organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,8-Bis(4-meth­­oxy-3-nitro­phen­yl)naphthalene

aDivision of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India, and bCenter for Materials Characterization, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
*Correspondence e-mail: ppy.prabhakaran@gmail.com

(Received 19 August 2011; accepted 8 September 2011; online 14 September 2011)

Mol­ecules of the title compound, C24H18N2O6, are located on a twofold rotation axis passing through through the central C—C bond of the naphthalene ring system. The mol­ecular conformation is characterized by a roughly coplanar arrangement of the two substituted phenyl rings [dihedral angle 18.53 (5)°]. These two aryl rings are each twisted by 65.40 (5)° from the plane of the naphthyl unit.

Related literature

For use of the title compound as a building block for the synthesis of multidentate ligands, see: Sabater et al. (2005[Sabater, L., Guillot, R. & Aukauloo, A. (2005). Tetrahedron Lett. 46, 8201-8209.]); Baruah et al. (2007[Baruah, P. K., Gonnade, R., Rajamohanan, P. R., Hofmann, H.-J. & Sanjayan, G. J. (2007). J. Org. Chem. 72, 5077-5084.]); Prabhakaran et al. (2009[Prabhakaran, P., Puranik, V. G., Chandran, J. N., Rajamohanan, P. R., Hofmann, H.-J. & Sanjayan, G. J. (2009). Chem. Commun. pp. 3446-3448.]). For the synthesis of the title compound, see: Letsinger et al. (1965[Letsinger, R. L., Smith, J. M., Gilpin, J. & MacLean, D. B. (1965). J. Org. Chem. 30, 807-812.]); Li et al. (2005[Li, J.-H., Liu, W.-J. & Xie, Y.-X. (2005). J. Org. Chem. 70, 5409-5412.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O6

  • Mr = 430.40

  • Tetragonal, I 41 c d

  • a = 13.3038 (9) Å

  • c = 22.7868 (11) Å

  • V = 4033.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.988

  • 9753 measured reflections

  • 959 independent reflections

  • 918 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.07

  • 959 reflections

  • 156 parameters

  • 1 restraint

  • Only H-atom displacement parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: pyMOL (DeLano, 2004[DeLano, W. L. (2004). The pyMOL Molecular Graphics System. http://www.pyMOL.org.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rigid building blocks with novel structural features are of considerable interest in designing functional solids. The biaryl based title compound has been synthesized and we report herein its crystal structure. It can be used as a building block for the synthesis of multidentate ligands (Sabater et al., 2005), foldamer synthesis (Baruah et al., 2007; Prabhakaran et al., 2009) and as a bridging unit in the design of molecules with antiparallel orientation.

The title molecule adopts a 'co-facial' structural architecture (Fig. 1). The two aryl rings are almost parallel orientation to each other and are nearly perpendicular to the rigid naphthyl unit. NO2 groups appended on the aryl rings are in anti orientation which are in contrast to the corresponding bis formyl derivative (Sabater et al., 2005).

Related literature top

For use of the title compound as a building block for the synthesis of multidentate ligands, see: Sabater et al. (2005); Baruah et al. (2007); Prabhakaran et al. (2009). For the synthesis of the title compound, see: Letsinger et al. (1965); Li et al. (2005).

Experimental top

1,8-naphthalene diboronic acid was synthesized according to the literature procedure (Letsinger et al., 1965). A sealed tube containing 1,8-naphthalene diboronic acid (1 g, 4.6 mmol, 1 equiv.), 4-iodo-1-methoxy-2-nitro benzene (3.87 g, 13.8 mmol, 3 equiv.), DABCO (24 mol%), pottassium carbonate (7 equiv.), TBAB (0.1 equiv.) and Pd(OAc)2 (12 mol%) in PEG-400 (4 ml) was subjected to suzuki coupling using a standard procedure (Li et al., 2005). After heating at 110 degree centigrade for 15 h, the tube was broken and the reaction mixture was taken in DCM. The organic layer was washed with dil HCl and the crude product was extracted into the organic layer. Work-up and purification of the crude product by column chromatography afforded an yellow solid (35%). Yellow needle shaped single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in a Ethyl acetate -light petroleum ether mixture at room temperature.

Refinement top

All the H atoms were located in a difference Fourier map and refined freely. No atoms heavier than Si were present and a meaningless Flack parameter was obtained, -0.7 (17). Therefore 877 Friedel pairs were merged before final refinement.

Structure description top

Rigid building blocks with novel structural features are of considerable interest in designing functional solids. The biaryl based title compound has been synthesized and we report herein its crystal structure. It can be used as a building block for the synthesis of multidentate ligands (Sabater et al., 2005), foldamer synthesis (Baruah et al., 2007; Prabhakaran et al., 2009) and as a bridging unit in the design of molecules with antiparallel orientation.

The title molecule adopts a 'co-facial' structural architecture (Fig. 1). The two aryl rings are almost parallel orientation to each other and are nearly perpendicular to the rigid naphthyl unit. NO2 groups appended on the aryl rings are in anti orientation which are in contrast to the corresponding bis formyl derivative (Sabater et al., 2005).

For use of the title compound as a building block for the synthesis of multidentate ligands, see: Sabater et al. (2005); Baruah et al. (2007); Prabhakaran et al. (2009). For the synthesis of the title compound, see: Letsinger et al. (1965); Li et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: pyMOL (DeLano, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
1,8-Bis-(4-methoxy-3-nitrophenyl)naphthalene top
Crystal data top
C24H18N2O6Dx = 1.418 Mg m3
Mr = 430.40Melting point: 494 K
Tetragonal, I41cdMo Kα radiation, λ = 0.71073 Å
Hall symbol: I 4bw -2cCell parameters from 4285 reflections
a = 13.3038 (9) Åθ = 2.8–27.5°
c = 22.7868 (11) ŵ = 0.10 mm1
V = 4033.1 (6) Å3T = 293 K
Z = 8Needle, yellow
F(000) = 17920.35 × 0.24 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
959 independent reflections
Radiation source: fine-focus sealed tube918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω Scan scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1216
Tmin = 0.965, Tmax = 0.988k = 1614
9753 measured reflectionsl = 2527
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088Only H-atom displacement parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.8056P]
where P = (Fo2 + 2Fc2)/3
959 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C24H18N2O6Z = 8
Mr = 430.40Mo Kα radiation
Tetragonal, I41cdµ = 0.10 mm1
a = 13.3038 (9) ÅT = 293 K
c = 22.7868 (11) Å0.35 × 0.24 × 0.12 mm
V = 4033.1 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
959 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
918 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.988Rint = 0.023
9753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.088Only H-atom displacement parameters refined
S = 1.07Δρmax = 0.19 e Å3
959 reflectionsΔρmin = 0.20 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82311 (12)0.58354 (11)0.35152 (7)0.0469 (4)
O20.76244 (14)0.63612 (12)0.32705 (7)0.0833 (6)
O30.85433 (18)0.60222 (14)0.40005 (7)0.0931 (7)
O40.86899 (11)0.40341 (10)0.40686 (6)0.0546 (4)
C10.92726 (13)0.43673 (14)0.16094 (8)0.0426 (4)
C20.86451 (15)0.37792 (16)0.12783 (10)0.0533 (5)
H20.81880.33650.14700.057 (6)*
C30.86637 (18)0.37761 (19)0.06630 (10)0.0624 (6)
H30.82320.33620.04520.054 (6)*
C41.06781 (17)0.56135 (18)0.03803 (9)0.0603 (6)
H41.06750.56000.00280.052 (6)*
C51.00000.50000.06919 (11)0.0483 (6)
C61.00000.50000.13242 (11)0.0416 (5)
C70.91362 (12)0.42884 (13)0.22606 (7)0.0398 (4)
C80.87701 (11)0.50813 (12)0.25959 (7)0.0373 (4)
H80.86170.56890.24160.033 (4)*
C90.86311 (12)0.49760 (12)0.31946 (7)0.0384 (4)
C100.88427 (12)0.40744 (13)0.34828 (8)0.0417 (4)
C110.91814 (14)0.32758 (13)0.31419 (9)0.0460 (4)
H110.93170.26600.33180.056 (5)*
C120.93181 (13)0.33873 (14)0.25471 (8)0.0455 (4)
H120.95400.28390.23300.042 (5)*
C130.89059 (19)0.31077 (18)0.43594 (9)0.0624 (6)
H13A0.84900.25850.42000.069 (7)*
H13B0.87720.31770.47710.083 (8)*
H13C0.96010.29380.43020.067 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0583 (9)0.0482 (8)0.0342 (8)0.0077 (7)0.0010 (7)0.0013 (6)
O20.1003 (13)0.0813 (11)0.0682 (11)0.0486 (10)0.0270 (10)0.0212 (9)
O30.1602 (18)0.0772 (12)0.0417 (10)0.0396 (12)0.0298 (11)0.0138 (8)
O40.0720 (9)0.0572 (8)0.0347 (7)0.0103 (6)0.0072 (6)0.0128 (6)
C10.0463 (9)0.0471 (9)0.0345 (9)0.0074 (7)0.0020 (7)0.0019 (7)
C20.0553 (11)0.0579 (12)0.0467 (10)0.0007 (9)0.0051 (10)0.0060 (9)
C30.0673 (13)0.0728 (14)0.0470 (12)0.0058 (10)0.0176 (11)0.0178 (10)
C40.0719 (13)0.0799 (15)0.0292 (9)0.0164 (12)0.0086 (9)0.0108 (10)
C50.0563 (15)0.0583 (15)0.0305 (14)0.0153 (11)0.0000.000
C60.0476 (13)0.0499 (13)0.0274 (11)0.0130 (11)0.0000.000
C70.0386 (8)0.0464 (10)0.0343 (9)0.0015 (7)0.0013 (7)0.0012 (7)
C80.0370 (8)0.0414 (8)0.0335 (8)0.0013 (6)0.0048 (7)0.0050 (7)
C90.0377 (8)0.0433 (9)0.0342 (9)0.0009 (6)0.0013 (7)0.0010 (7)
C100.0416 (9)0.0457 (9)0.0380 (9)0.0016 (7)0.0002 (8)0.0064 (7)
C110.0541 (10)0.0381 (9)0.0457 (11)0.0020 (7)0.0009 (8)0.0097 (7)
C120.0506 (10)0.0417 (9)0.0442 (10)0.0015 (7)0.0005 (8)0.0036 (8)
C130.0770 (15)0.0650 (13)0.0452 (13)0.0061 (11)0.0006 (10)0.0205 (10)
Geometric parameters (Å, º) top
N1—O21.205 (2)C5—C4i1.409 (3)
N1—O31.207 (2)C5—C61.441 (3)
N1—C91.457 (2)C6—C1i1.438 (2)
O4—C101.351 (2)C7—C121.386 (3)
O4—C131.428 (3)C7—C81.390 (2)
C1—C21.371 (3)C8—C91.384 (2)
C1—C61.438 (2)C8—H80.9300
C1—C71.499 (2)C9—C101.396 (2)
C2—C31.402 (3)C10—C111.391 (3)
C2—H20.9300C11—C121.376 (3)
C3—C4i1.357 (3)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C3i1.357 (3)C13—H13A0.9600
C4—C51.409 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
O2—N1—O3122.34 (16)C12—C7—C1120.37 (16)
O2—N1—C9117.92 (15)C8—C7—C1122.23 (15)
O3—N1—C9119.67 (16)C9—C8—C7120.78 (15)
C10—O4—C13117.53 (15)C9—C8—H8119.6
C2—C1—C6119.70 (18)C7—C8—H8119.6
C2—C1—C7115.55 (17)C8—C9—C10121.58 (15)
C6—C1—C7124.75 (16)C8—C9—N1117.62 (14)
C1—C2—C3122.8 (2)C10—C9—N1120.79 (15)
C1—C2—H2118.6O4—C10—C11124.76 (15)
C3—C2—H2118.6O4—C10—C9117.93 (15)
C4i—C3—C2119.0 (2)C11—C10—C9117.31 (16)
C4i—C3—H3120.5C12—C11—C10120.71 (17)
C2—C3—H3120.5C12—C11—H11119.6
C3i—C4—C5121.4 (2)C10—C11—H11119.6
C3i—C4—H4119.3C11—C12—C7122.28 (17)
C5—C4—H4119.3C11—C12—H12118.9
C4—C5—C4i119.5 (3)C7—C12—H12118.9
C4—C5—C6120.27 (13)O4—C13—H13A109.5
C4i—C5—C6120.27 (13)O4—C13—H13B109.5
C1i—C6—C1126.3 (2)H13A—C13—H13B109.5
C1i—C6—C5116.87 (11)O4—C13—H13C109.5
C1—C6—C5116.87 (11)H13A—C13—H13C109.5
C12—C7—C8117.29 (15)H13B—C13—H13C109.5
C6—C1—C2—C31.2 (3)C1—C7—C8—C9178.49 (14)
C7—C1—C2—C3178.96 (19)C7—C8—C9—C100.6 (2)
C1—C2—C3—C4i0.7 (3)C7—C8—C9—N1179.13 (15)
C3i—C4—C5—C4i179.3 (2)O2—N1—C9—C834.9 (2)
C3i—C4—C5—C60.7 (2)O3—N1—C9—C8142.0 (2)
C2—C1—C6—C1i177.96 (18)O2—N1—C9—C10143.71 (18)
C7—C1—C6—C1i1.86 (12)O3—N1—C9—C1039.4 (3)
C2—C1—C6—C52.04 (18)C13—O4—C10—C110.9 (3)
C7—C1—C6—C5178.14 (12)C13—O4—C10—C9179.84 (18)
C4—C5—C6—C1i1.12 (13)C8—C9—C10—O4179.78 (15)
C4i—C5—C6—C1i178.88 (13)N1—C9—C10—O41.7 (2)
C4—C5—C6—C1178.88 (13)C8—C9—C10—C111.2 (2)
C4i—C5—C6—C11.12 (13)N1—C9—C10—C11177.28 (16)
C2—C1—C7—C1263.6 (2)O4—C10—C11—C12179.82 (18)
C6—C1—C7—C12116.24 (17)C9—C10—C11—C121.3 (3)
C2—C1—C7—C8112.50 (19)C10—C11—C12—C70.5 (3)
C6—C1—C7—C867.7 (2)C8—C7—C12—C112.3 (3)
C12—C7—C8—C92.3 (2)C1—C7—C12—C11178.55 (17)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H18N2O6
Mr430.40
Crystal system, space groupTetragonal, I41cd
Temperature (K)293
a, c (Å)13.3038 (9), 22.7868 (11)
V3)4033.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.965, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9753, 959, 918
Rint0.023
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.07
No. of reflections959
No. of parameters156
No. of restraints1
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), pyMOL (DeLano, 2004), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the International Foundation for Science (IFS), Sweden, for funding and Tia Jacobs, University of Leeds, England, for helpful discussions.

References

First citationBaruah, P. K., Gonnade, R., Rajamohanan, P. R., Hofmann, H.-J. & Sanjayan, G. J. (2007). J. Org. Chem. 72, 5077–5084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeLano, W. L. (2004). The pyMOL Molecular Graphics System. http://www.pyMOL.org.  Google Scholar
First citationLetsinger, R. L., Smith, J. M., Gilpin, J. & MacLean, D. B. (1965). J. Org. Chem. 30, 807–812.  CrossRef CAS Web of Science Google Scholar
First citationLi, J.-H., Liu, W.-J. & Xie, Y.-X. (2005). J. Org. Chem. 70, 5409–5412.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrabhakaran, P., Puranik, V. G., Chandran, J. N., Rajamohanan, P. R., Hofmann, H.-J. & Sanjayan, G. J. (2009). Chem. Commun. pp. 3446–3448.  Web of Science CSD CrossRef Google Scholar
First citationSabater, L., Guillot, R. & Aukauloo, A. (2005). Tetrahedron Lett. 46, 8201–8209.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds