organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(2-hy­dr­oxy­eth­yl)-2-propyl-1H-benzimidazole-5-carboxyl­ate

aKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan Pahang, Malaysia, and bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
*Correspondence e-mail: shafida@iium.edu.my

(Received 15 August 2011; accepted 14 September 2011; online 30 September 2011)

In the title compound, C15H20N2O3, the benzimidazole ring is essentially planar, with a maximum deviation from the mean plane of 0.012 (1) Å. The crystal structure is stabilized by inter­molecular O—H⋯N hydrogen bonds, forming centrosymmetric dimers, which are connected in the [100] direction through weak C—H⋯O contacts.

Related literature

For the synthesis of the title compound, see: Arumugam et al. (2010[Arumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o796-o797.]); Kappe (2004[Kappe, C. O. (2004). Angew. Chem. Int. Ed. 43, 6250-6284.]). For general background and therapeutic properties of benzimidazole derivatives, see: Rao et al. (2002[Rao, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Farmaco, 57, 819-823.]); Khalafi-Nezhad et al. (2005[Khalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931-1938.]); Tonelli et al. (2010[Tonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & La Colla, P. (2010). Bioorg. Med. Chem. 18, 2937-2953.]); Chen et al. (2007[Chen, C.-J., Song, B.-A., Yang, S., Xu, G.-F., Bhadury, P. S., Jin, L.-H., Hu, D.-Y., Li, Q.-Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981-3989.]). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20N2O3

  • Mr = 276.33

  • Triclinic, [P \overline 1]

  • a = 8.5081 (3) Å

  • b = 8.5573 (3) Å

  • c = 10.0117 (4) Å

  • α = 94.671 (3)°

  • β = 106.903 (2)°

  • γ = 98.334 (3)°

  • V = 684.16 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.60 × 0.20 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.994

  • 10526 measured reflections

  • 2401 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.08

  • 2401 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2i 0.86 (3) 1.98 (2) 2.8047 (17) 159.6 (17)
C11—H11A⋯O2ii 0.99 2.48 3.2901 (19) 139
Symmetry codes: (i) -x, -y, -z+2; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole compounds possess diverse functions in biological activities such as anti-HIV (Rao et al., 2002), antibacterial (Khalafi-Nezhad et al., 2005), antiviral (Tonelli et al., 2010) and antifungal (Chen et al., 2007). On the other hand, the use of microwave irradiation to assist the chemical process helps to reduce the reaction time, producing better yields and cleaner reactions (Kappe, 2004). In continuation of our study on benzimidazole derivatives (Arumugam et al., 2010), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzimidazole ring [C1···C6/N1/C7/N2] is essentially planar with maximum deviation of 0.012 (1) Å for atom C4. The bond lengths and angles are in normal ranges and are in agreement with those of ethyl 1-sec-butyl-2-phenyl-1H- benzimidazole-5-carboxylate (Arumugam et al., 2010). In the crystal structure, the molecule is stabilized by O3—H3A···N2 intermolecular hydrogen bond (symmetry code as in Table 1) to form dimers, which are further connected via weak C—H···O contacts to give chains in the [100] direction (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Arumugam et al. (2010); Kappe (2004). For general background and therapeutic properties of benzimidazole derivatives, see: Rao et al. (2002); Khalafi-Nezhad et al. (2005); Tonelli et al. (2010); Chen et al. (2007). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of ethyl 3-amino-4-[(2-hydroxyethyl)-amino]benzoate (0.10 g, 0.22 mmol), K10-montmorillonite (0.26 g), butyraldehyde (0.07 g, 0.95 mmol) and 1 ml of MeCN were irradiated in CEMTM microwave at 80 °C, 150 W, 5 bar and hold for 5 minutes. Then, another aliquot of aldehyde was added and the reaction was irradiated again at the same conditions as before. The progress of the reaction was monitored by TLC (Hex:EtOAc, 1:4). After completion, the mixture was filtered, washed with DCM and evaporated in vacuo. The resulting crude mixture was chromatographed with PLC (Hex:EtOAc,1:4). The desired compound was recrystallized with hot EtOAc which was slowly evaporated to give colorless single crystals.

Refinement top

X-ray data were collected at low temperature (Cosier & Glazer, 1986). The hydroxyl H atom was located in a difference map and refined freely. The remaining H atoms attached to C atoms were fixed geometrically and refined using the riding model, with C—H = 0.95–0.99 Å and with Uiso(H)=1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Benzimidazole compounds possess diverse functions in biological activities such as anti-HIV (Rao et al., 2002), antibacterial (Khalafi-Nezhad et al., 2005), antiviral (Tonelli et al., 2010) and antifungal (Chen et al., 2007). On the other hand, the use of microwave irradiation to assist the chemical process helps to reduce the reaction time, producing better yields and cleaner reactions (Kappe, 2004). In continuation of our study on benzimidazole derivatives (Arumugam et al., 2010), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzimidazole ring [C1···C6/N1/C7/N2] is essentially planar with maximum deviation of 0.012 (1) Å for atom C4. The bond lengths and angles are in normal ranges and are in agreement with those of ethyl 1-sec-butyl-2-phenyl-1H- benzimidazole-5-carboxylate (Arumugam et al., 2010). In the crystal structure, the molecule is stabilized by O3—H3A···N2 intermolecular hydrogen bond (symmetry code as in Table 1) to form dimers, which are further connected via weak C—H···O contacts to give chains in the [100] direction (Fig. 2).

For the synthesis of the title compound, see: Arumugam et al. (2010); Kappe (2004). For general background and therapeutic properties of benzimidazole derivatives, see: Rao et al. (2002); Khalafi-Nezhad et al. (2005); Tonelli et al. (2010); Chen et al. (2007). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule,with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title molecule viewed down the b-axis.
Ethyl 1-(2-hydroxyethyl)-2-propyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C15H20N2O3Z = 2
Mr = 276.33F(000) = 296
Triclinic, P1Dx = 1.341 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5081 (3) ÅCell parameters from 5332 reflections
b = 8.5573 (3) Åθ = 2.1–25.0°
c = 10.0117 (4) ŵ = 0.09 mm1
α = 94.671 (3)°T = 100 K
β = 106.903 (2)°Plate, colourless
γ = 98.334 (3)°0.60 × 0.20 × 0.07 mm
V = 684.16 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.946, Tmax = 0.994l = 1111
10526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.2619P]
where P = (Fo2 + 2Fc2)/3
2401 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
0 constraints
Crystal data top
C15H20N2O3γ = 98.334 (3)°
Mr = 276.33V = 684.16 (4) Å3
Triclinic, P1Z = 2
a = 8.5081 (3) ÅMo Kα radiation
b = 8.5573 (3) ŵ = 0.09 mm1
c = 10.0117 (4) ÅT = 100 K
α = 94.671 (3)°0.60 × 0.20 × 0.07 mm
β = 106.903 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2075 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.994Rint = 0.026
10526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
2401 reflectionsΔρmin = 0.25 e Å3
187 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27470 (12)0.59246 (12)0.65294 (11)0.0183 (3)
O20.45117 (13)0.43517 (13)0.75699 (12)0.0241 (3)
O30.40580 (13)0.06135 (12)0.88681 (11)0.0184 (3)
H3A0.315 (3)0.088 (2)0.879 (2)0.045 (6)*
N10.14250 (14)0.23821 (13)0.99931 (12)0.0132 (3)
N20.12077 (14)0.19893 (14)1.09005 (12)0.0138 (3)
C10.11012 (17)0.28238 (16)0.97476 (15)0.0134 (3)
C20.23274 (18)0.33848 (16)0.91519 (15)0.0145 (3)
H2A0.34410.32130.95240.017*
C30.18718 (18)0.42060 (16)0.79936 (15)0.0146 (3)
C40.02190 (18)0.44787 (17)0.74524 (15)0.0152 (3)
H4A0.00530.50610.66730.018*
C50.10116 (18)0.39202 (16)0.80289 (15)0.0149 (3)
H5A0.21230.41000.76630.018*
C60.05419 (17)0.30799 (16)0.91746 (14)0.0130 (3)
C70.03154 (17)0.17548 (16)1.10106 (15)0.0134 (3)
C80.31874 (18)0.48006 (17)0.73628 (15)0.0160 (3)
C90.39782 (19)0.65961 (18)0.58856 (17)0.0207 (4)
H9A0.39870.58400.50860.025*
H9B0.51060.68130.65820.025*
C100.3502 (2)0.81088 (19)0.53830 (17)0.0239 (4)
H10A0.42650.85570.48880.036*
H10B0.35710.88730.61910.036*
H10C0.23570.78890.47410.036*
C110.32301 (17)0.22441 (17)0.97243 (15)0.0147 (3)
H11A0.35640.32740.94920.018*
H11B0.35080.20071.05890.018*
C120.42069 (18)0.09446 (17)0.85251 (15)0.0162 (3)
H12A0.54000.10440.82520.019*
H12B0.38090.11030.77010.019*
C130.08488 (18)0.09237 (17)1.21037 (15)0.0158 (3)
H13A0.16370.00711.16380.019*
H13B0.14560.16101.25400.019*
C140.05897 (19)0.05117 (18)1.32650 (16)0.0184 (3)
H14A0.01300.02771.37860.022*
H14B0.13280.00091.28270.022*
C150.1621 (2)0.19530 (19)1.43011 (16)0.0238 (4)
H15A0.25170.16151.50190.036*
H15B0.09040.24451.47540.036*
H15C0.21070.27271.37970.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (5)0.0194 (5)0.0219 (6)0.0049 (4)0.0097 (5)0.0088 (5)
O20.0174 (6)0.0319 (6)0.0297 (6)0.0102 (5)0.0117 (5)0.0145 (5)
O30.0151 (6)0.0148 (5)0.0271 (6)0.0033 (4)0.0089 (5)0.0033 (5)
N10.0115 (6)0.0135 (6)0.0149 (6)0.0026 (5)0.0045 (5)0.0019 (5)
N20.0145 (6)0.0139 (6)0.0138 (6)0.0036 (5)0.0051 (5)0.0023 (5)
C10.0146 (7)0.0111 (7)0.0142 (7)0.0036 (6)0.0039 (6)0.0002 (6)
C20.0116 (7)0.0139 (7)0.0170 (7)0.0035 (6)0.0029 (6)0.0004 (6)
C30.0154 (7)0.0111 (7)0.0169 (8)0.0016 (6)0.0054 (6)0.0002 (6)
C40.0182 (8)0.0123 (7)0.0141 (7)0.0034 (6)0.0031 (6)0.0014 (6)
C50.0123 (7)0.0142 (7)0.0165 (7)0.0037 (6)0.0019 (6)0.0001 (6)
C60.0141 (7)0.0110 (7)0.0133 (7)0.0012 (6)0.0046 (6)0.0018 (6)
C70.0159 (7)0.0107 (7)0.0137 (7)0.0033 (6)0.0048 (6)0.0008 (6)
C80.0176 (8)0.0160 (7)0.0136 (7)0.0026 (6)0.0037 (6)0.0009 (6)
C90.0197 (8)0.0239 (8)0.0236 (8)0.0036 (7)0.0132 (7)0.0080 (7)
C100.0257 (9)0.0245 (9)0.0221 (8)0.0019 (7)0.0091 (7)0.0047 (7)
C110.0112 (7)0.0164 (7)0.0181 (8)0.0047 (6)0.0054 (6)0.0034 (6)
C120.0127 (7)0.0172 (8)0.0185 (8)0.0029 (6)0.0040 (6)0.0030 (6)
C130.0169 (8)0.0148 (7)0.0175 (8)0.0027 (6)0.0077 (6)0.0025 (6)
C140.0215 (8)0.0202 (8)0.0176 (8)0.0074 (6)0.0093 (7)0.0065 (6)
C150.0210 (8)0.0295 (9)0.0200 (8)0.0041 (7)0.0046 (7)0.0048 (7)
Geometric parameters (Å, º) top
O1—C81.3471 (17)C9—C101.494 (2)
O1—C91.4565 (18)C9—H9A0.9900
O2—C81.2094 (18)C9—H9B0.9900
O3—C121.4177 (17)C10—H10A0.9800
O3—H3A0.86 (2)C10—H10B0.9800
N1—C71.3762 (18)C10—H10C0.9800
N1—C61.3785 (19)C11—C121.518 (2)
N1—C111.4653 (18)C11—H11A0.9900
N2—C71.3202 (18)C11—H11B0.9900
N2—C11.3937 (18)C12—H12A0.9900
C1—C21.392 (2)C12—H12B0.9900
C1—C61.405 (2)C13—C141.529 (2)
C2—C31.393 (2)C13—H13A0.9900
C2—H2A0.9500C13—H13B0.9900
C3—C41.414 (2)C14—C151.522 (2)
C3—C81.486 (2)C14—H14A0.9900
C4—C51.382 (2)C14—H14B0.9900
C4—H4A0.9500C15—H15A0.9800
C5—C61.394 (2)C15—H15B0.9800
C5—H5A0.9500C15—H15C0.9800
C7—C131.494 (2)
C8—O1—C9115.89 (11)C9—C10—H10A109.5
C12—O3—H3A111.6 (14)C9—C10—H10B109.5
C7—N1—C6106.93 (11)H10A—C10—H10B109.5
C7—N1—C11127.84 (12)C9—C10—H10C109.5
C6—N1—C11125.05 (12)H10A—C10—H10C109.5
C7—N2—C1105.09 (11)H10B—C10—H10C109.5
C2—C1—N2130.08 (13)N1—C11—C12111.97 (11)
C2—C1—C6120.14 (13)N1—C11—H11A109.2
N2—C1—C6109.77 (12)C12—C11—H11A109.2
C1—C2—C3117.98 (13)N1—C11—H11B109.2
C1—C2—H2A121.0C12—C11—H11B109.2
C3—C2—H2A121.0H11A—C11—H11B107.9
C2—C3—C4120.92 (13)O3—C12—C11113.35 (12)
C2—C3—C8117.67 (13)O3—C12—H12A108.9
C4—C3—C8121.40 (13)C11—C12—H12A108.9
C5—C4—C3121.66 (13)O3—C12—H12B108.9
C5—C4—H4A119.2C11—C12—H12B108.9
C3—C4—H4A119.2H12A—C12—H12B107.7
C4—C5—C6116.73 (13)C7—C13—C14114.12 (12)
C4—C5—H5A121.6C7—C13—H13A108.7
C6—C5—H5A121.6C14—C13—H13A108.7
N1—C6—C5131.94 (13)C7—C13—H13B108.7
N1—C6—C1105.49 (12)C14—C13—H13B108.7
C5—C6—C1122.55 (13)H13A—C13—H13B107.6
N2—C7—N1112.72 (12)C15—C14—C13113.25 (12)
N2—C7—C13125.88 (13)C15—C14—H14A108.9
N1—C7—C13121.40 (12)C13—C14—H14A108.9
O2—C8—O1123.07 (13)C15—C14—H14B108.9
O2—C8—C3124.77 (13)C13—C14—H14B108.9
O1—C8—C3112.16 (12)H14A—C14—H14B107.7
O1—C9—C10107.38 (12)C14—C15—H15A109.5
O1—C9—H9A110.2C14—C15—H15B109.5
C10—C9—H9A110.2H15A—C15—H15B109.5
O1—C9—H9B110.2C14—C15—H15C109.5
C10—C9—H9B110.2H15A—C15—H15C109.5
H9A—C9—H9B108.5H15B—C15—H15C109.5
C7—N2—C1—C2179.98 (14)C1—N2—C7—N10.20 (15)
C7—N2—C1—C60.06 (15)C1—N2—C7—C13179.22 (13)
N2—C1—C2—C3179.43 (14)C6—N1—C7—N20.39 (15)
C6—C1—C2—C30.5 (2)C11—N1—C7—N2174.91 (12)
C1—C2—C3—C40.8 (2)C6—N1—C7—C13179.07 (12)
C1—C2—C3—C8179.97 (12)C11—N1—C7—C135.6 (2)
C2—C3—C4—C51.2 (2)C9—O1—C8—O20.5 (2)
C8—C3—C4—C5179.59 (13)C9—O1—C8—C3178.95 (12)
C3—C4—C5—C60.3 (2)C2—C3—C8—O216.6 (2)
C7—N1—C6—C5178.15 (14)C4—C3—C8—O2164.22 (14)
C11—N1—C6—C56.4 (2)C2—C3—C8—O1162.86 (12)
C7—N1—C6—C10.39 (14)C4—C3—C8—O116.34 (19)
C11—N1—C6—C1175.07 (12)C8—O1—C9—C10163.28 (12)
C4—C5—C6—N1179.43 (13)C7—N1—C11—C1298.59 (16)
C4—C5—C6—C11.1 (2)C6—N1—C11—C1275.92 (16)
C2—C1—C6—N1179.78 (12)N1—C11—C12—O370.35 (16)
N2—C1—C6—N10.28 (15)N2—C7—C13—C147.5 (2)
C2—C1—C6—C51.5 (2)N1—C7—C13—C14171.87 (12)
N2—C1—C6—C5178.43 (12)C7—C13—C14—C1573.93 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.86 (3)1.98 (2)2.8047 (17)159.6 (17)
C11—H11A···O2ii0.992.483.2901 (19)139
C11—H11B···O3iii0.992.463.2457 (19)136
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z; (iii) x1, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H20N2O3
Mr276.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5081 (3), 8.5573 (3), 10.0117 (4)
α, β, γ (°)94.671 (3), 106.903 (2), 98.334 (3)
V3)684.16 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.20 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.946, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
10526, 2401, 2075
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.08
No. of reflections2401
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.86 (3)1.98 (2)2.8047 (17)159.6 (17)
C11—H11A···O2ii0.992.483.2901 (19)139
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z.
 

Acknowledgements

NH, SAH and ASAR gratefully acknowledge the Inter­national Islamic University Malaysia (IIUM) for FRGS Grant (FRGS0510–119), MOSTI (304/PFARMASI/650544/I121) and MOSTI (CLB10–01) for funding the synthetic chemistry work.

References

First citationArumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o796–o797.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-J., Song, B.-A., Yang, S., Xu, G.-F., Bhadury, P. S., Jin, L.-H., Hu, D.-Y., Li, Q.-Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKappe, C. O. (2004). Angew. Chem. Int. Ed. 43, 6250–6284.  Web of Science CrossRef CAS Google Scholar
First citationKhalafi-Nezhad, A., Soltani Rad, M. N., Mohabatkar, H., Asrari, Z. & Hemmateenejad, B. (2005). Bioorg. Med. Chem. 13, 1931–1938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, A., Chimirri, A., De Clercq, E., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Farmaco, 57, 819–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & La Colla, P. (2010). Bioorg. Med. Chem. 18, 2937–2953.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds