organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(4-Bromo­phen­yl)ethyl­­idene]-4-hy­dr­oxy-2-methyl-1,1-dioxo-2H-1,2-benzo­thia­zine-3-carbohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cX-ray Diffraction and Physical Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Lahore 54590, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 30 August 2011; accepted 1 September 2011; online 14 September 2011)

The six-membered heterocycle in the title compound, C18H16BrN3O4S, adopts a sofa conformation. Intra­molecular N—H⋯N and O—H⋯O hydrogen bonds stabilize the mol­ecular conformation by forming a five- and a six-membered ring, respectively. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background, see: Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For synthesis details, see: Ahmad et al. (2011[Ahmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Fasih Ullah, M. & Pervez, M. (2011). Eur. J. Med. Chem. 46, 2368-2377.]). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16BrN3O4S

  • Mr = 450.31

  • Monoclinic, P 21 /c

  • a = 14.692 (2) Å

  • b = 16.562 (2) Å

  • c = 7.5254 (10) Å

  • β = 104.820 (1)°

  • V = 1770.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 173 K

  • 0.48 × 0.36 × 0.11 mm

Data collection
  • Siemens SMART diffractometer equipped with a Bruker KappaCCD APEXII

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.383, Tmax = 0.773

  • 21408 measured reflections

  • 4490 independent reflections

  • 3600 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.03

  • 4490 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O2i 0.95 (3) 2.38 (3) 3.275 (2) 158 (2)
C17—H17A⋯O4ii 0.95 (3) 2.54 (3) 3.479 (2) 171 (2)
N2—H2N⋯N1 0.84 (3) 2.24 (3) 2.690 (2) 114 (2)
O1—H1O⋯O4 0.82 (3) 1.86 (3) 2.5979 (18) 148 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. pp. 189-191.]).

Supporting information


Comment top

In continuation of our on-going research on various biologically active benzothiazine derivatives (Zia-ur-Rehman et al., 2009; Ahmad et al., 2011) synthesis and crystal structure of the title molecule (I) is reported here.

In the crystal structure of the title compound (I), two fused rings (benzene & thiazine) are twisted with a dihedral angle of 13.61 (10)° while the later (C1/C6/C7/C8/N1/S1) adopts half chair conformation [Nitrogen (0.3564 (10)Å and sulfur (-0.3114 (9) Å) atoms show maximum deviation from the least square plane]. The bromophenyl ring (C11—C16) is oriented almost at the same dihedral angle that measures 27.93 (7)° and 26.23 (8)° with respect to the thiazine and aromatic ring (C1—C6). Intramolecular hydrogen bonding through O—H···O and N—H···N interactions gives rise to two different rings S11(6) A and S11(5) B respectively (Figure 1). Rings generated from intramolecular hydrogen bondings are fused and twisted at dihedral angle of 5.01 (82)Å and both are inclined at 22.00 (47)Å and 18.83 (27)Å with respect to the thiazine ring. Molecules of the title compound (I) are involved in symmetry related C—H···O weak interactions which form inversion dimers and give rise to the formation of a twelve membered ring R22(12) (Bernstein et al., 1995). The dimers are further linked through another C—H···O interaction generating from N-methyl hydrogen and sulfone oxygen atoms giving rise to two dimensional polymeric network along bc plane (Figure 2., Table 1).

Related literature top

For general background, see: Zia-ur-Rehman et al. (2009). For synthesis details, see: Ahmad et al. (2011). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-hydroxy-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide (2.0 mmol), 4-bromo acetophenone (2.0 mmol), ortho phosphoric acid (2 drops) and methanol (50 ml) was refluxed for a period of seven hours. The content was cooled to 5°C in an ice bath, filtered and the solids were washed with cold methanol to get the pure compound. The product was crystallized from ethanol to get the suitable crystals. Yield: 82%.

Refinement top

The coordinates of all H atoms were refined with U(H) set to 1.2Ueq for all N and aromatic C atoms and 1.5Ueq for O and Cmethyl.

Structure description top

In continuation of our on-going research on various biologically active benzothiazine derivatives (Zia-ur-Rehman et al., 2009; Ahmad et al., 2011) synthesis and crystal structure of the title molecule (I) is reported here.

In the crystal structure of the title compound (I), two fused rings (benzene & thiazine) are twisted with a dihedral angle of 13.61 (10)° while the later (C1/C6/C7/C8/N1/S1) adopts half chair conformation [Nitrogen (0.3564 (10)Å and sulfur (-0.3114 (9) Å) atoms show maximum deviation from the least square plane]. The bromophenyl ring (C11—C16) is oriented almost at the same dihedral angle that measures 27.93 (7)° and 26.23 (8)° with respect to the thiazine and aromatic ring (C1—C6). Intramolecular hydrogen bonding through O—H···O and N—H···N interactions gives rise to two different rings S11(6) A and S11(5) B respectively (Figure 1). Rings generated from intramolecular hydrogen bondings are fused and twisted at dihedral angle of 5.01 (82)Å and both are inclined at 22.00 (47)Å and 18.83 (27)Å with respect to the thiazine ring. Molecules of the title compound (I) are involved in symmetry related C—H···O weak interactions which form inversion dimers and give rise to the formation of a twelve membered ring R22(12) (Bernstein et al., 1995). The dimers are further linked through another C—H···O interaction generating from N-methyl hydrogen and sulfone oxygen atoms giving rise to two dimensional polymeric network along bc plane (Figure 2., Table 1).

For general background, see: Zia-ur-Rehman et al. (2009). For synthesis details, see: Ahmad et al. (2011). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1999).
[Figure 2] Fig. 2. The unit cell packing of the title compound; H bonds have been plotted with dashed lines and H-atoms not involved in hydrogen bonds have been excluded for clarity.
N'-[(E)-1-(4-Bromophenyl)ethylidene]-4-hydroxy-2-methyl- 1,1-dioxo-2H-1,2-benzothiazine-3-carbohydrazide top
Crystal data top
C18H16BrN3O4SF(000) = 912
Mr = 450.31Dx = 1.690 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6699 reflections
a = 14.692 (2) Åθ = 2.9–28.6°
b = 16.562 (2) ŵ = 2.47 mm1
c = 7.5254 (10) ÅT = 173 K
β = 104.820 (1)°Block, light yellow
V = 1770.2 (4) Å30.48 × 0.36 × 0.11 mm
Z = 4
Data collection top
Siemens SMART
diffractometer equipped with a Bruker KappaCCD APEXII
4490 independent reflections
Radiation source: fine-focus sealed tube3600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.383, Tmax = 0.773k = 2222
21408 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0314P)2 + 1.043P]
where P = (Fo2 + 2Fc2)/3
4490 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H16BrN3O4SV = 1770.2 (4) Å3
Mr = 450.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.692 (2) ŵ = 2.47 mm1
b = 16.562 (2) ÅT = 173 K
c = 7.5254 (10) Å0.48 × 0.36 × 0.11 mm
β = 104.820 (1)°
Data collection top
Siemens SMART
diffractometer equipped with a Bruker KappaCCD APEXII
4490 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3600 reflections with I > 2σ(I)
Tmin = 0.383, Tmax = 0.773Rint = 0.034
21408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
4490 reflectionsΔρmin = 0.40 e Å3
292 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74833 (13)0.08528 (11)0.1120 (2)0.0143 (4)
C20.83074 (14)0.10149 (12)0.0597 (3)0.0192 (4)
C30.87895 (14)0.03747 (13)0.0071 (3)0.0214 (4)
C40.84550 (14)0.04104 (12)0.0080 (3)0.0191 (4)
C50.76259 (13)0.05643 (11)0.0574 (3)0.0153 (4)
C60.71272 (12)0.00689 (11)0.1115 (2)0.0125 (3)
C70.62439 (12)0.00730 (10)0.1649 (2)0.0118 (3)
C80.58824 (12)0.04814 (10)0.2620 (2)0.0126 (3)
C90.49476 (12)0.03746 (10)0.2936 (2)0.0122 (3)
C100.35797 (12)0.15959 (11)0.5072 (2)0.0126 (3)
C110.25982 (12)0.16068 (11)0.5279 (2)0.0127 (3)
C120.19684 (13)0.09850 (11)0.4527 (2)0.0143 (4)
C130.10540 (13)0.09808 (12)0.4725 (3)0.0171 (4)
C140.07621 (12)0.16057 (12)0.5683 (3)0.0168 (4)
C150.13608 (13)0.22345 (12)0.6414 (3)0.0166 (4)
C160.22758 (13)0.22328 (11)0.6209 (2)0.0146 (4)
C170.70484 (14)0.11010 (12)0.5184 (3)0.0177 (4)
C180.42638 (14)0.22228 (12)0.6057 (3)0.0179 (4)
N10.63983 (10)0.12026 (9)0.3325 (2)0.0127 (3)
N20.46422 (11)0.10249 (9)0.3728 (2)0.0132 (3)
N30.37590 (10)0.10297 (9)0.4031 (2)0.0134 (3)
O10.58057 (9)0.07719 (8)0.10541 (17)0.0144 (3)
O20.74855 (9)0.22587 (8)0.26881 (19)0.0195 (3)
O30.60735 (9)0.18640 (8)0.02540 (19)0.0185 (3)
O40.44888 (9)0.02546 (7)0.25045 (17)0.0147 (3)
S10.68413 (3)0.16496 (3)0.17764 (6)0.01416 (10)
Br10.047586 (14)0.160120 (14)0.60056 (3)0.02823 (7)
H1O0.530 (2)0.0778 (16)0.134 (4)0.042*
H20.8547 (18)0.1523 (15)0.064 (3)0.034*
H2N0.5020 (19)0.1414 (16)0.401 (3)0.034*
H30.9330 (18)0.0479 (15)0.028 (3)0.034*
H40.8796 (18)0.0832 (15)0.022 (3)0.034*
H50.7398 (17)0.1094 (15)0.056 (3)0.034*
H120.2183 (17)0.0564 (15)0.385 (3)0.034*
H130.0610 (17)0.0546 (16)0.420 (3)0.034*
H150.1165 (17)0.2691 (15)0.707 (3)0.034*
H160.2668 (18)0.2657 (15)0.667 (3)0.034*
H17A0.6686 (19)0.0859 (16)0.592 (4)0.042*
H17B0.758 (2)0.0739 (16)0.512 (4)0.042*
H17C0.727 (2)0.1614 (16)0.566 (4)0.042*
H18A0.488 (2)0.2076 (17)0.624 (4)0.042*
H18B0.4183 (18)0.2313 (16)0.732 (4)0.042*
H18C0.4163 (19)0.2714 (17)0.549 (4)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0125 (8)0.0151 (9)0.0161 (9)0.0036 (7)0.0051 (7)0.0024 (7)
C20.0163 (9)0.0179 (10)0.0260 (10)0.0013 (7)0.0100 (8)0.0032 (8)
C30.0145 (9)0.0274 (11)0.0252 (11)0.0027 (8)0.0101 (8)0.0029 (8)
C40.0178 (10)0.0220 (10)0.0188 (10)0.0065 (8)0.0072 (8)0.0013 (8)
C50.0173 (9)0.0162 (9)0.0125 (9)0.0020 (7)0.0039 (7)0.0005 (7)
C60.0124 (8)0.0136 (8)0.0109 (8)0.0026 (7)0.0021 (7)0.0014 (6)
C70.0115 (8)0.0113 (8)0.0120 (8)0.0003 (6)0.0021 (7)0.0026 (6)
C80.0119 (8)0.0125 (8)0.0135 (9)0.0008 (7)0.0032 (7)0.0011 (7)
C90.0131 (8)0.0140 (8)0.0093 (8)0.0013 (7)0.0025 (6)0.0032 (6)
C100.0120 (8)0.0143 (8)0.0110 (8)0.0003 (7)0.0023 (6)0.0025 (7)
C110.0115 (8)0.0159 (9)0.0111 (8)0.0001 (7)0.0034 (6)0.0034 (7)
C120.0151 (9)0.0131 (9)0.0148 (9)0.0004 (7)0.0042 (7)0.0012 (7)
C130.0138 (9)0.0170 (9)0.0200 (10)0.0018 (7)0.0035 (7)0.0005 (7)
C140.0099 (8)0.0218 (9)0.0196 (9)0.0012 (7)0.0055 (7)0.0039 (7)
C150.0168 (9)0.0188 (9)0.0152 (9)0.0020 (7)0.0057 (7)0.0006 (7)
C160.0162 (9)0.0148 (9)0.0132 (9)0.0004 (7)0.0045 (7)0.0004 (7)
C170.0179 (10)0.0177 (10)0.0171 (10)0.0017 (8)0.0036 (8)0.0016 (7)
C180.0153 (9)0.0185 (10)0.0211 (10)0.0032 (7)0.0067 (8)0.0036 (8)
N10.0127 (7)0.0103 (7)0.0166 (8)0.0011 (6)0.0064 (6)0.0000 (6)
N20.0103 (7)0.0151 (8)0.0150 (8)0.0007 (6)0.0045 (6)0.0001 (6)
N30.0114 (7)0.0164 (8)0.0132 (7)0.0008 (6)0.0042 (6)0.0024 (6)
O10.0136 (6)0.0134 (6)0.0163 (7)0.0016 (5)0.0043 (5)0.0008 (5)
O20.0179 (7)0.0126 (6)0.0297 (8)0.0017 (5)0.0093 (6)0.0000 (5)
O30.0158 (7)0.0167 (7)0.0239 (7)0.0040 (5)0.0069 (6)0.0058 (5)
O40.0141 (6)0.0146 (6)0.0160 (6)0.0021 (5)0.0048 (5)0.0004 (5)
S10.0124 (2)0.0112 (2)0.0204 (2)0.00122 (16)0.00694 (17)0.00262 (17)
Br10.01334 (10)0.03465 (13)0.03960 (14)0.00017 (8)0.01204 (9)0.00172 (10)
Geometric parameters (Å, º) top
C1—C21.392 (3)C12—C131.389 (3)
C1—C61.399 (3)C12—H120.96 (3)
C1—S11.7646 (18)C13—C141.390 (3)
C2—C31.388 (3)C13—H130.98 (3)
C2—H20.91 (2)C14—C151.383 (3)
C3—C41.391 (3)C14—Br11.8956 (18)
C3—H30.91 (3)C15—C161.392 (3)
C4—C51.385 (3)C15—H150.99 (3)
C4—H40.92 (3)C16—H160.92 (3)
C5—C61.398 (2)C17—N11.488 (2)
C5—H50.94 (3)C17—H17A0.95 (3)
C6—C71.472 (2)C17—H17B1.00 (3)
C7—O11.344 (2)C17—H17C0.95 (3)
C7—C81.363 (2)C18—H18A0.92 (3)
C8—N11.441 (2)C18—H18B1.00 (3)
C8—C91.463 (2)C18—H18C0.91 (3)
C9—O41.239 (2)N1—S11.6488 (15)
C9—N21.361 (2)N2—N31.374 (2)
C10—N31.291 (2)N2—H2N0.84 (3)
C10—C111.490 (2)O1—H1O0.82 (3)
C10—C181.502 (3)O2—S11.4326 (14)
C11—C161.400 (3)O3—S11.4318 (14)
C11—C121.403 (2)
C2—C1—C6122.01 (17)C12—C13—H13121.4 (14)
C2—C1—S1120.07 (14)C14—C13—H13119.5 (14)
C6—C1—S1117.92 (13)C15—C14—C13121.17 (17)
C3—C2—C1118.53 (18)C15—C14—Br1119.05 (14)
C3—C2—H2119.8 (16)C13—C14—Br1119.79 (14)
C1—C2—H2121.6 (16)C14—C15—C16119.24 (17)
C2—C3—C4120.41 (18)C14—C15—H15122.6 (14)
C2—C3—H3118.7 (16)C16—C15—H15118.2 (14)
C4—C3—H3120.8 (16)C15—C16—C11121.13 (17)
C5—C4—C3120.63 (18)C15—C16—H16119.1 (16)
C5—C4—H4119.9 (15)C11—C16—H16119.7 (16)
C3—C4—H4119.5 (15)N1—C17—H17A106.1 (16)
C4—C5—C6120.16 (18)N1—C17—H17B110.2 (15)
C4—C5—H5120.3 (15)H17A—C17—H17B110 (2)
C6—C5—H5119.5 (15)N1—C17—H17C109.3 (16)
C5—C6—C1118.24 (16)H17A—C17—H17C110 (2)
C5—C6—C7121.59 (16)H17B—C17—H17C111 (2)
C1—C6—C7120.17 (15)C10—C18—H18A113.8 (17)
O1—C7—C8122.64 (16)C10—C18—H18B110.2 (15)
O1—C7—C6115.28 (15)H18A—C18—H18B105 (2)
C8—C7—C6122.03 (16)C10—C18—H18C112.1 (17)
C7—C8—N1121.02 (15)H18A—C18—H18C110 (2)
C7—C8—C9121.10 (16)H18B—C18—H18C106 (2)
N1—C8—C9117.86 (15)C8—N1—C17113.77 (14)
O4—C9—N2124.22 (16)C8—N1—S1112.18 (12)
O4—C9—C8121.97 (16)C17—N1—S1116.15 (12)
N2—C9—C8113.81 (15)C9—N2—N3120.56 (15)
N3—C10—C11115.16 (16)C9—N2—H2N116.5 (18)
N3—C10—C18125.93 (16)N3—N2—H2N123.0 (18)
C11—C10—C18118.91 (16)C10—N3—N2116.92 (15)
C16—C11—C12118.21 (16)C7—O1—H1O108.1 (19)
C16—C11—C10121.45 (16)O3—S1—O2119.83 (8)
C12—C11—C10120.34 (16)O3—S1—N1107.72 (8)
C13—C12—C11121.10 (17)O2—S1—N1108.04 (8)
C13—C12—H12120.6 (15)O3—S1—C1109.24 (9)
C11—C12—H12118.3 (15)O2—S1—C1109.01 (8)
C12—C13—C14119.14 (17)N1—S1—C1101.43 (8)
C6—C1—C2—C30.5 (3)C11—C12—C13—C140.1 (3)
S1—C1—C2—C3179.37 (15)C12—C13—C14—C151.0 (3)
C1—C2—C3—C40.4 (3)C12—C13—C14—Br1178.89 (14)
C2—C3—C4—C51.4 (3)C13—C14—C15—C161.0 (3)
C3—C4—C5—C61.6 (3)Br1—C14—C15—C16178.84 (14)
C4—C5—C6—C10.7 (3)C14—C15—C16—C110.0 (3)
C4—C5—C6—C7179.99 (17)C12—C11—C16—C151.1 (3)
C2—C1—C6—C50.3 (3)C10—C11—C16—C15179.30 (17)
S1—C1—C6—C5179.21 (13)C7—C8—N1—C1788.2 (2)
C2—C1—C6—C7178.95 (17)C9—C8—N1—C1793.45 (19)
S1—C1—C6—C70.1 (2)C7—C8—N1—S146.2 (2)
C5—C6—C7—O119.8 (2)C9—C8—N1—S1132.15 (14)
C1—C6—C7—O1159.41 (16)O4—C9—N2—N32.8 (3)
C5—C6—C7—C8162.47 (17)C8—C9—N2—N3176.94 (15)
C1—C6—C7—C818.3 (3)C11—C10—N3—N2176.67 (14)
O1—C7—C8—N1176.41 (15)C18—C10—N3—N23.4 (3)
C6—C7—C8—N16.1 (3)C9—N2—N3—C10167.98 (16)
O1—C7—C8—C95.3 (3)C8—N1—S1—O360.35 (14)
C6—C7—C8—C9172.21 (16)C17—N1—S1—O3166.41 (13)
C7—C8—C9—O47.4 (3)C8—N1—S1—O2168.87 (12)
N1—C8—C9—O4174.25 (15)C17—N1—S1—O235.63 (15)
C7—C8—C9—N2172.33 (16)C8—N1—S1—C154.33 (13)
N1—C8—C9—N26.0 (2)C17—N1—S1—C178.91 (14)
N3—C10—C11—C16173.38 (16)C2—C1—S1—O398.82 (17)
C18—C10—C11—C166.6 (3)C6—C1—S1—O380.10 (16)
N3—C10—C11—C126.2 (2)C2—C1—S1—O233.83 (18)
C18—C10—C11—C12173.73 (17)C6—C1—S1—O2147.26 (14)
C16—C11—C12—C131.1 (3)C2—C1—S1—N1147.64 (16)
C10—C11—C12—C13179.26 (16)C6—C1—S1—N133.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O2i0.95 (3)2.38 (3)3.275 (2)158 (2)
C17—H17A···O4ii0.95 (3)2.54 (3)3.479 (2)171 (2)
N2—H2N···N10.84 (3)2.24 (3)2.690 (2)114 (2)
O1—H1O···O40.82 (3)1.86 (3)2.5979 (18)148 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H16BrN3O4S
Mr450.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.692 (2), 16.562 (2), 7.5254 (10)
β (°) 104.820 (1)
V3)1770.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.48 × 0.36 × 0.11
Data collection
DiffractometerSiemens SMART
diffractometer equipped with a Bruker KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.383, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
21408, 4490, 3600
Rint0.034
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.03
No. of reflections4490
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O2i0.95 (3)2.38 (3)3.275 (2)158 (2)
C17—H17A···O4ii0.95 (3)2.54 (3)3.479 (2)171 (2)
N2—H2N···N10.84 (3)2.24 (3)2.690 (2)114 (2)
O1—H1O···O40.82 (3)1.86 (3)2.5979 (18)148 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

NA is grateful to the Higher Education Commission of Pakistan for the award of an HEC indigenous scholarship.

References

First citationAhmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Fasih Ullah, M. & Pervez, M. (2011). Eur. J. Med. Chem. 46, 2368–2377.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. pp. 189–191.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds