organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-(5-Hy­dr­oxy-5H-dibenzo[a,d]cyclo­hepten-5-yl)prop­yl]di­methyl­ammonium 3-carboxyprop-2-enoate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 September 2011; accepted 5 September 2011; online 14 September 2011)

In the cation of the title salt, C20H24NO+·C4H3O4, the N atom in the dimethyl­ammonium group is protonated. The dihedral angle between the mean planes of the two six-membered rings fused to the cyclo­hepten-5-yl ring is 54.4 (1)°. An intra­molecular O—H⋯O hydrogen bond occurs in the anion. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯(O,O) hydrogen bonds and weak C—H⋯O inter­actions, forming a two-dimensional network.

Related literature

The title compound is used in the preparation of cyclo­benzaprine (systematic name: 3-(5H-dibenzo[a,d]cyclo­hepten-5-yl­idene)-N,N-dimethyl-1-propanamine), a muscle relaxant used to relieve skeletal muscle spasms and associated pain in acute musculoskeletal conditions. For its structural relationships to first-generation tricyclic anti­depressants, see: Com­miss­iong et al. (1981[Commissiong, J. W., Karoum, F., Reiffenstein, R. J. & Neff, N. H. (1981). Can. J. Physiol. Pharmacol. 59, 37-44.]); Katz & Dube (1988[Katz, W. A. & Dube, J. (1988). Clin. Ther. 10, 216-228.]); Cimolai (2009[Cimolai, N. (2009). Exp. Rev. Clin. Pharm. 2, 255-263.]). For related structures, see: Bindya et al. (2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]); Jasinski, Pek et al. (2010[Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012-o2013.]); Jasinski, Butcher et al. (2010[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366-o367.]); Fun et al. (2011[Fun, H.-K., Yeap, C. S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1584.]); Siddegowda et al. (2011[Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o1846.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24NO+·C4H3O4

  • Mr = 409.47

  • Monoclinic, P 21

  • a = 9.2115 (2) Å

  • b = 11.5840 (2) Å

  • c = 10.4640 (2) Å

  • β = 101.591 (2)°

  • V = 1093.80 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.40 × 0.22 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 0.983

  • 9674 measured reflections

  • 2834 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.04

  • 2834 reflections

  • 282 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 0.83 (2) 1.95 (2) 2.770 (2) 173 (2)
O2—H2O⋯O4 0.89 (2) 1.56 (2) 2.442 (2) 171 (4)
N1—H1N⋯O5 0.88 (2) 1.80 (2) 2.6797 (19) 172 (2)
N1—H1N⋯O4 0.88 (2) 2.69 (2) 3.340 (2) 131 (2)
C16—H16B⋯O3i 0.99 2.63 3.267 (3) 122
C19—H19A⋯O3ii 0.98 2.55 3.452 (3) 154
C20—H20A⋯O3ii 0.98 2.94 3.781 (4) 144
C9—H9A⋯O4iii 0.95 2.82 3.675 (2) 151
C12—H12A⋯O4iv 0.95 2.62 3.460 (3) 148
C17—H17A⋯O5v 0.99 2.92 3.865 (2) 159
C20—H20B⋯O5v 0.98 2.39 3.296 (3) 154
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) x, y, z-1; (iv) [-x, y-{\script{1\over 2}}, -z]; (v) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is used for the preparation of cyclobenzaprine. Cyclobenzaprine (Systematic iupac name: 3-(5H-dibenzo[a,d]cyclohepten-5- ylidene)-N,N-dimethyl-1-propanamine) is a muscle relaxant used to relieve skeletal muscle spasms and associated pain in acute musculoskeletal conditions. Cyclobenzaprine has been considered structurally related to the first-generation tricyclic antidepressants (Commissiong et al., 1981; Katz & Dube, 1988; Cimolai, 2009). The crystal structures of amitriptylinium picrate (Bindya et al., 2007), 4-(4-chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate (Jasinski, Pek et al., 2010), trimipraminium maleate (Jasinski, Butcher et al., 2010), cyclobenzaprinium salicylate (Fun et al., 2011) and cyclobenzaprinium chloride (Siddegowda et al., 2011) have been reported. In view of the importance of 3-(5-hydroxy-5H-dibenzo[a,d] cyclohepten-5-yl)-propyl]-dimethylammonium maleate, this paper reports the crystal structure of the title salt, (I), C20H24NO+.C4H3O4-.

In the cation of the title salt, C20H24NO+.C4H3O4-, the N atom in the dimethylammonium group is protonated (Fig 1). The dihedral angle between the mean planes of the two benzene rings fused to the seven-membered cyclohepten-5-yl ring is 54.4 (1)°. Crystal packing is stabilized by O—H···O, N—H···O intermolecular hydrogen bonds, N—H···O intramolecular bonds and weak C—H···O intermolecular interactions (Table 1) forming a 2-D network (Fig. 2).

Related literature top

The title compound is used in the preparation of cyclobenzaprine (systematic name: 3-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-N,N-dimethyl-1-propanamine), a muscle relaxant used to relieve skeletal muscle spasms and associated pain in acute musculoskeletal conditions. For its structural relationships to first-generation tricyclic antidepressants, see: Commissiong et al. (1981); Katz & Dube (1988); Cimolai (2009). For related structures, see: Bindya et al. (2007); Jasinski, Pek et al. (2010); Jasinski, Butcher et al. (2010); Fun et al. (2011); Siddegowda et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

3-(5-Hydroxy-5H-dibenzo[a,d]cyclohepten-5-yl)-propyl]-dimethylamine (2.0 g, 0.0068 mol) and maleic acid (0.788 g, 0.0068 mol) were dissolved in 10 ml of ethyl acetate taken in a 50 ml round bottomed flask. The reaction mixture was heated to 323-333 K with constant stirring for 30 min. The product formed was filtered, dried and recrystallized from methanol (m.p.: 419-421 K).

Refinement top

H1O and H1N were located by a Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C–H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.19–1.21 (CH), 1.18–1.19 (CH2) or 1.50–1.51 (CH3) times Ueq of the parent atom. In the absence of anomalous scatterers, 2834 Friedel pairs were merged.

Structure description top

The title compound is used for the preparation of cyclobenzaprine. Cyclobenzaprine (Systematic iupac name: 3-(5H-dibenzo[a,d]cyclohepten-5- ylidene)-N,N-dimethyl-1-propanamine) is a muscle relaxant used to relieve skeletal muscle spasms and associated pain in acute musculoskeletal conditions. Cyclobenzaprine has been considered structurally related to the first-generation tricyclic antidepressants (Commissiong et al., 1981; Katz & Dube, 1988; Cimolai, 2009). The crystal structures of amitriptylinium picrate (Bindya et al., 2007), 4-(4-chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate (Jasinski, Pek et al., 2010), trimipraminium maleate (Jasinski, Butcher et al., 2010), cyclobenzaprinium salicylate (Fun et al., 2011) and cyclobenzaprinium chloride (Siddegowda et al., 2011) have been reported. In view of the importance of 3-(5-hydroxy-5H-dibenzo[a,d] cyclohepten-5-yl)-propyl]-dimethylammonium maleate, this paper reports the crystal structure of the title salt, (I), C20H24NO+.C4H3O4-.

In the cation of the title salt, C20H24NO+.C4H3O4-, the N atom in the dimethylammonium group is protonated (Fig 1). The dihedral angle between the mean planes of the two benzene rings fused to the seven-membered cyclohepten-5-yl ring is 54.4 (1)°. Crystal packing is stabilized by O—H···O, N—H···O intermolecular hydrogen bonds, N—H···O intramolecular bonds and weak C—H···O intermolecular interactions (Table 1) forming a 2-D network (Fig. 2).

The title compound is used in the preparation of cyclobenzaprine (systematic name: 3-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-N,N-dimethyl-1-propanamine), a muscle relaxant used to relieve skeletal muscle spasms and associated pain in acute musculoskeletal conditions. For its structural relationships to first-generation tricyclic antidepressants, see: Commissiong et al. (1981); Katz & Dube (1988); Cimolai (2009). For related structures, see: Bindya et al. (2007); Jasinski, Pek et al. (2010); Jasinski, Butcher et al. (2010); Fun et al. (2011); Siddegowda et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Dashed lined indicate N—H···O and O—H···O intermolecular hydrogen bonds forming a 2-D network.
[3-(5-Hydroxy-5H-dibenzo[a,d]cyclohepten-5- yl)propyl]dimethylammonium 3-carboxyprop-2-enoate top
Crystal data top
C20H24NO+·C4H3O4F(000) = 436
Mr = 409.47Dx = 1.243 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5270 reflections
a = 9.2115 (2) Åθ = 3.2–32.2°
b = 11.5840 (2) ŵ = 0.09 mm1
c = 10.4640 (2) ÅT = 173 K
β = 101.591 (2)°Block, colorless
V = 1093.80 (4) Å30.40 × 0.22 × 0.20 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2834 independent reflections
Radiation source: Enhance (Mo) X-ray Source2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 129
Tmin = 0.966, Tmax = 0.983k = 1515
9674 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1521P]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max = 0.002
282 parametersΔρmax = 0.33 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H24NO+·C4H3O4V = 1093.80 (4) Å3
Mr = 409.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2115 (2) ŵ = 0.09 mm1
b = 11.5840 (2) ÅT = 173 K
c = 10.4640 (2) Å0.40 × 0.22 × 0.20 mm
β = 101.591 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2834 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2683 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.983Rint = 0.016
9674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
2834 reflectionsΔρmin = 0.26 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41330 (14)0.34062 (11)0.16548 (12)0.0302 (3)
H1O0.348 (2)0.353 (2)0.208 (2)0.036*
O20.0516 (2)0.7602 (3)0.6263 (2)0.0758 (7)
H2O0.037 (3)0.759 (4)0.606 (3)0.091*
O30.2140 (2)0.8844 (3)0.6744 (2)0.0924 (10)
O40.18355 (17)0.77043 (15)0.55298 (16)0.0460 (4)
O50.32094 (17)0.90841 (13)0.49397 (16)0.0450 (3)
N10.46816 (15)0.73787 (12)0.40245 (12)0.0244 (3)
H1N0.412 (2)0.7907 (18)0.430 (2)0.029*
C10.39082 (17)0.42003 (14)0.06008 (14)0.0240 (3)
C20.53853 (18)0.42751 (15)0.01408 (16)0.0277 (3)
C30.6595 (2)0.36330 (18)0.0782 (2)0.0372 (4)
H3A0.64850.31440.14850.045*
C40.7959 (2)0.3695 (2)0.0410 (3)0.0502 (6)
H4A0.87660.32440.08520.060*
C50.8143 (2)0.4409 (2)0.0598 (3)0.0527 (6)
H5A0.90760.44550.08500.063*
C60.6963 (3)0.5059 (2)0.1237 (2)0.0455 (5)
H6A0.71010.55590.19220.055*
C70.5557 (2)0.49996 (16)0.09015 (18)0.0328 (4)
C80.4376 (2)0.56887 (17)0.16865 (17)0.0366 (4)
H8A0.46680.64040.20000.044*
C90.2936 (2)0.54318 (16)0.20162 (17)0.0348 (4)
H9A0.23120.59880.25220.042*
C100.22200 (19)0.43761 (15)0.16756 (16)0.0284 (3)
C110.1030 (2)0.39442 (19)0.26041 (17)0.0369 (4)
H11A0.06490.43930.33570.044*
C120.0399 (2)0.2891 (2)0.2456 (2)0.0423 (5)
H12A0.03940.26100.31060.051*
C130.0926 (2)0.22432 (19)0.1354 (2)0.0419 (4)
H13A0.05160.15050.12530.050*
C140.2057 (2)0.26732 (17)0.03967 (18)0.0336 (4)
H14A0.23950.22290.03680.040*
C150.27125 (18)0.37390 (14)0.05244 (15)0.0253 (3)
C160.34051 (18)0.53637 (14)0.10869 (15)0.0257 (3)
H16A0.32520.59240.03570.031*
H16B0.24420.52520.13520.031*
C170.45116 (19)0.58700 (16)0.22342 (16)0.0293 (3)
H17A0.48730.52580.28800.035*
H17B0.53730.61960.19250.035*
C180.37420 (18)0.68131 (15)0.28617 (15)0.0269 (3)
H18A0.33890.74130.21980.032*
H18B0.28600.64760.31270.032*
C190.5987 (2)0.79753 (19)0.3701 (2)0.0382 (4)
H19A0.64370.84750.44290.057*
H19B0.56720.84440.29140.057*
H19C0.67130.74010.35460.057*
C200.5116 (3)0.65885 (18)0.51531 (18)0.0389 (4)
H20A0.56440.70250.59070.058*
H20B0.57630.59810.49310.058*
H20C0.42260.62380.53670.058*
C210.0942 (3)0.8652 (3)0.6456 (2)0.0626 (8)
C220.0010 (3)0.9628 (3)0.6312 (3)0.0649 (8)
H22A0.03421.03490.65590.078*
C230.1278 (2)0.9692 (2)0.5899 (3)0.0547 (7)
H23A0.16841.04460.58980.066*
C240.2169 (2)0.87546 (18)0.54356 (19)0.0359 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0362 (6)0.0289 (6)0.0263 (6)0.0060 (5)0.0077 (5)0.0048 (5)
O20.0552 (11)0.1038 (19)0.0738 (13)0.0219 (13)0.0254 (10)0.0128 (14)
O30.0507 (10)0.174 (3)0.0613 (11)0.0215 (15)0.0322 (9)0.0421 (16)
O40.0427 (8)0.0403 (8)0.0564 (9)0.0014 (6)0.0132 (7)0.0013 (7)
O50.0435 (7)0.0345 (7)0.0622 (9)0.0019 (6)0.0230 (7)0.0127 (7)
N10.0313 (7)0.0222 (6)0.0213 (6)0.0016 (5)0.0087 (5)0.0019 (5)
C10.0290 (7)0.0213 (7)0.0223 (7)0.0007 (6)0.0066 (5)0.0008 (6)
C20.0313 (8)0.0245 (7)0.0292 (7)0.0030 (6)0.0104 (6)0.0104 (6)
C30.0328 (9)0.0362 (9)0.0422 (10)0.0017 (7)0.0069 (7)0.0097 (8)
C40.0315 (9)0.0550 (13)0.0647 (14)0.0034 (9)0.0110 (9)0.0216 (11)
C50.0373 (10)0.0592 (14)0.0688 (15)0.0114 (10)0.0283 (10)0.0299 (12)
C60.0548 (12)0.0439 (11)0.0461 (11)0.0196 (10)0.0302 (10)0.0193 (9)
C70.0414 (9)0.0294 (8)0.0313 (8)0.0092 (7)0.0165 (7)0.0126 (7)
C80.0594 (11)0.0265 (8)0.0287 (8)0.0071 (8)0.0204 (8)0.0012 (6)
C90.0536 (11)0.0287 (8)0.0235 (7)0.0044 (8)0.0111 (7)0.0042 (6)
C100.0332 (8)0.0297 (8)0.0239 (7)0.0045 (7)0.0091 (6)0.0015 (6)
C110.0353 (9)0.0484 (11)0.0266 (8)0.0060 (8)0.0051 (6)0.0022 (8)
C120.0317 (9)0.0552 (13)0.0382 (10)0.0044 (9)0.0026 (7)0.0119 (9)
C130.0414 (10)0.0364 (10)0.0476 (11)0.0099 (8)0.0083 (8)0.0076 (9)
C140.0370 (9)0.0281 (8)0.0349 (9)0.0015 (7)0.0051 (7)0.0008 (7)
C150.0273 (7)0.0253 (7)0.0243 (7)0.0024 (6)0.0080 (5)0.0029 (6)
C160.0316 (8)0.0253 (7)0.0209 (7)0.0045 (6)0.0070 (6)0.0025 (6)
C170.0286 (7)0.0315 (8)0.0284 (8)0.0035 (6)0.0073 (6)0.0091 (6)
C180.0283 (7)0.0278 (8)0.0246 (7)0.0028 (6)0.0053 (6)0.0061 (6)
C190.0383 (9)0.0371 (10)0.0408 (10)0.0093 (8)0.0113 (8)0.0027 (8)
C200.0598 (11)0.0346 (9)0.0230 (8)0.0057 (9)0.0101 (7)0.0043 (7)
C210.0449 (12)0.111 (3)0.0342 (10)0.0096 (15)0.0146 (9)0.0235 (13)
C220.0394 (11)0.092 (2)0.0651 (15)0.0005 (12)0.0148 (10)0.0473 (16)
C230.0382 (10)0.0539 (14)0.0739 (16)0.0045 (10)0.0158 (10)0.0352 (12)
C240.0314 (8)0.0394 (10)0.0366 (9)0.0002 (8)0.0059 (7)0.0117 (8)
Geometric parameters (Å, º) top
O1—C11.4191 (19)C10—C111.403 (2)
O1—H1O0.826 (16)C10—C151.408 (2)
O2—C211.306 (5)C11—C121.374 (3)
O2—H2O0.885 (19)C11—H11A0.9500
O3—C211.221 (3)C12—C131.379 (3)
O4—C241.264 (3)C12—H12A0.9500
O5—C241.238 (2)C13—C141.385 (3)
N1—C191.484 (2)C13—H13A0.9500
N1—C201.484 (2)C14—C151.392 (2)
N1—C181.495 (2)C14—H14A0.9500
N1—H1N0.884 (16)C16—C171.527 (2)
C1—C21.534 (2)C16—H16A0.9900
C1—C151.537 (2)C16—H16B0.9900
C1—C161.544 (2)C17—C181.521 (2)
C2—C31.394 (3)C17—H17A0.9900
C2—C71.410 (3)C17—H17B0.9900
C3—C41.390 (3)C18—H18A0.9900
C3—H3A0.9500C18—H18B0.9900
C4—C51.377 (4)C19—H19A0.9800
C4—H4A0.9500C19—H19B0.9800
C5—C61.380 (4)C19—H19C0.9800
C5—H5A0.9500C20—H20A0.9800
C6—C71.410 (3)C20—H20B0.9800
C6—H6A0.9500C20—H20C0.9800
C7—C81.461 (3)C21—C221.457 (5)
C8—C91.336 (3)C22—C231.327 (3)
C8—H8A0.9500C22—H22A0.9500
C9—C101.467 (3)C23—C241.500 (3)
C9—H9A0.9500C23—H23A0.9500
C1—O1—H1O107.3 (17)C14—C13—H13A120.1
C21—O2—H2O112 (3)C13—C14—C15121.80 (18)
C19—N1—C20111.58 (15)C13—C14—H14A119.1
C19—N1—C18112.43 (13)C15—C14—H14A119.1
C20—N1—C18113.37 (14)C14—C15—C10118.40 (15)
C19—N1—H1N107.7 (14)C14—C15—C1119.49 (14)
C20—N1—H1N104.6 (15)C10—C15—C1122.08 (15)
C18—N1—H1N106.5 (14)C17—C16—C1113.39 (13)
O1—C1—C2106.28 (13)C17—C16—H16A108.9
O1—C1—C15109.89 (13)C1—C16—H16A108.9
C2—C1—C15108.87 (12)C17—C16—H16B108.9
O1—C1—C16108.44 (12)C1—C16—H16B108.9
C2—C1—C16113.44 (13)H16A—C16—H16B107.7
C15—C1—C16109.84 (13)C18—C17—C16108.65 (13)
C3—C2—C7119.14 (16)C18—C17—H17A110.0
C3—C2—C1119.49 (16)C16—C17—H17A110.0
C7—C2—C1121.36 (15)C18—C17—H17B110.0
C4—C3—C2121.2 (2)C16—C17—H17B110.0
C4—C3—H3A119.4H17A—C17—H17B108.3
C2—C3—H3A119.4N1—C18—C17114.97 (13)
C5—C4—C3120.2 (2)N1—C18—H18A108.5
C5—C4—H4A119.9C17—C18—H18A108.5
C3—C4—H4A119.9N1—C18—H18B108.5
C4—C5—C6119.49 (19)C17—C18—H18B108.5
C4—C5—H5A120.3H18A—C18—H18B107.5
C6—C5—H5A120.3N1—C19—H19A109.5
C5—C6—C7121.8 (2)N1—C19—H19B109.5
C5—C6—H6A119.1H19A—C19—H19B109.5
C7—C6—H6A119.1N1—C19—H19C109.5
C6—C7—C2118.20 (19)H19A—C19—H19C109.5
C6—C7—C8116.77 (18)H19B—C19—H19C109.5
C2—C7—C8125.02 (16)N1—C20—H20A109.5
C9—C8—C7127.72 (17)N1—C20—H20B109.5
C9—C8—H8A116.1H20A—C20—H20B109.5
C7—C8—H8A116.1N1—C20—H20C109.5
C8—C9—C10126.48 (17)H20A—C20—H20C109.5
C8—C9—H9A116.8H20B—C20—H20C109.5
C10—C9—H9A116.8O3—C21—O2121.5 (3)
C11—C10—C15118.57 (17)O3—C21—C22118.4 (4)
C11—C10—C9117.12 (16)O2—C21—C22120.1 (2)
C15—C10—C9124.18 (16)C23—C22—C21131.7 (3)
C12—C11—C10121.86 (18)C23—C22—H22A114.2
C12—C11—H11A119.1C21—C22—H22A114.2
C10—C11—H11A119.1C22—C23—C24129.8 (3)
C11—C12—C13119.46 (18)C22—C23—H23A115.1
C11—C12—H12A120.3C24—C23—H23A115.1
C13—C12—H12A120.3O5—C24—O4123.40 (18)
C12—C13—C14119.77 (19)O5—C24—C23115.6 (2)
C12—C13—H13A120.1O4—C24—C23120.98 (19)
O1—C1—C2—C31.1 (2)C12—C13—C14—C151.6 (3)
C15—C1—C2—C3119.38 (16)C13—C14—C15—C101.3 (3)
C16—C1—C2—C3118.00 (16)C13—C14—C15—C1176.88 (17)
O1—C1—C2—C7179.70 (14)C11—C10—C15—C144.0 (2)
C15—C1—C2—C761.98 (19)C9—C10—C15—C14171.64 (16)
C16—C1—C2—C760.64 (19)C11—C10—C15—C1174.11 (15)
C7—C2—C3—C40.1 (3)C9—C10—C15—C110.2 (2)
C1—C2—C3—C4178.74 (17)O1—C1—C15—C140.9 (2)
C2—C3—C4—C50.8 (3)C2—C1—C15—C14115.13 (16)
C3—C4—C5—C60.2 (3)C16—C1—C15—C14120.10 (16)
C4—C5—C6—C71.0 (3)O1—C1—C15—C10177.21 (14)
C5—C6—C7—C21.7 (3)C2—C1—C15—C1066.78 (19)
C5—C6—C7—C8177.35 (19)C16—C1—C15—C1057.99 (18)
C3—C2—C7—C61.1 (2)O1—C1—C16—C1758.28 (17)
C1—C2—C7—C6177.53 (15)C2—C1—C16—C1759.54 (18)
C3—C2—C7—C8177.82 (17)C15—C1—C16—C17178.38 (13)
C1—C2—C7—C83.5 (3)C1—C16—C17—C18164.67 (13)
C6—C7—C8—C9145.99 (19)C19—N1—C18—C1761.9 (2)
C2—C7—C8—C933.0 (3)C20—N1—C18—C1765.79 (19)
C7—C8—C9—C101.2 (3)C16—C17—C18—N1178.82 (13)
C8—C9—C10—C11144.80 (19)O3—C21—C22—C23173.0 (3)
C8—C9—C10—C1530.9 (3)O2—C21—C22—C236.2 (5)
C15—C10—C11—C124.1 (3)C21—C22—C23—C240.1 (5)
C9—C10—C11—C12171.89 (17)C22—C23—C24—O5170.5 (3)
C10—C11—C12—C131.2 (3)C22—C23—C24—O48.0 (4)
C11—C12—C13—C141.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.83 (2)1.95 (2)2.770 (2)173 (2)
O2—H2O···O40.89 (2)1.56 (2)2.442 (2)171 (4)
N1—H1N···O50.88 (2)1.80 (2)2.6797 (19)172 (2)
N1—H1N···O40.88 (2)2.69 (2)3.340 (2)131 (2)
C16—H16B···O3i0.992.633.267 (3)122
C19—H19A···O3ii0.982.553.452 (3)154
C20—H20A···O3ii0.982.943.781 (4)144
C9—H9A···O4iii0.952.823.675 (2)151
C12—H12A···O4iv0.952.623.460 (3)148
C17—H17A···O5v0.992.923.865 (2)159
C20—H20B···O5v0.982.393.296 (3)154
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x, y1/2, z; (v) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H24NO+·C4H3O4
Mr409.47
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.2115 (2), 11.5840 (2), 10.4640 (2)
β (°) 101.591 (2)
V3)1093.80 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.22 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.966, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9674, 2834, 2683
Rint0.016
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.04
No. of reflections2834
No. of parameters282
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.826 (16)1.948 (17)2.770 (2)173 (2)
O2—H2O···O40.885 (19)1.56 (2)2.442 (2)171 (4)
N1—H1N···O50.884 (16)1.801 (16)2.6797 (19)172 (2)
N1—H1N···O40.884 (16)2.691 (19)3.340 (2)131.2 (18)
C16—H16B···O3i0.992.633.267 (3)122.0
C19—H19A···O3ii0.982.553.452 (3)153.5
C20—H20A···O3ii0.982.943.781 (4)144.3
C9—H9A···O4iii0.952.823.675 (2)150.5
C12—H12A···O4iv0.952.623.460 (3)147.9
C17—H17A···O5v0.992.923.865 (2)158.9
C20—H20B···O5v0.982.393.296 (3)154.3
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y, z; (iii) x, y, z1; (iv) x, y1/2, z; (v) x+1, y1/2, z+1.
 

Acknowledgements

MSS thanks UoM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCimolai, N. (2009). Exp. Rev. Clin. Pharm. 2, 255–263.  CrossRef CAS Google Scholar
First citationCommissiong, J. W., Karoum, F., Reiffenstein, R. J. & Neff, N. H. (1981). Can. J. Physiol. Pharmacol. 59, 37–44.  CrossRef PubMed Web of Science Google Scholar
First citationFun, H.-K., Yeap, C. S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o366–o367.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012–o2013.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatz, W. A. & Dube, J. (1988). Clin. Ther. 10, 216–228.  CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o1846.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds