metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new mono-functionalized organoimido hexa­molybdate derivative: bis­­(tetra-n-butyl­ammonium) (5-chloro-2-methyl­phenyl­imido)-μ6-oxido-dodeca-μ2-oxido-penta­oxidohexa­molybdate(VI)

aDepartment of Chemistry, College of Science of Beijing Forestry University, Beijing 100083, People's Republic of China, and bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: liqiang@bjfu.edu.cn, jinjin_eva@mail.tsinghua.edu.cn

(Received 23 August 2011; accepted 5 September 2011; online 20 September 2011)

The title complex, [(C4H9)4N]2[Mo6(C7H6ClN)O18], was prepared by the reaction of (Bu4N)4[α-Mo8O26] and 2-methyl-5-chloro­aniline hydro­chloride with N,N′-dicyclo­hexyl­carbodiimide as dehydrating agent in dry acetonitrile solution. The aryl­imido ligand is linked to an Mo atom of the Lindqvist-type hexamolybdate anion by an Mo≡N triple bond, with a bond length of 1.732 (4) Å and an Mo≡N—C bond angle of 169.1 (4)°, typical for monodentate imido groups in such hybrid complexes. Due to the inter­action between one H atom in the aryl group and an O atom of a symmetry-related hexa­molybdate cluster, the anions form centrosymmetric dimers in the crystal structure. Weak C—H⋯O contacts are observed between the cations and anions. Unresolved disorder in some of the butyl chains of the ammonium cation is noted.

Related literature

For general background to polyoxidometalates, see: Hill & White (1998[Hill, C. L. & White, G. C. (1998). Chem. Rev. 98, 1-2.]); Gili et al. (2000[Gili, P., Núñez, P., Martín-Zarza, P. & Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441-e442.]). For details of the synthesis, see: Wu et al. (2004[Wu, P.-F., Li, Q., Ge, N., Wei, Y.-G., Wang, Y., Wang, P. & Guo, H.-Y. (2004). Eur. J. Inorg. Chem. pp. 2819-2822.]). For related structures, see: Li et al. (2008[Li, Q., Wei, Y.-G., Guo, H.-Y. & Zhan, C.-G. (2008). Inorg. Chim. Acta, 361, 2305-2313.]). For organoimido polyoxidometalate derivatives, see: Du et al. (1992[Du, Y., Rheingold, A. L. & Maatta, E. A. (1992). J. Am. Chem. Soc. 114, 345-346.]); Proust et al. (1994[Proust, A., Thouvenot, R., Chaussade, M., Robert, F. & Gouzerh, P. (1994). Inorg. Chim. Acta, 224, 81-95.]); Clegg et al. (1995[Clegg, W., Errington, R. J., Fraser, K. A., Holmes, S. A. & Schäfer, A. (1995). Chem. Commun. pp. 455-456.]). For Mo≡N triple bonds, see: Wigley (1994[Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239-482.]); Li et al. (2004[Li, Q., Wu, P.-F., Wei, Y.-G., Wang, Y., Wang, P. & Guo, H.-Y. (2004). Inorg. Chem. Commun. 7, 524-527.]).

[Scheme 1]

Experimental

Crystal data
  • (C16H36N)2[Mo6(C7H6ClN)O18]

  • Mr = 1488.13

  • Monoclinic, P 21 /n

  • a = 12.9184 (9) Å

  • b = 20.7309 (16) Å

  • c = 20.6731 (15) Å

  • β = 94.077 (1)°

  • V = 5522.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruke SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.870

  • 33748 measured reflections

  • 10841 independent reflections

  • 6533 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.118

  • S = 0.93

  • 10841 reflections

  • 604 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.60 3.447 (7) 153
C8—H8A⋯O15ii 0.97 2.44 3.396 (6) 169
C16—H16A⋯O16ii 0.97 2.55 3.410 (7) 147
C12—H12A⋯O9 0.97 2.34 3.248 (7) 155
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The new organoimido derivatives of polyoxometalates have attracted tremendous attention due to the diversity of their structures. They are important building blocks for the construction of interesting POM-organic hybrids and have potential applications in nano-materials, magnetism, catalysis, photochemistry and medicine science (Hill & White, 1998; Gili et al., 2000). Based on the pioneering works of E. A. Maatta (Du et al., 1992), R. J. Errington (Clegg et al., 1995) and A. Proust (Proust et al., 1994), a great number of organoimido derivatives of polyoxometalates have been obtained, including alkyl and aryl derivatives of polyoxometalates. Particularly, chloro-functionalized organoimido derivatives of polyoxometalates are very useful in the construction of various POM-organic hybrids, which are more easily accessible and much cheaper than the corresponding iodide and bromide derivatives. Chloro derivatives are reactive functional groups, which are very useful in some organic syntheses. Recently, we have obtained three chloro-functionalized arylimido derivatives of hexamolybdate, (Bu4N)2[Mo6O18(NR)] (R = p-ClC6H4, m-ClC6H4, and o-ClC6H4) in moderate yields (Li et al., 2008). However, they are not stable enough to undergo reactions in the subsequent synthesis process due to the electron-withdrawing nature of the chloro group and lack of protection of the MoN bond, which is easily hydrolyzed in acid or alkaline media. In order to obtain more stable building blocks to construct novel POM-based organic-inorganic hybrids, we probed 2-CH3-5-ClC6H3NH2 as a ligand to modify the hexamolybdate ion, in which a methyl group ortho to the imido N atom on the benzene ring not only increases the stability of the resulting imido derivative, but also improves the yield of the synthesis.

X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group P21/n. The asymmetric unit contains one crystallographically independent [Mo6O18N(2—CH3-5-ClC6H3)]2- anion and two (C4H9)4N+ cations (Fig. 1). In the [Mo6O18N(2—CH3-5-ClC6H3)]2- anion, an arylimido ligand is bound to one terminal position at the hexamolybdate cluster in a monodentate fashion. The short Mo—N bond distance, 1.732 (4) Å, and approximately linear C—N—Mo angle, 169.1 (4)°, are typical of organoimido groups bonded at an octahedral d0 metal center, and are consistent with a substantial degree of MoN triple bond character (Wigley, 1994). Compared to the reported chloro-functionalized arylimido derivatives of hexamolybdate (Li et al., 2008), the length of the Mo—N triple bond becomes larger (> 1.70 Å), and the C—N—Mo bond angle is closer to 180°, as found in other imido derivatives of Lindqvist polyoxometalates. The bond lengths of the five terminal oxo ligands do not vary significantly in comparison with the parent hexamolybdate and other derivatives. The central µ6-O atom O18 is displaced towards Mo4, as a consequence of the substitution of Mo4 by the arylimido ligand. Similar contraction has also been observed in the structures of other organoimido derivatives of Lindqvist polyoxometalates (Li et al., 2004). Considerable variations are seen in the bond lengths involving the doubly bridging O atoms, which is again consistent with other imido derivatives of Lindqvist polyoxometalates (Li et al., 2004).

An interesting feature is the solid phase dimerization of the cluster anions of the title compound, through C—H···O hydrogen bonds between a H atom on the aromatic ring and a bridging O atom in a symmetry-related anion (Fig. 2). Such a structural feature has also been observed before in the reported phenylimido derivatives of hexamolybdate (Wu et al., 2004).

Related literature top

For general background to polyoxometalates, see: Hill & White (1998); Gili et al. (2000). For details of the synthesis, see: Wu et al. (2004). For related structures, see: Li et al. (2008). For organoimido polyoxometalate derivatives, see: Du et al. (1992); Proust et al. (1994); Clegg et al. (1995). For MoN triple bonds, see: Wigley (1994); Li et al. (2004).

Experimental top

A mixture of (Bu4N)4[α-Mo8O26] (1.0 mmol), DCC (2.1 mmol), and 2-methyl-5-chloroaniline hydrochloride (1.34 mmol) was refluxed in anhydrous acetonitrile (10 ml) for about 12 h. After being cooled down to room temperature, the resulting dark-red solution was filtrated to remove the white precipitates. While most of acetonitrile evaporated, the product was collected from the filtrate as a red crystalline solid, and was washed successively with ethanol and ether several times, and then was recrystallized twice from a mixture of acetone and ethanol (1:1), to get red crystals (yield: 85 to 95%). Single crystals used for X-ray diffraction were obtained by diffusion of ether into a solution of the title compound in acetone.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–-H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(parent atom). Bond lengths C14—C15, C18—C19 and C34—C35 were restrained to suitable target values.

Structure description top

The new organoimido derivatives of polyoxometalates have attracted tremendous attention due to the diversity of their structures. They are important building blocks for the construction of interesting POM-organic hybrids and have potential applications in nano-materials, magnetism, catalysis, photochemistry and medicine science (Hill & White, 1998; Gili et al., 2000). Based on the pioneering works of E. A. Maatta (Du et al., 1992), R. J. Errington (Clegg et al., 1995) and A. Proust (Proust et al., 1994), a great number of organoimido derivatives of polyoxometalates have been obtained, including alkyl and aryl derivatives of polyoxometalates. Particularly, chloro-functionalized organoimido derivatives of polyoxometalates are very useful in the construction of various POM-organic hybrids, which are more easily accessible and much cheaper than the corresponding iodide and bromide derivatives. Chloro derivatives are reactive functional groups, which are very useful in some organic syntheses. Recently, we have obtained three chloro-functionalized arylimido derivatives of hexamolybdate, (Bu4N)2[Mo6O18(NR)] (R = p-ClC6H4, m-ClC6H4, and o-ClC6H4) in moderate yields (Li et al., 2008). However, they are not stable enough to undergo reactions in the subsequent synthesis process due to the electron-withdrawing nature of the chloro group and lack of protection of the MoN bond, which is easily hydrolyzed in acid or alkaline media. In order to obtain more stable building blocks to construct novel POM-based organic-inorganic hybrids, we probed 2-CH3-5-ClC6H3NH2 as a ligand to modify the hexamolybdate ion, in which a methyl group ortho to the imido N atom on the benzene ring not only increases the stability of the resulting imido derivative, but also improves the yield of the synthesis.

X-ray diffraction analysis reveals that the title compound crystallizes in the monoclinic space group P21/n. The asymmetric unit contains one crystallographically independent [Mo6O18N(2—CH3-5-ClC6H3)]2- anion and two (C4H9)4N+ cations (Fig. 1). In the [Mo6O18N(2—CH3-5-ClC6H3)]2- anion, an arylimido ligand is bound to one terminal position at the hexamolybdate cluster in a monodentate fashion. The short Mo—N bond distance, 1.732 (4) Å, and approximately linear C—N—Mo angle, 169.1 (4)°, are typical of organoimido groups bonded at an octahedral d0 metal center, and are consistent with a substantial degree of MoN triple bond character (Wigley, 1994). Compared to the reported chloro-functionalized arylimido derivatives of hexamolybdate (Li et al., 2008), the length of the Mo—N triple bond becomes larger (> 1.70 Å), and the C—N—Mo bond angle is closer to 180°, as found in other imido derivatives of Lindqvist polyoxometalates. The bond lengths of the five terminal oxo ligands do not vary significantly in comparison with the parent hexamolybdate and other derivatives. The central µ6-O atom O18 is displaced towards Mo4, as a consequence of the substitution of Mo4 by the arylimido ligand. Similar contraction has also been observed in the structures of other organoimido derivatives of Lindqvist polyoxometalates (Li et al., 2004). Considerable variations are seen in the bond lengths involving the doubly bridging O atoms, which is again consistent with other imido derivatives of Lindqvist polyoxometalates (Li et al., 2004).

An interesting feature is the solid phase dimerization of the cluster anions of the title compound, through C—H···O hydrogen bonds between a H atom on the aromatic ring and a bridging O atom in a symmetry-related anion (Fig. 2). Such a structural feature has also been observed before in the reported phenylimido derivatives of hexamolybdate (Wu et al., 2004).

For general background to polyoxometalates, see: Hill & White (1998); Gili et al. (2000). For details of the synthesis, see: Wu et al. (2004). For related structures, see: Li et al. (2008). For organoimido polyoxometalate derivatives, see: Du et al. (1992); Proust et al. (1994); Clegg et al. (1995). For MoN triple bonds, see: Wigley (1994); Li et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP showing the cluster anion and cations of the title component. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the dimer structure of cluster anions of the title compound.
bis(tetra-n-butylammonium) (5-chloro-2-methylphenylimido)- µ6-oxido-dodeca-µ2-oxido-pentaoxidohexamolybdate(VI) top
Crystal data top
(C16H36N)2[Mo6(C7H6ClN)O18]F(000) = 2984
Mr = 1488.13Dx = 1.790 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6101 reflections
a = 12.9184 (9) Åθ = 2.2–24.7°
b = 20.7309 (16) ŵ = 1.44 mm1
c = 20.6731 (15) ÅT = 292 K
β = 94.077 (1)°Prism, red
V = 5522.5 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruke SMART APEX CCD area-detector
diffractometer
10841 independent reflections
Radiation source: fine-focus sealed tube6533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1510
Tmin = 0.673, Tmax = 0.870k = 2525
33748 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
10841 reflections(Δ/σ)max = 0.001
604 parametersΔρmax = 0.89 e Å3
3 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
(C16H36N)2[Mo6(C7H6ClN)O18]V = 5522.5 (7) Å3
Mr = 1488.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.9184 (9) ŵ = 1.44 mm1
b = 20.7309 (16) ÅT = 292 K
c = 20.6731 (15) Å0.30 × 0.20 × 0.10 mm
β = 94.077 (1)°
Data collection top
Bruke SMART APEX CCD area-detector
diffractometer
10841 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6533 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.870Rint = 0.071
33748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.93Δρmax = 0.89 e Å3
10841 reflectionsΔρmin = 0.51 e Å3
604 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.58494 (4)0.75656 (2)0.49709 (2)0.05960 (15)
Mo20.70125 (3)0.66987 (2)0.61349 (3)0.05930 (15)
Mo30.44618 (3)0.67834 (2)0.59982 (2)0.05393 (15)
Mo40.46474 (3)0.83417 (2)0.60484 (2)0.05293 (14)
Mo50.71580 (4)0.82789 (2)0.61932 (3)0.06038 (16)
Mo60.57715 (4)0.74969 (2)0.72164 (2)0.06564 (16)
O10.5847 (3)0.7566 (2)0.41610 (19)0.0978 (16)
O20.4897 (3)0.82359 (16)0.51522 (16)0.0623 (10)
O30.6942 (3)0.81455 (16)0.52686 (17)0.0662 (10)
O40.4731 (2)0.69632 (17)0.51166 (16)0.0605 (9)
O50.6769 (2)0.68730 (16)0.52241 (17)0.0633 (10)
O60.5672 (2)0.62595 (15)0.60452 (17)0.0619 (10)
O70.7853 (3)0.74421 (15)0.61916 (19)0.0644 (10)
O80.6735 (3)0.68276 (18)0.70184 (17)0.0703 (11)
O90.7870 (3)0.60842 (17)0.6162 (2)0.0909 (13)
O100.3742 (2)0.76027 (14)0.59977 (16)0.0529 (9)
O110.3477 (3)0.62517 (18)0.5932 (2)0.0842 (13)
O120.4691 (3)0.69127 (16)0.69218 (16)0.0632 (10)
O130.5988 (3)0.88071 (16)0.61391 (17)0.0679 (11)
O140.4863 (3)0.81790 (16)0.69764 (16)0.0640 (10)
O150.6914 (3)0.80787 (19)0.70742 (18)0.0742 (11)
O160.8172 (3)0.87935 (19)0.6272 (2)0.0953 (14)
O170.5776 (4)0.7478 (2)0.8028 (2)0.1080 (17)
O180.5796 (2)0.75430 (12)0.60907 (14)0.0420 (8)
N10.3821 (3)0.8999 (2)0.6049 (2)0.0644 (12)
Cl10.21230 (17)1.05088 (11)0.76058 (11)0.1326 (8)
C10.3300 (4)0.9579 (2)0.6132 (3)0.0616 (15)
C20.2984 (4)0.9730 (3)0.6751 (3)0.0708 (16)
H20.31090.94450.70950.085*
C30.2490 (5)1.0303 (3)0.6837 (3)0.0815 (19)
C40.2300 (6)1.0724 (3)0.6341 (4)0.106 (2)
H40.19551.11100.64060.127*
C50.2623 (5)1.0574 (3)0.5741 (4)0.102 (2)
H50.25111.08740.54090.123*
C60.3115 (5)0.9993 (3)0.5606 (3)0.0748 (17)
C70.3456 (5)0.9835 (3)0.4947 (3)0.113 (2)
H7A0.28580.97820.46490.170*
H7B0.38520.94430.49690.170*
H7C0.38771.01800.48010.170*
C80.6540 (4)0.3553 (3)0.6615 (3)0.0732 (18)
H8A0.68980.34150.70190.088*
H8B0.58460.33740.66000.088*
C90.7086 (5)0.3264 (3)0.6072 (3)0.0764 (18)
H9A0.78100.33930.61120.092*
H9B0.67810.34290.56620.092*
C100.7019 (5)0.2527 (3)0.6069 (4)0.094 (2)
H10A0.72600.23690.64950.112*
H10B0.62970.24030.59920.112*
C110.7625 (6)0.2206 (3)0.5579 (4)0.128 (3)
H11A0.74040.23640.51550.191*
H11B0.75150.17480.55950.191*
H11C0.83490.22970.56700.191*
C120.7496 (5)0.4580 (3)0.6520 (3)0.0839 (19)
H12A0.74230.50450.64920.101*
H12B0.77120.44290.61060.101*
C130.8344 (6)0.4421 (4)0.7044 (4)0.115 (3)
H13A0.84800.39610.70700.138*
H13B0.81770.45800.74660.138*
C140.9357 (9)0.4833 (6)0.6754 (6)0.216 (6)
H14A0.92870.48570.62840.259*
H14B0.94000.52670.69290.259*
C151.0190 (10)0.4488 (7)0.6957 (7)0.285 (8)
H15A1.01890.44180.74160.427*
H15B1.08070.47180.68630.427*
H15C1.01740.40800.67370.427*
C160.6076 (5)0.4481 (3)0.7271 (3)0.0838 (19)
H16A0.65620.43150.76100.101*
H16B0.54130.42740.73200.101*
C170.5952 (6)0.5190 (4)0.7374 (3)0.113 (3)
H17A0.54230.53620.70650.135*
H17B0.66000.54110.73140.135*
C180.5639 (8)0.5287 (6)0.8064 (4)0.170 (4)
H18A0.48960.53610.80430.204*
H18B0.57720.48880.83000.204*
C190.6121 (14)0.5788 (7)0.8425 (6)0.373 (13)
H19A0.65070.60520.81460.559*
H19B0.65830.56100.87630.559*
H19C0.56030.60460.86130.559*
C200.5707 (5)0.4523 (3)0.6077 (2)0.0720 (17)
H20A0.57630.49890.60550.086*
H20B0.59410.43520.56760.086*
C210.4580 (5)0.4354 (3)0.6107 (3)0.0768 (17)
H21A0.43240.45250.65020.092*
H21B0.44990.38890.61110.092*
C220.3964 (5)0.4635 (3)0.5524 (3)0.0824 (19)
H22A0.41860.44330.51340.099*
H22B0.41100.50930.54980.099*
C230.2801 (5)0.4539 (3)0.5552 (3)0.107 (3)
H23A0.26520.40880.55860.161*
H23B0.24470.47090.51650.161*
H23C0.25690.47610.59230.161*
C240.9918 (4)0.2829 (3)0.2790 (3)0.0779 (18)
H24A1.05210.29370.30760.094*
H24B1.01180.24790.25120.094*
C250.9651 (5)0.3400 (3)0.2371 (3)0.0866 (19)
H25A0.93530.37370.26260.104*
H25B0.91430.32800.20240.104*
C261.0645 (6)0.3650 (4)0.2085 (4)0.114 (3)
H26A1.10910.38410.24310.137*
H26B1.10140.32860.19160.137*
C271.0455 (6)0.4134 (4)0.1560 (4)0.139 (3)
H27A0.99490.39690.12390.209*
H27B1.10910.42200.13630.209*
H27C1.02010.45260.17390.209*
C280.8076 (4)0.2435 (3)0.2804 (3)0.0753 (18)
H28A0.78210.28310.26010.090*
H28B0.75650.22920.30950.090*
C290.8156 (5)0.1929 (3)0.2280 (3)0.0877 (19)
H29A0.84060.15280.24760.105*
H29B0.86520.20690.19790.105*
C300.7107 (6)0.1816 (4)0.1915 (4)0.123 (3)
H30A0.71600.14380.16420.148*
H30B0.66040.17190.22280.148*
C310.6704 (6)0.2359 (4)0.1503 (4)0.137 (4)
H31A0.66380.27360.17670.205*
H31B0.60370.22460.13000.205*
H31C0.71760.24460.11760.205*
C320.8810 (4)0.3093 (3)0.3688 (3)0.0739 (17)
H32A0.85540.34710.34500.089*
H32B0.82470.29320.39300.089*
C330.9670 (5)0.3299 (4)0.4159 (4)0.110 (3)
H33A1.02400.34650.39270.132*
H33B0.99220.29300.44140.132*
C340.9291 (6)0.3817 (5)0.4606 (4)0.152 (4)
H34A0.90620.41910.43520.183*
H34B0.87050.36550.48260.183*
C351.0126 (9)0.4002 (7)0.5084 (6)0.287 (8)
H35A0.98710.39990.55090.431*
H35B1.03650.44270.49860.431*
H35C1.06890.37010.50690.431*
C360.9512 (5)0.1983 (3)0.3555 (3)0.092 (2)
H36A0.96920.16710.32310.110*
H36B1.01500.21040.38000.110*
C370.8821 (6)0.1654 (4)0.4008 (4)0.110 (3)
H37A0.82090.14920.37620.132*
H37B0.85960.19660.43180.132*
C380.9358 (7)0.1103 (5)0.4369 (5)0.163 (4)
H38A0.88370.08310.45460.196*
H38B0.97180.08450.40640.196*
C391.0094 (9)0.1300 (7)0.4891 (6)0.242 (7)
H39A1.05760.16020.47290.363*
H39B1.04640.09300.50630.363*
H39C0.97310.15000.52270.363*
N20.6446 (4)0.4288 (2)0.6631 (2)0.0680 (13)
N30.9076 (4)0.2582 (2)0.3203 (2)0.0719 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0567 (3)0.0783 (4)0.0440 (3)0.0116 (2)0.0046 (2)0.0007 (2)
Mo20.0400 (3)0.0492 (3)0.0878 (4)0.0086 (2)0.0024 (2)0.0086 (2)
Mo30.0386 (3)0.0488 (3)0.0736 (4)0.0025 (2)0.0020 (2)0.0051 (2)
Mo40.0493 (3)0.0469 (3)0.0626 (3)0.0116 (2)0.0042 (2)0.0002 (2)
Mo50.0462 (3)0.0531 (3)0.0812 (4)0.0090 (2)0.0004 (3)0.0035 (2)
Mo60.0615 (3)0.0900 (4)0.0440 (3)0.0026 (3)0.0066 (2)0.0055 (3)
O10.089 (3)0.157 (5)0.049 (2)0.027 (3)0.010 (2)0.002 (2)
O20.059 (2)0.073 (2)0.055 (2)0.0207 (18)0.0052 (18)0.0128 (18)
O30.061 (2)0.062 (2)0.078 (3)0.0044 (18)0.022 (2)0.0173 (19)
O40.048 (2)0.072 (2)0.060 (2)0.0024 (18)0.0092 (17)0.0203 (19)
O50.054 (2)0.064 (2)0.073 (3)0.0101 (18)0.0111 (18)0.0099 (19)
O60.046 (2)0.0433 (19)0.097 (3)0.0001 (16)0.0049 (19)0.0001 (18)
O70.037 (2)0.061 (2)0.094 (3)0.0007 (16)0.0030 (19)0.0051 (19)
O80.056 (2)0.086 (3)0.066 (3)0.008 (2)0.0114 (19)0.026 (2)
O90.058 (2)0.059 (2)0.156 (4)0.017 (2)0.008 (2)0.019 (3)
O100.042 (2)0.056 (2)0.059 (2)0.0060 (15)0.0009 (16)0.0020 (16)
O110.048 (2)0.071 (3)0.132 (4)0.0103 (19)0.001 (2)0.016 (2)
O120.061 (2)0.068 (2)0.062 (2)0.0015 (19)0.0097 (18)0.0171 (19)
O130.058 (2)0.046 (2)0.100 (3)0.0026 (17)0.009 (2)0.0058 (19)
O140.064 (2)0.073 (2)0.055 (2)0.0077 (19)0.0042 (18)0.0123 (18)
O150.063 (2)0.086 (3)0.071 (3)0.011 (2)0.015 (2)0.018 (2)
O160.063 (3)0.072 (3)0.152 (4)0.023 (2)0.013 (3)0.016 (3)
O170.095 (4)0.177 (5)0.049 (3)0.001 (3)0.012 (2)0.014 (3)
O180.0372 (18)0.0427 (18)0.0454 (19)0.0011 (13)0.0019 (15)0.0003 (14)
N10.059 (3)0.055 (3)0.080 (3)0.015 (2)0.008 (2)0.002 (2)
Cl10.1314 (18)0.1374 (18)0.1341 (18)0.0128 (14)0.0456 (14)0.0430 (14)
C10.056 (3)0.047 (3)0.082 (4)0.008 (3)0.008 (3)0.003 (3)
C20.073 (4)0.059 (4)0.082 (5)0.001 (3)0.015 (3)0.005 (3)
C30.080 (5)0.070 (4)0.095 (5)0.016 (4)0.011 (4)0.010 (4)
C40.105 (6)0.066 (5)0.148 (8)0.026 (4)0.024 (6)0.008 (5)
C50.111 (6)0.070 (5)0.125 (7)0.035 (4)0.008 (5)0.039 (4)
C60.082 (4)0.061 (4)0.082 (5)0.006 (3)0.012 (4)0.009 (3)
C70.131 (6)0.122 (6)0.088 (6)0.011 (5)0.026 (5)0.017 (5)
C80.072 (4)0.071 (4)0.074 (4)0.022 (3)0.019 (3)0.033 (3)
C90.078 (4)0.064 (4)0.083 (5)0.016 (3)0.023 (4)0.018 (3)
C100.071 (5)0.084 (5)0.118 (6)0.014 (4)0.048 (4)0.031 (4)
C110.137 (7)0.083 (5)0.153 (8)0.021 (5)0.053 (6)0.009 (5)
C120.091 (5)0.074 (4)0.087 (5)0.029 (4)0.010 (4)0.021 (4)
C130.089 (6)0.114 (6)0.140 (7)0.041 (5)0.006 (5)0.023 (5)
C140.175 (12)0.217 (14)0.244 (14)0.054 (11)0.052 (11)0.016 (12)
C150.266 (19)0.227 (15)0.37 (2)0.081 (13)0.101 (16)0.100 (14)
C160.107 (5)0.089 (5)0.054 (4)0.036 (4)0.001 (4)0.012 (3)
C170.135 (7)0.128 (7)0.080 (5)0.042 (5)0.043 (5)0.018 (5)
C180.177 (10)0.228 (12)0.113 (8)0.046 (9)0.057 (7)0.037 (8)
C190.56 (3)0.42 (2)0.166 (13)0.28 (2)0.164 (16)0.127 (14)
C200.094 (5)0.068 (4)0.053 (4)0.002 (3)0.001 (3)0.018 (3)
C210.085 (5)0.080 (4)0.065 (4)0.008 (4)0.002 (3)0.009 (3)
C220.107 (5)0.072 (4)0.065 (4)0.018 (4)0.010 (4)0.003 (3)
C230.098 (6)0.120 (6)0.100 (6)0.030 (5)0.021 (4)0.021 (5)
C240.052 (4)0.091 (5)0.094 (5)0.001 (3)0.028 (3)0.015 (4)
C250.065 (4)0.112 (5)0.086 (5)0.008 (4)0.025 (4)0.017 (4)
C260.109 (6)0.139 (7)0.100 (6)0.001 (5)0.043 (5)0.011 (5)
C270.138 (7)0.188 (9)0.093 (6)0.012 (7)0.022 (5)0.018 (6)
C280.052 (4)0.089 (5)0.086 (5)0.002 (3)0.012 (3)0.015 (4)
C290.077 (5)0.100 (5)0.088 (5)0.012 (4)0.022 (4)0.018 (4)
C300.112 (7)0.140 (8)0.119 (7)0.035 (6)0.030 (5)0.034 (6)
C310.100 (7)0.185 (10)0.123 (8)0.006 (6)0.005 (6)0.028 (6)
C320.056 (4)0.082 (4)0.085 (4)0.010 (3)0.016 (3)0.014 (4)
C330.076 (5)0.130 (7)0.123 (6)0.018 (5)0.007 (4)0.045 (5)
C340.112 (7)0.202 (10)0.141 (8)0.019 (7)0.007 (6)0.092 (7)
C350.265 (16)0.34 (2)0.255 (16)0.025 (15)0.018 (13)0.144 (14)
C360.065 (4)0.079 (5)0.130 (6)0.014 (4)0.001 (4)0.009 (4)
C370.085 (5)0.102 (6)0.141 (7)0.014 (5)0.007 (5)0.020 (5)
C380.107 (7)0.166 (9)0.213 (12)0.009 (7)0.013 (7)0.065 (9)
C390.159 (11)0.38 (2)0.192 (13)0.084 (13)0.053 (9)0.110 (13)
N20.077 (3)0.068 (3)0.057 (3)0.023 (3)0.001 (3)0.021 (2)
N30.053 (3)0.081 (4)0.083 (4)0.007 (3)0.013 (3)0.015 (3)
Geometric parameters (Å, º) top
Mo1—O11.674 (4)C16—C171.495 (8)
Mo1—O21.911 (3)C16—H16A0.9700
Mo1—O51.913 (3)C16—H16B0.9700
Mo1—O31.922 (4)C17—C181.524 (9)
Mo1—O41.949 (3)C17—H17A0.9700
Mo1—O182.321 (3)C17—H17B0.9700
Mo2—O91.686 (3)C18—C191.399 (8)
Mo2—O71.884 (3)C18—H18A0.9700
Mo2—O81.905 (4)C18—H18B0.9700
Mo2—O51.921 (4)C19—H19A0.9600
Mo2—O61.953 (3)C19—H19B0.9600
Mo2—O182.350 (3)C19—H19C0.9600
Mo3—O111.682 (3)C20—C211.504 (7)
Mo3—O61.901 (3)C20—N21.518 (6)
Mo3—O41.916 (3)C20—H20A0.9700
Mo3—O121.930 (3)C20—H20B0.9700
Mo3—O101.936 (3)C21—C221.513 (7)
Mo3—O182.332 (3)C21—H21A0.9700
Mo4—N11.732 (4)C21—H21B0.9700
Mo4—O21.916 (3)C22—C231.520 (8)
Mo4—O101.926 (3)C22—H22A0.9700
Mo4—O141.948 (3)C22—H22B0.9700
Mo4—O131.980 (3)C23—H23A0.9600
Mo4—O182.221 (3)C23—H23B0.9600
Mo5—O161.688 (4)C23—H23C0.9600
Mo5—O131.863 (3)C24—C251.492 (8)
Mo5—O151.916 (4)C24—N31.519 (7)
Mo5—O31.932 (4)C24—H24A0.9700
Mo5—O71.954 (3)C24—H24B0.9700
Mo5—O182.327 (3)C25—C261.542 (8)
Mo6—O171.678 (4)C25—H25A0.9700
Mo6—O141.882 (3)C25—H25B0.9700
Mo6—O121.915 (3)C26—C271.486 (9)
Mo6—O81.927 (4)C26—H26A0.9700
Mo6—O151.944 (4)C26—H26B0.9700
Mo6—O182.332 (3)C27—H27A0.9600
N1—C11.394 (6)C27—H27B0.9600
Cl1—C31.744 (6)C27—H27C0.9600
C1—C61.393 (7)C28—N31.512 (7)
C1—C21.404 (7)C28—C291.517 (7)
C2—C31.366 (7)C28—H28A0.9700
C2—H20.9300C28—H28B0.9700
C3—C41.356 (8)C29—C301.522 (8)
C4—C51.371 (9)C29—H29A0.9700
C4—H40.9300C29—H29B0.9700
C5—C61.400 (8)C30—C311.483 (9)
C5—H50.9300C30—H30A0.9700
C6—C71.497 (7)C30—H30B0.9700
C7—H7A0.9600C31—H31A0.9600
C7—H7B0.9600C31—H31B0.9600
C7—H7C0.9600C31—H31C0.9600
C8—C91.493 (8)C32—C331.487 (8)
C8—N21.528 (7)C32—N31.516 (6)
C8—H8A0.9700C32—H32A0.9700
C8—H8B0.9700C32—H32B0.9700
C9—C101.532 (7)C33—C341.520 (9)
C9—H9A0.9700C33—H33A0.9700
C9—H9B0.9700C33—H33B0.9700
C10—C111.481 (10)C34—C351.461 (7)
C10—H10A0.9700C34—H34A0.9700
C10—H10B0.9700C34—H34B0.9700
C11—H11A0.9600C35—H35A0.9600
C11—H11B0.9600C35—H35B0.9600
C11—H11C0.9600C35—H35C0.9600
C12—N21.519 (6)C36—C371.504 (9)
C12—C131.521 (8)C36—N31.527 (7)
C12—H12A0.9700C36—H36A0.9700
C12—H12B0.9700C36—H36B0.9700
C13—C141.707 (13)C37—C381.506 (10)
C13—H13A0.9700C37—H37A0.9700
C13—H13B0.9700C37—H37B0.9700
C14—C151.334 (8)C38—C391.445 (13)
C14—H14A0.9700C38—H38A0.9700
C14—H14B0.9700C38—H38B0.9700
C15—H15A0.9600C39—H39A0.9600
C15—H15B0.9600C39—H39B0.9600
C15—H15C0.9600C39—H39C0.9600
C16—N21.492 (7)
O1—Mo1—O2103.89 (18)C12—C13—H13A111.8
O1—Mo1—O5103.37 (18)C14—C13—H13A111.8
O2—Mo1—O5152.67 (14)C12—C13—H13B111.8
O1—Mo1—O3105.59 (19)C14—C13—H13B111.8
O2—Mo1—O387.17 (15)H13A—C13—H13B109.5
O5—Mo1—O387.38 (15)C15—C14—C13104.1 (12)
O1—Mo1—O4101.91 (19)C15—C14—H14A110.9
O2—Mo1—O486.63 (15)C13—C14—H14A110.9
O5—Mo1—O485.95 (14)C15—C14—H14B110.9
O3—Mo1—O4152.49 (14)C13—C14—H14B110.9
O1—Mo1—O18177.88 (18)H14A—C14—H14B109.0
O2—Mo1—O1875.75 (12)C14—C15—H15A109.5
O5—Mo1—O1876.93 (12)C14—C15—H15B109.5
O3—Mo1—O1876.50 (12)H15A—C15—H15B109.5
O4—Mo1—O1876.00 (12)C14—C15—H15C109.5
O9—Mo2—O7103.98 (16)H15A—C15—H15C109.5
O9—Mo2—O8103.98 (19)H15B—C15—H15C109.5
O7—Mo2—O888.43 (17)N2—C16—C17115.7 (5)
O9—Mo2—O5103.68 (18)N2—C16—H16A108.4
O7—Mo2—O587.74 (16)C17—C16—H16A108.4
O8—Mo2—O5152.18 (14)N2—C16—H16B108.4
O9—Mo2—O6103.09 (16)C17—C16—H16B108.4
O7—Mo2—O6152.91 (13)H16A—C16—H16B107.4
O8—Mo2—O686.00 (15)C16—C17—C18107.6 (7)
O5—Mo2—O684.98 (14)C16—C17—H17A110.2
O9—Mo2—O18179.04 (15)C18—C17—H17A110.2
O7—Mo2—O1876.95 (12)C16—C17—H17B110.2
O8—Mo2—O1876.22 (12)C18—C17—H17B110.2
O5—Mo2—O1876.08 (12)H17A—C17—H17B108.5
O6—Mo2—O1875.98 (11)C19—C18—C17117.4 (9)
O11—Mo3—O6104.16 (16)C19—C18—H18A108.0
O11—Mo3—O4103.77 (17)C17—C18—H18A108.0
O6—Mo3—O487.44 (14)C19—C18—H18B108.0
O11—Mo3—O12103.47 (17)C17—C18—H18B108.0
O6—Mo3—O1287.77 (15)H18A—C18—H18B107.2
O4—Mo3—O12152.69 (14)C18—C19—H19A109.5
O11—Mo3—O10102.37 (16)C18—C19—H19B109.5
O6—Mo3—O10153.46 (14)H19A—C19—H19B109.5
O4—Mo3—O1087.06 (15)C18—C19—H19C109.5
O12—Mo3—O1085.33 (14)H19A—C19—H19C109.5
O11—Mo3—O18178.48 (14)H19B—C19—H19C109.5
O6—Mo3—O1877.36 (11)C21—C20—N2116.8 (4)
O4—Mo3—O1876.32 (12)C21—C20—H20A108.1
O12—Mo3—O1876.40 (12)N2—C20—H20A108.1
O10—Mo3—O1876.12 (12)C21—C20—H20B108.1
N1—Mo4—O2103.73 (17)N2—C20—H20B108.1
N1—Mo4—O10104.72 (17)H20A—C20—H20B107.3
O2—Mo4—O1089.98 (15)C20—C21—C22109.5 (5)
N1—Mo4—O14100.37 (18)C20—C21—H21A109.8
O2—Mo4—O14155.58 (14)C22—C21—H21A109.8
O10—Mo4—O1487.68 (14)C20—C21—H21B109.8
N1—Mo4—O1398.72 (17)C22—C21—H21B109.8
O2—Mo4—O1386.63 (15)H21A—C21—H21B108.2
O10—Mo4—O13156.46 (13)C21—C22—C23112.6 (5)
O14—Mo4—O1385.89 (15)C21—C22—H22A109.1
N1—Mo4—O18175.66 (16)C23—C22—H22A109.1
O2—Mo4—O1878.16 (12)C21—C22—H22B109.1
O10—Mo4—O1879.09 (11)C23—C22—H22B109.1
O14—Mo4—O1877.52 (12)H22A—C22—H22B107.8
O13—Mo4—O1877.41 (12)C22—C23—H23A109.5
O16—Mo5—O13104.76 (17)C22—C23—H23B109.5
O16—Mo5—O15102.96 (19)H23A—C23—H23B109.5
O13—Mo5—O1589.82 (16)C22—C23—H23C109.5
O16—Mo5—O3104.03 (19)H23A—C23—H23C109.5
O13—Mo5—O388.00 (15)H23B—C23—H23C109.5
O15—Mo5—O3152.57 (15)C25—C24—N3116.6 (5)
O16—Mo5—O7101.99 (17)C25—C24—H24A108.1
O13—Mo5—O7153.23 (14)N3—C24—H24A108.1
O15—Mo5—O785.18 (17)C25—C24—H24B108.1
O3—Mo5—O784.57 (16)N3—C24—H24B108.1
O16—Mo5—O18178.22 (16)H24A—C24—H24B107.3
O13—Mo5—O1877.01 (12)C24—C25—C26108.9 (6)
O15—Mo5—O1876.71 (13)C24—C25—H25A109.9
O3—Mo5—O1876.17 (12)C26—C25—H25A109.9
O7—Mo5—O1876.25 (12)C24—C25—H25B109.9
O17—Mo6—O14103.84 (19)C26—C25—H25B109.9
O17—Mo6—O12104.67 (19)H25A—C25—H25B108.3
O14—Mo6—O1287.95 (15)C27—C26—C25114.1 (7)
O17—Mo6—O8103.82 (19)C27—C26—H26A108.7
O14—Mo6—O8152.28 (15)C25—C26—H26A108.7
O12—Mo6—O886.80 (15)C27—C26—H26B108.7
O17—Mo6—O15102.56 (19)C25—C26—H26B108.7
O14—Mo6—O1587.71 (16)H26A—C26—H26B107.6
O12—Mo6—O15152.67 (15)C26—C27—H27A109.5
O8—Mo6—O1584.61 (17)C26—C27—H27B109.5
O17—Mo6—O18178.63 (18)H27A—C27—H27B109.5
O14—Mo6—O1876.03 (12)C26—C27—H27C109.5
O12—Mo6—O1876.69 (12)H27A—C27—H27C109.5
O8—Mo6—O1876.27 (12)H27B—C27—H27C109.5
O15—Mo6—O1876.08 (13)N3—C28—C29115.4 (5)
Mo1—O2—Mo4115.33 (16)N3—C28—H28A108.4
Mo1—O3—Mo5117.23 (16)C29—C28—H28A108.4
Mo3—O4—Mo1117.28 (15)N3—C28—H28B108.4
Mo1—O5—Mo2117.68 (16)C29—C28—H28B108.4
Mo3—O6—Mo2117.32 (16)H28A—C28—H28B107.5
Mo2—O7—Mo5117.61 (17)C28—C29—C30111.0 (5)
Mo2—O8—Mo6118.23 (16)C28—C29—H29A109.4
Mo4—O10—Mo3114.06 (16)C30—C29—H29A109.4
Mo6—O12—Mo3117.35 (16)C28—C29—H29B109.4
Mo5—O13—Mo4114.81 (16)C30—C29—H29B109.4
Mo6—O14—Mo4115.62 (16)H29A—C29—H29B108.0
Mo5—O15—Mo6117.13 (16)C31—C30—C29115.6 (7)
Mo4—O18—Mo190.73 (10)C31—C30—H30A108.4
Mo4—O18—Mo590.77 (9)C29—C30—H30A108.4
Mo1—O18—Mo590.10 (10)C31—C30—H30B108.4
Mo4—O18—Mo690.77 (10)C29—C30—H30B108.4
Mo1—O18—Mo6178.49 (13)H30A—C30—H30B107.4
Mo5—O18—Mo689.99 (9)C30—C31—H31A109.5
Mo4—O18—Mo390.71 (10)C30—C31—H31B109.5
Mo1—O18—Mo390.34 (9)H31A—C31—H31B109.5
Mo5—O18—Mo3178.45 (13)C30—C31—H31C109.5
Mo6—O18—Mo389.53 (10)H31A—C31—H31C109.5
Mo4—O18—Mo2179.93 (18)H31B—C31—H31C109.5
Mo1—O18—Mo289.23 (10)C33—C32—N3116.1 (5)
Mo5—O18—Mo289.17 (9)C33—C32—H32A108.3
Mo6—O18—Mo289.27 (9)N3—C32—H32A108.3
Mo3—O18—Mo289.35 (9)C33—C32—H32B108.3
C1—N1—Mo4169.1 (4)N3—C32—H32B108.3
C6—C1—N1119.5 (5)H32A—C32—H32B107.4
C6—C1—C2121.9 (5)C32—C33—C34110.0 (6)
N1—C1—C2118.6 (5)C32—C33—H33A109.7
C3—C2—C1118.8 (6)C34—C33—H33A109.7
C3—C2—H2120.6C32—C33—H33B109.7
C1—C2—H2120.6C34—C33—H33B109.7
C4—C3—C2121.5 (6)H33A—C33—H33B108.2
C4—C3—Cl1119.0 (5)C35—C34—C33110.0 (8)
C2—C3—Cl1119.5 (6)C35—C34—H34A109.7
C3—C4—C5119.2 (6)C33—C34—H34A109.7
C3—C4—H4120.4C35—C34—H34B109.7
C5—C4—H4120.4C33—C34—H34B109.7
C4—C5—C6123.2 (6)H34A—C34—H34B108.2
C4—C5—H5118.4C34—C35—H35A109.5
C6—C5—H5118.4C34—C35—H35B109.5
C1—C6—C5115.4 (6)H35A—C35—H35B109.5
C1—C6—C7122.0 (6)C34—C35—H35C109.5
C5—C6—C7122.5 (6)H35A—C35—H35C109.5
C6—C7—H7A109.5H35B—C35—H35C109.5
C6—C7—H7B109.5C37—C36—N3116.8 (5)
H7A—C7—H7B109.5C37—C36—H36A108.1
C6—C7—H7C109.5N3—C36—H36A108.1
H7A—C7—H7C109.5C37—C36—H36B108.1
H7B—C7—H7C109.5N3—C36—H36B108.1
C9—C8—N2117.4 (4)H36A—C36—H36B107.3
C9—C8—H8A108.0C36—C37—C38112.3 (7)
N2—C8—H8A108.0C36—C37—H37A109.1
C9—C8—H8B108.0C38—C37—H37A109.1
N2—C8—H8B108.0C36—C37—H37B109.1
H8A—C8—H8B107.2C38—C37—H37B109.1
C8—C9—C10111.9 (6)H37A—C37—H37B107.9
C8—C9—H9A109.2C39—C38—C37114.3 (10)
C10—C9—H9A109.2C39—C38—H38A108.7
C8—C9—H9B109.2C37—C38—H38A108.7
C10—C9—H9B109.2C39—C38—H38B108.7
H9A—C9—H9B107.9C37—C38—H38B108.7
C11—C10—C9114.7 (6)H38A—C38—H38B107.6
C11—C10—H10A108.6C38—C39—H39A109.5
C9—C10—H10A108.6C38—C39—H39B109.5
C11—C10—H10B108.6H39A—C39—H39B109.5
C9—C10—H10B108.6C38—C39—H39C109.5
H10A—C10—H10B107.6H39A—C39—H39C109.5
C10—C11—H11A109.5H39B—C39—H39C109.5
C10—C11—H11B109.5C16—N2—C20111.1 (5)
H11A—C11—H11B109.5C16—N2—C12111.9 (4)
C10—C11—H11C109.5C20—N2—C12106.1 (4)
H11A—C11—H11C109.5C16—N2—C8108.5 (4)
H11B—C11—H11C109.5C20—N2—C8110.5 (4)
N2—C12—C13114.3 (5)C12—N2—C8108.7 (5)
N2—C12—H12A108.7C28—N3—C32106.1 (4)
C13—C12—H12A108.7C28—N3—C24112.3 (5)
N2—C12—H12B108.7C32—N3—C24109.9 (4)
C13—C12—H12B108.7C28—N3—C36111.6 (5)
H12A—C12—H12B107.6C32—N3—C36110.3 (5)
C12—C13—C1499.9 (6)C24—N3—C36106.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.603.447 (7)153
C8—H8A···O15ii0.972.443.396 (6)169
C9—H9B···O4iii0.972.573.309 (6)133
C16—H16A···O16ii0.972.553.410 (7)147
C7—H7B···N10.962.422.875 (8)109
C12—H12A···O90.972.343.248 (7)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C16H36N)2[Mo6(C7H6ClN)O18]
Mr1488.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)12.9184 (9), 20.7309 (16), 20.6731 (15)
β (°) 94.077 (1)
V3)5522.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruke SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.673, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
33748, 10841, 6533
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.118, 0.93
No. of reflections10841
No. of parameters604
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.51

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.603.447 (7)152.5
C8—H8A···O15ii0.972.443.396 (6)169.4
C16—H16A···O16ii0.972.553.410 (7)147.4
C12—H12A···O90.972.343.248 (7)154.9
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Beijing Forestry University Young Scientist Fund. We also sincerely thank Professor Yongge Wei of Tsinghua University for fruitful discussions and his helpful suggestions in conducting this work and writing this paper.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Errington, R. J., Fraser, K. A., Holmes, S. A. & Schäfer, A. (1995). Chem. Commun. pp. 455–456.  CrossRef Google Scholar
First citationDu, Y., Rheingold, A. L. & Maatta, E. A. (1992). J. Am. Chem. Soc. 114, 345–346.  CSD CrossRef CAS Web of Science Google Scholar
First citationGili, P., Núñez, P., Martín-Zarza, P. & Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441–e442.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHill, C. L. & White, G. C. (1998). Chem. Rev. 98, 1–2.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Q., Wei, Y.-G., Guo, H.-Y. & Zhan, C.-G. (2008). Inorg. Chim. Acta, 361, 2305–2313.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Q., Wu, P.-F., Wei, Y.-G., Wang, Y., Wang, P. & Guo, H.-Y. (2004). Inorg. Chem. Commun. 7, 524–527.  Web of Science CSD CrossRef CAS Google Scholar
First citationProust, A., Thouvenot, R., Chaussade, M., Robert, F. & Gouzerh, P. (1994). Inorg. Chim. Acta, 224, 81–95.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWigley, D. E. (1994). Prog. Inorg. Chem. 42, 239–482.  CrossRef CAS Web of Science Google Scholar
First citationWu, P.-F., Li, Q., Ge, N., Wei, Y.-G., Wang, Y., Wang, P. & Guo, H.-Y. (2004). Eur. J. Inorg. Chem. pp. 2819–2822.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds