). Because of the different trans effects of the I and O atoms, the Mn1—N8 bond trans to the I atom is somewhat longer than the Mn1—N1 bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.088 (4) Å] is 76.48 (6)°. In the crystal structure, the complex, anion and solvate water molecules are linked by intermolecular O—H···O, O—H···I and O—H···N hydrogen bonds (Fig. 2, Table 2). In addition, the complexes display numerous inter- and intramolecular π-π interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.611 (2) Å.

For the crystal structures of mononuclear 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Smith et al. (2001); Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
cis-Aquabis(2,2'-bipyrimidine- κ2N1,N1')iodidomanganese(II) iodide dihydrate top
Crystal data top
[MnI(C8H6N4)2(H2O)]I·2H2OF(000) = 1300
Mr = 679.12Dx = 1.955 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5481 reflections
a = 14.2105 (12) Åθ = 2.4–28.0°
b = 21.5452 (19) ŵ = 3.28 mm1
c = 7.7064 (7) ÅT = 200 K
β = 102.063 (2)°Stick, yellow
V = 2307.4 (4) Å30.25 × 0.23 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5707 independent reflections
Radiation source: fine-focus sealed tube3555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.838, Tmax = 1.000k = 2628
17004 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
5707 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[MnI(C8H6N4)2(H2O)]I·2H2OV = 2307.4 (4) Å3
Mr = 679.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2105 (12) ŵ = 3.28 mm1
b = 21.5452 (19) ÅT = 200 K
c = 7.7064 (7) Å0.25 × 0.23 × 0.11 mm
β = 102.063 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3555 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 1.000Rint = 0.049
17004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.97 e Å3
5707 reflectionsΔρmin = 1.15 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.74435 (5)0.08340 (3)0.70450 (9)0.02828 (17)
I10.75344 (2)0.159695 (15)0.41319 (4)0.03949 (11)
O10.6323 (2)0.02672 (15)0.5586 (4)0.0387 (8)
H1A0.58860.04260.48100.058*
H1B0.60800.00130.61110.058*
N10.8801 (2)0.12304 (17)0.8721 (5)0.0308 (9)
N21.0506 (3)0.11088 (19)0.9524 (5)0.0384 (10)
N31.0330 (2)0.00162 (18)0.7835 (5)0.0333 (9)
N40.8656 (2)0.01744 (17)0.6830 (5)0.0280 (8)
N50.6390 (2)0.13700 (17)0.8319 (5)0.0298 (9)
N60.5241 (3)0.12409 (18)1.0153 (5)0.0320 (9)
N70.6065 (3)0.01418 (18)1.1326 (5)0.0327 (9)
N80.7162 (2)0.02507 (17)0.9400 (5)0.0288 (8)
C10.8881 (4)0.1778 (2)0.9580 (7)0.0403 (13)
H10.83140.20050.96280.048*
C20.9750 (4)0.2017 (2)1.0380 (7)0.0462 (13)
H20.98010.24101.09460.055*
C31.0552 (4)0.1664 (2)1.0338 (7)0.0457 (14)
H31.11640.18191.09070.055*
C40.9630 (3)0.0922 (2)0.8738 (6)0.0277 (10)
C50.9540 (3)0.0323 (2)0.7750 (6)0.0272 (10)
C61.0229 (4)0.0540 (2)0.6875 (6)0.0376 (12)
H61.07790.07920.68930.045*
C70.9364 (3)0.0724 (2)0.5873 (6)0.0360 (11)
H70.93100.10940.51880.043*
C80.8576 (3)0.0356 (2)0.5890 (6)0.0333 (11)
H80.79630.04790.52260.040*
C90.6009 (3)0.1921 (2)0.7805 (6)0.0360 (11)
H90.62730.21590.69850.043*
C100.5239 (3)0.2157 (2)0.8434 (6)0.0400 (12)
H100.49800.25550.80880.048*
C110.4864 (3)0.1791 (2)0.9574 (6)0.0356 (12)
H110.43130.19350.99730.043*
C120.5992 (3)0.1055 (2)0.9501 (5)0.0261 (10)
C130.6433 (3)0.0445 (2)1.0125 (5)0.0261 (10)
C140.6486 (3)0.0404 (2)1.1866 (6)0.0338 (11)
H140.62480.06341.27350.041*
C150.7240 (3)0.0644 (2)1.1228 (6)0.0356 (11)
H150.75310.10291.16390.043*
C160.7557 (3)0.0294 (2)0.9946 (6)0.0355 (11)
H160.80680.04480.94470.043*
I20.31079 (3)0.174754 (18)0.40131 (6)0.05895 (14)
O20.4688 (2)0.06383 (16)0.3226 (4)0.0437 (9)
H2A0.44510.09770.34640.066*
H2B0.49310.07110.23430.066*
O30.1581 (3)0.3013 (2)0.2003 (6)0.0820 (14)
H3A0.18340.27180.26470.123*
H3B0.19060.29560.12220.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0226 (3)0.0277 (4)0.0337 (4)0.0015 (3)0.0041 (3)0.0001 (3)
I10.0421 (2)0.0334 (2)0.0441 (2)0.00048 (14)0.01169 (16)0.00641 (15)
O10.0323 (18)0.043 (2)0.0365 (19)0.0096 (15)0.0019 (15)0.0068 (16)
N10.026 (2)0.026 (2)0.038 (2)0.0035 (16)0.0010 (18)0.0026 (17)
N20.025 (2)0.033 (3)0.054 (3)0.0005 (17)0.0002 (19)0.004 (2)
N30.028 (2)0.031 (2)0.041 (2)0.0048 (17)0.0071 (18)0.0000 (19)
N40.026 (2)0.026 (2)0.031 (2)0.0006 (16)0.0035 (17)0.0010 (16)
N50.027 (2)0.030 (2)0.033 (2)0.0018 (16)0.0060 (17)0.0003 (17)
N60.030 (2)0.033 (2)0.034 (2)0.0034 (17)0.0086 (18)0.0019 (18)
N70.036 (2)0.029 (2)0.032 (2)0.0006 (17)0.0052 (18)0.0009 (17)
N80.026 (2)0.029 (2)0.029 (2)0.0038 (16)0.0005 (17)0.0021 (17)
C10.037 (3)0.028 (3)0.054 (3)0.007 (2)0.006 (3)0.007 (2)
C20.044 (3)0.028 (3)0.061 (4)0.000 (2)0.001 (3)0.009 (3)
C30.034 (3)0.034 (3)0.063 (4)0.007 (2)0.001 (3)0.011 (3)
C40.026 (2)0.028 (3)0.030 (3)0.0016 (19)0.008 (2)0.003 (2)
C50.026 (2)0.024 (3)0.032 (3)0.0012 (18)0.007 (2)0.0037 (19)
C60.043 (3)0.028 (3)0.045 (3)0.011 (2)0.018 (3)0.001 (2)
C70.042 (3)0.027 (3)0.041 (3)0.000 (2)0.014 (2)0.004 (2)
C80.035 (3)0.031 (3)0.034 (3)0.008 (2)0.007 (2)0.002 (2)
C90.041 (3)0.030 (3)0.036 (3)0.009 (2)0.006 (2)0.003 (2)
C100.043 (3)0.029 (3)0.047 (3)0.016 (2)0.008 (2)0.003 (2)
C110.035 (3)0.034 (3)0.038 (3)0.009 (2)0.008 (2)0.002 (2)
C120.024 (2)0.026 (3)0.025 (2)0.0002 (18)0.0007 (19)0.0024 (19)
C130.023 (2)0.027 (3)0.027 (2)0.0007 (18)0.0013 (19)0.0027 (19)
C140.037 (3)0.033 (3)0.029 (3)0.003 (2)0.002 (2)0.002 (2)
C150.038 (3)0.029 (3)0.036 (3)0.004 (2)0.001 (2)0.006 (2)
C160.024 (2)0.036 (3)0.042 (3)0.009 (2)0.002 (2)0.002 (2)
I20.0455 (2)0.0452 (3)0.0851 (3)0.00794 (17)0.0113 (2)0.0031 (2)
O20.039 (2)0.051 (2)0.044 (2)0.0021 (16)0.0151 (17)0.0064 (17)
O30.085 (3)0.060 (3)0.105 (4)0.008 (2)0.029 (3)0.004 (3)
Geometric parameters (Å, º) top
Mn1—O12.131 (3)C1—H10.9500
Mn1—N12.253 (4)C2—C31.375 (7)
Mn1—N42.266 (4)C2—H20.9500
Mn1—N52.270 (4)C3—H30.9500
Mn1—N82.310 (4)C4—C51.489 (6)
Mn1—I12.8070 (8)C6—C71.367 (6)
O1—H1A0.8400C6—H60.9500
O1—H1B0.8400C7—C81.375 (6)
N1—C11.346 (6)C7—H70.9500
N1—C41.350 (5)C8—H80.9500
N2—C41.329 (5)C9—C101.383 (6)
N2—C31.346 (6)C9—H90.9500
N3—C51.329 (5)C10—C111.368 (7)
N3—C61.340 (6)C10—H100.9500
N4—C81.345 (5)C11—H110.9500
N4—C51.347 (5)C12—C131.490 (6)
N5—C91.331 (6)C14—C151.372 (6)
N5—C121.351 (5)C14—H140.9500
N6—C121.334 (5)C15—C161.390 (6)
N6—C111.339 (6)C15—H150.9500
N7—C131.327 (5)C16—H160.9500
N7—C141.344 (6)O2—H2A0.8400
N8—C161.332 (6)O2—H2B0.8400
N8—C131.343 (5)O3—H3A0.8400
C1—C21.361 (7)O3—H3B0.8400
O1—Mn1—N1167.23 (13)C2—C3—H3118.6
O1—Mn1—N495.61 (13)N2—C4—N1126.0 (4)
N1—Mn1—N472.96 (13)N2—C4—C5117.9 (4)
O1—Mn1—N591.84 (13)N1—C4—C5116.1 (4)
N1—Mn1—N597.01 (13)N3—C5—N4125.5 (4)
N4—Mn1—N5158.58 (13)N3—C5—C4118.1 (4)
O1—Mn1—N882.50 (12)N4—C5—C4116.5 (4)
N1—Mn1—N891.39 (13)N3—C6—C7122.4 (4)
N4—Mn1—N888.60 (13)N3—C6—H6118.8
N5—Mn1—N872.47 (13)C7—C6—H6118.8
O1—Mn1—I193.89 (9)C6—C7—C8117.8 (4)
N1—Mn1—I193.41 (10)C6—C7—H7121.1
N4—Mn1—I198.39 (9)C8—C7—H7121.1
N5—Mn1—I1101.11 (10)N4—C8—C7121.2 (4)
N8—Mn1—I1172.44 (9)N4—C8—H8119.4
Mn1—O1—H1A120.1C7—C8—H8119.4
Mn1—O1—H1B119.7N5—C9—C10121.7 (5)
H1A—O1—H1B108.6N5—C9—H9119.2
C1—N1—C4116.3 (4)C10—C9—H9119.2
C1—N1—Mn1126.1 (3)C11—C10—C9117.2 (4)
C4—N1—Mn1117.3 (3)C11—C10—H10121.4
C4—N2—C3115.6 (4)C9—C10—H10121.4
C5—N3—C6116.4 (4)N6—C11—C10122.8 (4)
C8—N4—C5116.8 (4)N6—C11—H11118.6
C8—N4—Mn1126.3 (3)C10—C11—H11118.6
C5—N4—Mn1116.9 (3)N6—C12—N5125.7 (4)
C9—N5—C12116.6 (4)N6—C12—C13117.3 (4)
C9—N5—Mn1126.1 (3)N5—C12—C13117.0 (4)
C12—N5—Mn1116.3 (3)N7—C13—N8125.9 (4)
C12—N6—C11115.9 (4)N7—C13—C12117.4 (4)
C13—N7—C14115.6 (4)N8—C13—C12116.7 (4)
C16—N8—C13117.1 (4)N7—C14—C15123.4 (4)
C16—N8—Mn1126.7 (3)N7—C14—H14118.3
C13—N8—Mn1115.6 (3)C15—C14—H14118.3
N1—C1—C2122.0 (4)C14—C15—C16116.3 (4)
N1—C1—H1119.0C14—C15—H15121.9
C2—C1—H1119.0C16—C15—H15121.9
C1—C2—C3117.3 (5)N8—C16—C15121.7 (4)
C1—C2—H2121.3N8—C16—H16119.1
C3—C2—H2121.3C15—C16—H16119.1
N2—C3—C2122.8 (5)H2A—O2—H2B105.5
N2—C3—H3118.6H3A—O3—H3B94.7
O1—Mn1—N1—C1157.3 (5)C1—N1—C4—N20.3 (7)
N4—Mn1—N1—C1175.7 (4)Mn1—N1—C4—N2174.2 (3)
N5—Mn1—N1—C123.7 (4)C1—N1—C4—C5178.6 (4)
N8—Mn1—N1—C196.2 (4)Mn1—N1—C4—C54.6 (5)
I1—Mn1—N1—C177.9 (4)C6—N3—C5—N42.0 (6)
O1—Mn1—N1—C429.4 (8)C6—N3—C5—C4177.5 (4)
N4—Mn1—N1—C42.4 (3)C8—N4—C5—N31.5 (6)
N5—Mn1—N1—C4163.0 (3)Mn1—N4—C5—N3177.6 (3)
N8—Mn1—N1—C490.5 (3)C8—N4—C5—C4178.0 (4)
I1—Mn1—N1—C495.4 (3)Mn1—N4—C5—C42.9 (5)
O1—Mn1—N4—C85.3 (4)N2—C4—C5—N35.6 (6)
N1—Mn1—N4—C8179.5 (4)N1—C4—C5—N3175.5 (4)
N5—Mn1—N4—C8115.1 (4)N2—C4—C5—N4174.0 (4)
N8—Mn1—N4—C887.6 (4)N1—C4—C5—N45.0 (6)
I1—Mn1—N4—C889.5 (4)C5—N3—C6—C70.7 (7)
O1—Mn1—N4—C5173.8 (3)N3—C6—C7—C81.0 (7)
N1—Mn1—N4—C50.4 (3)C5—N4—C8—C70.3 (6)
N5—Mn1—N4—C564.0 (5)Mn1—N4—C8—C7179.3 (3)
N8—Mn1—N4—C591.5 (3)C6—C7—C8—N41.4 (7)
I1—Mn1—N4—C591.4 (3)C12—N5—C9—C100.7 (7)
O1—Mn1—N5—C998.7 (4)Mn1—N5—C9—C10167.2 (4)
N1—Mn1—N5—C990.5 (4)N5—C9—C10—C111.7 (7)
N4—Mn1—N5—C9150.8 (4)C12—N6—C11—C102.3 (7)
N8—Mn1—N5—C9179.7 (4)C9—C10—C11—N63.3 (7)
I1—Mn1—N5—C94.4 (4)C11—N6—C12—N50.4 (6)
O1—Mn1—N5—C1269.2 (3)C11—N6—C12—C13179.7 (4)
N1—Mn1—N5—C12101.6 (3)C9—N5—C12—N61.8 (6)
N4—Mn1—N5—C1241.3 (5)Mn1—N5—C12—N6167.3 (3)
N8—Mn1—N5—C1212.4 (3)C9—N5—C12—C13178.3 (4)
I1—Mn1—N5—C12163.5 (3)Mn1—N5—C12—C1312.7 (5)
O1—Mn1—N8—C1687.0 (4)C14—N7—C13—N81.3 (6)
N1—Mn1—N8—C1681.7 (4)C14—N7—C13—C12179.5 (4)
N4—Mn1—N8—C168.8 (4)C16—N8—C13—N70.6 (6)
N5—Mn1—N8—C16178.6 (4)Mn1—N8—C13—N7170.9 (3)
O1—Mn1—N8—C1383.5 (3)C16—N8—C13—C12179.8 (4)
N1—Mn1—N8—C13107.8 (3)Mn1—N8—C13—C128.3 (5)
N4—Mn1—N8—C13179.3 (3)N6—C12—C13—N72.1 (6)
N5—Mn1—N8—C1310.9 (3)N5—C12—C13—N7178.0 (4)
C4—N1—C1—C21.7 (7)N6—C12—C13—N8177.2 (4)
Mn1—N1—C1—C2171.7 (4)N5—C12—C13—N82.7 (6)
N1—C1—C2—C32.3 (8)C13—N7—C14—C150.6 (7)
C4—N2—C3—C20.7 (8)N7—C14—C15—C160.7 (7)
C1—C2—C3—N21.1 (9)C13—N8—C16—C150.9 (6)
C3—N2—C4—N11.4 (7)Mn1—N8—C16—C15171.2 (3)
C3—N2—C4—C5177.4 (4)C14—C15—C16—N81.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.932.753 (4)166
O1—H1B···O2i0.841.872.693 (4)166
O2—H2A···I20.842.633.419 (3)157
O2—H2B···N6ii0.842.162.948 (5)157
O2—H2B···N7ii0.842.292.884 (5)128
O3—H3A···I20.842.823.624 (4)161
O3—H3B···I2iii0.842.733.517 (4)157
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[MnI(C8H6N4)2(H2O)]I·2H2O
Mr679.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.2105 (12), 21.5452 (19), 7.7064 (7)
β (°) 102.063 (2)
V3)2307.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.25 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.838, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17004, 5707, 3555
Rint0.049
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.05
No. of reflections5707
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 1.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O12.131 (3)Mn1—N52.270 (4)
Mn1—N12.253 (4)Mn1—N82.310 (4)
Mn1—N42.266 (4)Mn1—I12.8070 (8)
N1—Mn1—N472.96 (13)N5—Mn1—N872.47 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.932.753 (4)165.8
O1—H1B···O2i0.841.872.693 (4)166.2
O2—H2A···I20.842.633.419 (3)157.1
O2—H2B···N6ii0.842.162.948 (5)156.6
O2—H2B···N7ii0.842.292.884 (5)128.0
O3—H3A···I20.842.823.624 (4)160.7
O3—H3B···I2iii0.842.733.517 (4)157.2
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 267–268.  CAS Google Scholar
First citationHong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335–2340.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727–1734.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds