organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-((E)-{2-[N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)carboximido­yl]benzyl­­idene}amino)-1,5-di­methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 20 September 2011; accepted 23 September 2011; online 30 September 2011)

The title compound, C30H28N6O2, is a symmetric diimine derived from ortho-dibenzaldehyde. Both C=N bonds are (E)-configured. The terminal N-bonded phenyl groups adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes inter­sect at angles of 32.35 (11) and 38.59 (10)°. In the crystal, C—H⋯O contacts connect the mol­ecules into chains along the b axis and give rise to a C11(14)C11(14) and a R22(12) pattern on different levels of graph-set analysis. The shortest inter­centroid distance between two centroids was found at 4.2074 (11) Å between the two five-membered heterocycles.

Related literature

For the crystal structure of another diimine capable of acting as a chelate ligand, see: Yumata et al. (2011[Yumata, N., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o2175.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details on puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For general information about the chelate effect, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N6O2

  • Mr = 504.58

  • Monoclinic, P 21

  • a = 12.6048 (2) Å

  • b = 7.3389 (2) Å

  • c = 14.3877 (3) Å

  • β = 107.622 (1)°

  • V = 1268.48 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.33 × 0.15 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12317 measured reflections

  • 3399 independent reflections

  • 2806 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.079

  • S = 1.01

  • 3399 reflections

  • 347 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C45—H45A⋯O2i 0.98 2.59 3.535 (2) 161
C55—H55A⋯O1ii 0.98 2.61 3.536 (3) 158
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to metal complexes exclusively applying comparable monodentate ligands (Gade, 1998). In our continuous efforts in elucidating the rules guiding the formation of coordination compounds applying nitrogen-containing chelate ligands, we determined the structure of the title compound to allow for comparative studies in envisioned coordination compounds. Structural information about another diimine capable of acting as a chelate ligand is apparent in the literature (Yumata et al., 2011).

Both C=N double bonds are (E)-configured. The least-squares planes defined by the five-membered heterocycles on the one hand and the central phenyl moiety on the other hand enclose angles of 3.16 (10) and 4.47 (10)°, respectively. The nitrogen-bonded phenyl moieties adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35 (11) and 38.59 (10)°. A conformation analysis of the five-membered heterocycles (Cremer & Pople, 1975) is invariably precluded by the small puckering amplitude (Fig. 1).

In the crystal, C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are present. These are observed between H atoms of the methyl groups and the ketonic O atoms. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these interactions is C11(14)C11(14) on the unitary level and emphasizes the presence of two antidromic chains whereas a R22(12) descriptor on the binary level highlights the existence of cyclic patterns. In total, the molecules are connected to infinite chains along the crystallographic b axis. The shortest intercentroid distance between two centers of gravity was found at 4.2074 (11) Å (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

Related literature top

For the crystal structure of another diimine capable of acting as a chelate ligand, see: Yumata et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For details on puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect, see: Gade (1998).

Experimental top

A solution of 0.99 g of phthalaldehyde in 20 cm3 of methanol was added dropwise to a stirred solution of 3.00 g of 4-aminoantipyrine in 30 cm3 of methanol. The solution was refluxed under nitrogen for 15 minutes. Upon cooling, a yellow precipitate formed which was filtered and dried under reduced pressure. The product was recrystallized from methanol to produce yellow crystals.

Refinement top

Aromatic carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups (C—H 0.98 Å) were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in the SHELX program suite (Sheldrick, 2008)], with U(H) set to 1.5Ueq(C).

Structure description top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to metal complexes exclusively applying comparable monodentate ligands (Gade, 1998). In our continuous efforts in elucidating the rules guiding the formation of coordination compounds applying nitrogen-containing chelate ligands, we determined the structure of the title compound to allow for comparative studies in envisioned coordination compounds. Structural information about another diimine capable of acting as a chelate ligand is apparent in the literature (Yumata et al., 2011).

Both C=N double bonds are (E)-configured. The least-squares planes defined by the five-membered heterocycles on the one hand and the central phenyl moiety on the other hand enclose angles of 3.16 (10) and 4.47 (10)°, respectively. The nitrogen-bonded phenyl moieties adopt staggered conformations relative to their respective parent heterocycles, the relevant least-squares planes intersect at angles of 32.35 (11) and 38.59 (10)°. A conformation analysis of the five-membered heterocycles (Cremer & Pople, 1975) is invariably precluded by the small puckering amplitude (Fig. 1).

In the crystal, C–H···O contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are present. These are observed between H atoms of the methyl groups and the ketonic O atoms. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these interactions is C11(14)C11(14) on the unitary level and emphasizes the presence of two antidromic chains whereas a R22(12) descriptor on the binary level highlights the existence of cyclic patterns. In total, the molecules are connected to infinite chains along the crystallographic b axis. The shortest intercentroid distance between two centers of gravity was found at 4.2074 (11) Å (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

For the crystal structure of another diimine capable of acting as a chelate ligand, see: Yumata et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For details on puckering analysis, see: Cremer & Pople (1975). For general information about the chelate effect, see: Gade (1998).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 - 1 0]. Symmetry operators: i x, y - 1, z; ii x, y + 1, z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
4-((E)-{2-[N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H- pyrazol-4-yl)carboximidoyl]benzylidene}amino)-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-3-one top
Crystal data top
C30H28N6O2F(000) = 532
Mr = 504.58Dx = 1.321 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5101 reflections
a = 12.6048 (2) Åθ = 2.6–28.2°
b = 7.3389 (2) ŵ = 0.09 mm1
c = 14.3877 (3) ÅT = 200 K
β = 107.622 (1)°Rod, yellow
V = 1268.48 (5) Å30.33 × 0.15 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2806 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 2.6°
φ and ω scansh = 1616
12317 measured reflectionsk = 99
3399 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
3399 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.18 e Å3
0 constraints
Crystal data top
C30H28N6O2V = 1268.48 (5) Å3
Mr = 504.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.6048 (2) ŵ = 0.09 mm1
b = 7.3389 (2) ÅT = 200 K
c = 14.3877 (3) Å0.33 × 0.15 × 0.08 mm
β = 107.622 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2806 reflections with I > 2σ(I)
12317 measured reflectionsRint = 0.032
3399 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
3399 reflectionsΔρmin = 0.18 e Å3
347 parameters
Special details top

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (2450 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22361 (12)0.1543 (2)0.36994 (11)0.0389 (3)
O20.08533 (11)0.2814 (2)0.22952 (10)0.0368 (3)
N10.43019 (13)0.2449 (2)0.30112 (11)0.0319 (4)
N20.24983 (12)0.3960 (2)0.11404 (11)0.0307 (4)
N30.26332 (13)0.4405 (2)0.44041 (11)0.0313 (4)
N40.34923 (13)0.5696 (2)0.45284 (12)0.0329 (4)
N50.01135 (12)0.5670 (2)0.17718 (11)0.0290 (3)
N60.02704 (13)0.7000 (2)0.11152 (11)0.0307 (4)
C10.38269 (15)0.1028 (3)0.25442 (13)0.0300 (4)
H10.31220.06590.25900.036*
C20.28998 (15)0.2528 (3)0.16189 (13)0.0287 (4)
H20.25500.20040.20540.034*
C110.43573 (14)0.0033 (3)0.19412 (12)0.0271 (4)
C120.39117 (14)0.1687 (3)0.14939 (12)0.0268 (4)
C130.44707 (14)0.2614 (3)0.09350 (13)0.0320 (4)
H130.41790.37380.06380.038*
C140.54326 (16)0.1942 (3)0.08029 (14)0.0362 (5)
H140.57930.25860.04110.043*
C150.58734 (15)0.0316 (3)0.12471 (14)0.0353 (5)
H150.65420.01520.11650.042*
C160.53411 (15)0.0616 (3)0.18057 (13)0.0331 (5)
H160.56500.17280.21060.040*
C210.19608 (15)0.4426 (3)0.50392 (12)0.0291 (4)
C220.23326 (16)0.5253 (3)0.59461 (13)0.0366 (5)
H220.30590.57600.61680.044*
C230.16325 (18)0.5334 (3)0.65265 (14)0.0410 (5)
H230.18770.59220.71430.049*
C240.05832 (18)0.4567 (3)0.62151 (15)0.0404 (5)
H240.01040.46370.66120.048*
C250.02366 (17)0.3697 (3)0.53213 (14)0.0387 (5)
H250.04780.31430.51120.046*
C260.09157 (15)0.3625 (3)0.47301 (14)0.0331 (4)
H260.06700.30300.41150.040*
C310.09471 (14)0.5517 (3)0.19288 (12)0.0266 (4)
C320.19051 (15)0.6147 (3)0.12384 (13)0.0308 (4)
H320.18660.67110.06550.037*
C330.29113 (15)0.5939 (3)0.14162 (15)0.0371 (5)
H330.35720.63650.09500.044*
C340.29758 (16)0.5124 (3)0.22569 (16)0.0398 (5)
H340.36770.49970.23690.048*
C350.20286 (16)0.4491 (3)0.29363 (15)0.0389 (5)
H350.20740.39230.35160.047*
C360.10063 (15)0.4686 (3)0.27696 (13)0.0315 (4)
H360.03490.42480.32350.038*
C410.27970 (16)0.2948 (3)0.38473 (13)0.0308 (4)
C420.37715 (15)0.3447 (3)0.35641 (13)0.0300 (4)
C430.41402 (15)0.5094 (3)0.39719 (13)0.0312 (4)
C440.51017 (17)0.6187 (3)0.38933 (15)0.0396 (5)
H44A0.48310.72140.34490.059*
H44B0.55210.66500.45390.059*
H44C0.55870.54190.36400.059*
C450.31200 (19)0.7619 (3)0.44471 (16)0.0425 (5)
H45A0.25400.78010.38230.064*
H45B0.28210.79090.49840.064*
H45C0.37530.84190.44800.064*
C510.08748 (14)0.4251 (3)0.18620 (13)0.0275 (4)
C520.15879 (14)0.4847 (3)0.12943 (12)0.0271 (4)
C530.12091 (14)0.6489 (3)0.08866 (13)0.0293 (4)
C540.16732 (17)0.7650 (3)0.02611 (16)0.0416 (5)
H54A0.10970.78860.03580.062*
H54B0.23020.70240.01350.062*
H54C0.19270.88080.05930.062*
C550.01693 (18)0.8901 (3)0.14159 (16)0.0388 (5)
H55A0.07480.91480.20330.058*
H55B0.05660.90820.15020.058*
H55C0.02590.97340.09130.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0467 (8)0.0251 (8)0.0483 (8)0.0089 (6)0.0195 (7)0.0109 (7)
O20.0414 (7)0.0240 (7)0.0490 (8)0.0088 (6)0.0198 (6)0.0133 (7)
N10.0374 (8)0.0270 (9)0.0305 (8)0.0042 (7)0.0091 (7)0.0037 (7)
N20.0318 (8)0.0291 (9)0.0310 (8)0.0045 (7)0.0092 (6)0.0042 (7)
N30.0403 (8)0.0223 (8)0.0312 (8)0.0030 (7)0.0107 (7)0.0050 (7)
N40.0438 (9)0.0217 (9)0.0321 (8)0.0054 (7)0.0100 (7)0.0052 (7)
N50.0335 (8)0.0206 (8)0.0336 (8)0.0058 (7)0.0114 (6)0.0068 (7)
N60.0366 (8)0.0204 (8)0.0344 (8)0.0042 (7)0.0099 (7)0.0059 (7)
C10.0315 (9)0.0276 (11)0.0315 (9)0.0026 (8)0.0105 (8)0.0007 (9)
C20.0312 (9)0.0277 (10)0.0281 (9)0.0025 (8)0.0104 (7)0.0032 (8)
C110.0296 (8)0.0264 (10)0.0245 (8)0.0011 (8)0.0070 (7)0.0017 (8)
C120.0282 (8)0.0273 (10)0.0239 (8)0.0002 (8)0.0066 (7)0.0012 (8)
C130.0335 (9)0.0291 (10)0.0332 (10)0.0002 (8)0.0098 (8)0.0048 (9)
C140.0336 (10)0.0413 (12)0.0359 (10)0.0052 (9)0.0139 (8)0.0003 (10)
C150.0284 (9)0.0426 (13)0.0364 (10)0.0035 (9)0.0122 (8)0.0048 (10)
C160.0323 (9)0.0329 (12)0.0336 (10)0.0062 (9)0.0091 (8)0.0001 (9)
C210.0390 (9)0.0216 (9)0.0264 (9)0.0042 (8)0.0096 (7)0.0013 (8)
C220.0444 (10)0.0319 (11)0.0301 (9)0.0030 (10)0.0063 (8)0.0033 (9)
C230.0595 (12)0.0352 (12)0.0276 (9)0.0059 (11)0.0123 (9)0.0027 (9)
C240.0546 (12)0.0329 (12)0.0384 (11)0.0105 (10)0.0214 (9)0.0036 (10)
C250.0432 (11)0.0308 (11)0.0433 (11)0.0034 (10)0.0150 (9)0.0026 (10)
C260.0415 (10)0.0262 (10)0.0297 (9)0.0016 (9)0.0078 (8)0.0022 (8)
C310.0299 (8)0.0205 (9)0.0293 (9)0.0045 (8)0.0087 (7)0.0040 (8)
C320.0386 (10)0.0265 (10)0.0260 (9)0.0090 (9)0.0081 (8)0.0019 (8)
C330.0336 (9)0.0340 (12)0.0395 (10)0.0091 (9)0.0049 (8)0.0032 (9)
C340.0349 (10)0.0364 (12)0.0521 (12)0.0032 (9)0.0191 (9)0.0012 (10)
C350.0481 (11)0.0319 (11)0.0404 (11)0.0060 (10)0.0189 (9)0.0049 (10)
C360.0360 (9)0.0258 (10)0.0310 (9)0.0048 (8)0.0076 (8)0.0023 (8)
C410.0381 (10)0.0243 (10)0.0278 (9)0.0006 (8)0.0063 (8)0.0004 (8)
C420.0351 (9)0.0259 (10)0.0265 (9)0.0018 (8)0.0059 (8)0.0015 (8)
C430.0385 (10)0.0273 (10)0.0247 (8)0.0030 (9)0.0049 (8)0.0009 (8)
C440.0460 (11)0.0332 (12)0.0383 (11)0.0103 (10)0.0105 (9)0.0043 (9)
C450.0575 (13)0.0220 (11)0.0477 (12)0.0051 (10)0.0155 (10)0.0060 (10)
C510.0307 (9)0.0218 (10)0.0282 (9)0.0032 (8)0.0061 (7)0.0010 (8)
C520.0297 (8)0.0235 (9)0.0263 (8)0.0027 (8)0.0059 (7)0.0018 (8)
C530.0312 (9)0.0264 (10)0.0288 (9)0.0011 (8)0.0071 (7)0.0021 (9)
C540.0453 (11)0.0335 (12)0.0472 (12)0.0035 (10)0.0158 (10)0.0145 (11)
C550.0514 (12)0.0197 (10)0.0451 (12)0.0061 (9)0.0142 (10)0.0041 (9)
Geometric parameters (Å, º) top
O1—C411.232 (2)C23—H230.9500
O2—C511.229 (2)C24—C251.383 (3)
N1—C11.286 (3)C24—H240.9500
N1—C421.392 (2)C25—C261.378 (3)
N2—C21.274 (2)C25—H250.9500
N2—C521.394 (2)C26—H260.9500
N3—C411.389 (2)C31—C361.377 (3)
N3—N41.409 (2)C31—C321.390 (2)
N3—C211.422 (2)C32—C331.376 (3)
N4—C431.378 (2)C32—H320.9500
N4—C451.481 (3)C33—C341.374 (3)
N5—C511.395 (2)C33—H330.9500
N5—N61.413 (2)C34—C351.375 (3)
N5—C311.426 (2)C34—H340.9500
N6—C531.373 (2)C35—C361.388 (3)
N6—C551.478 (3)C35—H350.9500
C1—C111.469 (3)C36—H360.9500
C1—H10.9500C41—C421.453 (3)
C2—C121.476 (3)C42—C431.362 (3)
C2—H20.9500C43—C441.486 (3)
C11—C161.396 (2)C44—H44A0.9800
C11—C121.408 (3)C44—H44B0.9800
C12—C131.396 (3)C44—H44C0.9800
C13—C141.374 (3)C45—H45A0.9800
C13—H130.9500C45—H45B0.9800
C14—C151.388 (3)C45—H45C0.9800
C14—H140.9500C51—C521.453 (3)
C15—C161.375 (3)C52—C531.362 (3)
C15—H150.9500C53—C541.482 (3)
C16—H160.9500C54—H54A0.9800
C21—C221.386 (3)C54—H54B0.9800
C21—C261.387 (3)C54—H54C0.9800
C22—C231.388 (3)C55—H55A0.9800
C22—H220.9500C55—H55B0.9800
C23—C241.381 (3)C55—H55C0.9800
C1—N1—C42119.80 (16)C32—C31—N5120.91 (16)
C2—N2—C52120.71 (16)C33—C32—C31118.70 (17)
C41—N3—N4110.38 (14)C33—C32—H32120.7
C41—N3—C21126.90 (16)C31—C32—H32120.7
N4—N3—C21119.75 (15)C34—C33—C32121.04 (18)
C43—N4—N3106.19 (15)C34—C33—H33119.5
C43—N4—C45119.27 (17)C32—C33—H33119.5
N3—N4—C45114.69 (16)C33—C34—C35120.20 (18)
C51—N5—N6110.25 (14)C33—C34—H34119.9
C51—N5—C31125.29 (16)C35—C34—H34119.9
N6—N5—C31119.20 (14)C34—C35—C36119.62 (19)
C53—N6—N5106.08 (14)C34—C35—H35120.2
C53—N6—C55119.00 (17)C36—C35—H35120.2
N5—N6—C55114.48 (15)C31—C36—C35119.86 (17)
N1—C1—C11121.03 (17)C31—C36—H36120.1
N1—C1—H1119.5C35—C36—H36120.1
C11—C1—H1119.5O1—C41—N3124.51 (18)
N2—C2—C12119.71 (17)O1—C41—C42130.71 (19)
N2—C2—H2120.1N3—C41—C42104.68 (16)
C12—C2—H2120.1C43—C42—N1123.54 (18)
C16—C11—C12118.59 (17)C43—C42—C41108.06 (17)
C16—C11—C1118.93 (17)N1—C42—C41128.35 (17)
C12—C11—C1122.48 (16)C42—C43—N4110.47 (17)
C13—C12—C11118.83 (17)C42—C43—C44128.76 (19)
C13—C12—C2118.15 (17)N4—C43—C44120.76 (18)
C11—C12—C2122.98 (17)C43—C44—H44A109.5
C14—C13—C12121.67 (19)C43—C44—H44B109.5
C14—C13—H13119.2H44A—C44—H44B109.5
C12—C13—H13119.2C43—C44—H44C109.5
C13—C14—C15119.46 (19)H44A—C44—H44C109.5
C13—C14—H14120.3H44B—C44—H44C109.5
C15—C14—H14120.3N4—C45—H45A109.5
C16—C15—C14119.93 (18)N4—C45—H45B109.5
C16—C15—H15120.0H45A—C45—H45B109.5
C14—C15—H15120.0N4—C45—H45C109.5
C15—C16—C11121.53 (19)H45A—C45—H45C109.5
C15—C16—H16119.2H45B—C45—H45C109.5
C11—C16—H16119.2O2—C51—N5124.56 (17)
C22—C21—C26120.34 (18)O2—C51—C52130.96 (17)
C22—C21—N3120.80 (17)N5—C51—C52104.37 (16)
C26—C21—N3118.84 (16)C53—C52—N2122.88 (17)
C21—C22—C23119.34 (19)C53—C52—C51108.21 (16)
C21—C22—H22120.3N2—C52—C51128.89 (17)
C23—C22—H22120.3C52—C53—N6110.71 (17)
C24—C23—C22120.54 (19)C52—C53—C54128.22 (18)
C24—C23—H23119.7N6—C53—C54121.06 (17)
C22—C23—H23119.7C53—C54—H54A109.5
C23—C24—C25119.46 (19)C53—C54—H54B109.5
C23—C24—H24120.3H54A—C54—H54B109.5
C25—C24—H24120.3C53—C54—H54C109.5
C26—C25—C24120.7 (2)H54A—C54—H54C109.5
C26—C25—H25119.6H54B—C54—H54C109.5
C24—C25—H25119.6N6—C55—H55A109.5
C25—C26—C21119.52 (18)N6—C55—H55B109.5
C25—C26—H26120.2H55A—C55—H55B109.5
C21—C26—H26120.2N6—C55—H55C109.5
C36—C31—C32120.58 (17)H55A—C55—H55C109.5
C36—C31—N5118.48 (15)H55B—C55—H55C109.5
C41—N3—N4—C435.0 (2)C31—C32—C33—C340.0 (3)
C21—N3—N4—C43166.77 (16)C32—C33—C34—C350.4 (3)
C41—N3—N4—C45138.91 (17)C33—C34—C35—C360.3 (3)
C21—N3—N4—C4559.3 (2)C32—C31—C36—C350.6 (3)
C51—N5—N6—C536.49 (19)N5—C31—C36—C35178.99 (19)
C31—N5—N6—C53162.23 (16)C34—C35—C36—C310.2 (3)
C51—N5—N6—C55139.77 (17)N4—N3—C41—O1172.85 (17)
C31—N5—N6—C5564.5 (2)C21—N3—C41—O112.7 (3)
C42—N1—C1—C11178.92 (16)N4—N3—C41—C423.94 (19)
C52—N2—C2—C12175.70 (16)C21—N3—C41—C42164.11 (16)
N1—C1—C11—C166.0 (3)C1—N1—C42—C43170.82 (18)
N1—C1—C11—C12173.96 (17)C1—N1—C42—C4112.0 (3)
C16—C11—C12—C130.1 (2)O1—C41—C42—C43175.1 (2)
C1—C11—C12—C13179.78 (17)N3—C41—C42—C431.43 (19)
C16—C11—C12—C2177.71 (17)O1—C41—C42—N12.4 (3)
C1—C11—C12—C22.2 (3)N3—C41—C42—N1178.94 (17)
N2—C2—C12—C137.2 (3)N1—C42—C43—N4176.02 (17)
N2—C2—C12—C11175.19 (17)C41—C42—C43—N41.6 (2)
C11—C12—C13—C140.8 (3)N1—C42—C43—C442.9 (3)
C2—C12—C13—C14178.47 (16)C41—C42—C43—C44179.46 (18)
C12—C13—C14—C151.0 (3)N3—N4—C43—C424.0 (2)
C13—C14—C15—C160.6 (3)C45—N4—C43—C42135.41 (18)
C14—C15—C16—C110.0 (3)N3—N4—C43—C44176.99 (16)
C12—C11—C16—C150.2 (3)C45—N4—C43—C4445.6 (3)
C1—C11—C16—C15179.84 (17)N6—N5—C51—O2171.39 (17)
C41—N3—C21—C22137.5 (2)C31—N5—C51—O217.5 (3)
N4—N3—C21—C2221.0 (3)N6—N5—C51—C525.15 (19)
C41—N3—C21—C2643.5 (3)C31—N5—C51—C52159.09 (16)
N4—N3—C21—C26158.03 (17)C2—N2—C52—C53172.22 (17)
C26—C21—C22—C232.5 (3)C2—N2—C52—C519.2 (3)
N3—C21—C22—C23176.58 (19)O2—C51—C52—C53174.31 (19)
C21—C22—C23—C241.3 (3)N5—C51—C52—C531.92 (19)
C22—C23—C24—C250.7 (3)O2—C51—C52—N24.4 (3)
C23—C24—C25—C261.5 (3)N5—C51—C52—N2179.37 (17)
C24—C25—C26—C210.4 (3)N2—C52—C53—N6176.71 (16)
C22—C21—C26—C251.6 (3)C51—C52—C53—N62.1 (2)
N3—C21—C26—C25177.43 (18)N2—C52—C53—C542.3 (3)
C51—N5—C31—C3649.2 (3)C51—C52—C53—C54178.90 (19)
N6—N5—C31—C36159.00 (17)N5—N6—C53—C525.20 (19)
C51—N5—C31—C32129.2 (2)C55—N6—C53—C52135.95 (18)
N6—N5—C31—C3222.7 (3)N5—N6—C53—C54175.71 (17)
C36—C31—C32—C330.5 (3)C55—N6—C53—C5445.0 (3)
N5—C31—C32—C33178.85 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C45—H45A···O2i0.982.593.535 (2)161
C55—H55A···O1ii0.982.613.536 (3)158
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H28N6O2
Mr504.58
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)12.6048 (2), 7.3389 (2), 14.3877 (3)
β (°) 107.622 (1)
V3)1268.48 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.15 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12317, 3399, 2806
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 1.01
No. of reflections3399
No. of parameters347
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C45—H45A···O2i0.982.593.535 (2)160.9
C55—H55A···O1ii0.982.613.536 (3)158.1
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Mr John Robbins for financial and logistical support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley–VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYumata, N., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o2175.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds