metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxalato-bis­­[bis­­(2,2′-bi­pyridine)­manganese(II)] bis­(perchlorate) 2,2′-bi­pyridine solvate

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 22 August 2011; accepted 20 September 2011; online 30 September 2011)

The unit cell of the title compound, [Mn2(C2O4)(C10H8N2)4](ClO4)2·C10H8N2, consists of a binuclear cation, two perchlor­ate anions, and one solvent 2,2′-bipyridine (bpy) mol­ecule. In the complex cation [Mn2(C2O4)(C10N2H8)4]2+, two MnII atoms are bridged by a bis­(bidentate) oxalate ligand, each MnII atom being further coordinated by two bpy ligands in a distorted octa­hedral geometry. The distance between the two six-coordinated metal atoms is 5.583 (1) Å. ππ stacking inter­actions [inter­planar distances between bpy rings = 3.739 (1) Å] are essential to the supramolecular assembly. There are extensive inter­ionic C—H⋯O inter­actions between the cations and between the cation and anion. Three of the four perchlorate O atoms are disordered over two sets of sites with occupancy ratios of 0.852 (6):0.148 (6).

Related literature

For general background to ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For structures containing similar cations, see: Chen et al. (2005[Chen, X. F., Liu, L., Ma, J. G., Yi, L., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2005). J. Mol. Struct. 750, 94-100.]); Jurić et al. (2007[Jurić, M., Perić, B., Brnicević, N., Planinić, P., Pajić, D., Zadro, K. & Giester, G. (2007). Polyhedron, 26, 659-672.]); Sun et al. (2009[Sun, W., Jiang, M., Li, Y. T., Wu, Z. Y. & Peng, W. B. (2009). J. Coord. Chem. 62, 2520-2531.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C2O4)(C10H8N2)4](ClO4)2·C10N2H8

  • Mr = 1177.72

  • Triclinic, [P \overline 1]

  • a = 9.4959 (19) Å

  • b = 11.974 (2) Å

  • c = 12.183 (2) Å

  • α = 98.87 (3)°

  • β = 102.73 (3)°

  • γ = 98.89 (3)°

  • V = 1309.3 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.888, Tmax = 0.949

  • 12924 measured reflections

  • 5884 independent reflections

  • 2595 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.221

  • S = 1.06

  • 5884 reflections

  • 363 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.93 2.61 3.356 (6) 138
C5—H5A⋯O2ii 0.93 2.44 3.243 (6) 144
C10—H10A⋯O3iii 0.93 2.63 3.484 (6) 153
C18—H18A⋯O5A 0.93 2.46 3.360 (8) 162
C23—H23A⋯O4A 0.93 2.64 3.309 (7) 129
C11—H11A⋯O6Biv 0.93 2.52 3.373 (10) 152
C14—H14A⋯O5Bv 0.93 2.72 3.243 (12) 117
C18—H18A⋯O5A 0.93 2.46 3.360 (8) 162
C18—H18A⋯O5B 0.93 3.18 4.069 (10) 161
C19—H19A⋯O6B 0.93 2.69 3.225 (9) 117
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Herein, we report a new oxalate-bridged Mn(II) complex namely [Mn2(C10N2H8)4(C2O4)](ClO4)2.(C10N2H8). The unit cell of the title compound consists of a binuclear cation, two perchlorate anions, and one solvent 2,2'-bipyridine (bpy) molecular. The cationic unit is similar to those seen in analogous Zn (Sun et al., 2009), Cu (Jurić et al., 2007), and Cr (Chen et al., 2005) complexes. As shown in Fig. 1, the complex cation [Mn2(C10N2H8)4(C2O4)]2+ has two manganese metal centres bridged by a planar bis(bidentate) oxalate ligand, with the coordination shell of each Mn(II) completed with two bpy ligands resulting in a distorted octahedral geometry. The complex has crystallographic P-1 symmetry, the symmetric center being coincident on the C1—C1# bond of the oxalate bridge, and the distance between the two metal centres is 5.583 (1) Å. Finally, intermolecular π···π stacking interactions (interplanar distances between bpy rings = 3.739 (1) Å) (Janiak, 2000), assemble the binuclear cations into a three-dimensional supermolecular array as shown in Fig. 2. There are extensive interionic C-H···O interactions between the cations and between the cation and anion.

Related literature top

For general background to ππ interactions, see: Janiak (2000). For structures containing similar cations, see: Chen et al. (2005); Jurić et al. (2007); Sun et al. (2009).

Experimental top

An ethanol solution of 0.1562 g (1.0 mmol) bpy in 5 ml EtOH was added dropwise to a stirred aqueous solution of 0.1809 g (0.5 mmol) Mn(ClO4)2.6H2O and 0.0674 g Na2C2O4 (0.5 mmol) in 10 ml H2O. After stirring about 30 min, the faint yellow filtrate (pH = 8.98) was subsequently allowed to stand at 318.15 K. Four days later, yellow needle crystals were obtained.

Refinement top

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.93Å and Uiso(H) = 1.2 Ueq(C). Three of the four perchlorate oxygen's were disordered over two conformations with occupancies of 0.852 (6) and 0.148 (6)and were constrained to be tetrahedral.

Structure description top

Herein, we report a new oxalate-bridged Mn(II) complex namely [Mn2(C10N2H8)4(C2O4)](ClO4)2.(C10N2H8). The unit cell of the title compound consists of a binuclear cation, two perchlorate anions, and one solvent 2,2'-bipyridine (bpy) molecular. The cationic unit is similar to those seen in analogous Zn (Sun et al., 2009), Cu (Jurić et al., 2007), and Cr (Chen et al., 2005) complexes. As shown in Fig. 1, the complex cation [Mn2(C10N2H8)4(C2O4)]2+ has two manganese metal centres bridged by a planar bis(bidentate) oxalate ligand, with the coordination shell of each Mn(II) completed with two bpy ligands resulting in a distorted octahedral geometry. The complex has crystallographic P-1 symmetry, the symmetric center being coincident on the C1—C1# bond of the oxalate bridge, and the distance between the two metal centres is 5.583 (1) Å. Finally, intermolecular π···π stacking interactions (interplanar distances between bpy rings = 3.739 (1) Å) (Janiak, 2000), assemble the binuclear cations into a three-dimensional supermolecular array as shown in Fig. 2. There are extensive interionic C-H···O interactions between the cations and between the cation and anion.

For general background to ππ interactions, see: Janiak (2000). For structures containing similar cations, see: Chen et al. (2005); Jurić et al. (2007); Sun et al. (2009).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the binuclear cation. The displacement ellipsoids are drawn at the 35% probability level.
[Figure 2] Fig. 2. Packing diagram of the title crystal structure viewed along [010] direction.
µ-Oxalato-bis[bis(2,2'-bipyridine)manganese(II)] bis(perchlorate) 2,2'-bipyridine solvate top
Crystal data top
[Mn2(C2O4)(C10H8N2)4](ClO4)2·C10H8N2Z = 1
Mr = 1177.72F(000) = 602
Triclinic, P1Dx = 1.494 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4959 (19) ÅCell parameters from 12924 reflections
b = 11.974 (2) Åθ = 3.1–27.5°
c = 12.183 (2) ŵ = 0.66 mm1
α = 98.87 (3)°T = 293 K
β = 102.73 (3)°Needle, yellow
γ = 98.89 (3)°0.18 × 0.15 × 0.08 mm
V = 1309.3 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5884 independent reflections
Radiation source: fine-focus sealed tube2595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1211
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.888, Tmax = 0.949l = 015
12924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.089P)2 + 0.5905P]
where P = (Fo2 + 2Fc2)/3
5884 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.56 e Å3
19 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Mn2(C2O4)(C10H8N2)4](ClO4)2·C10H8N2γ = 98.89 (3)°
Mr = 1177.72V = 1309.3 (4) Å3
Triclinic, P1Z = 1
a = 9.4959 (19) ÅMo Kα radiation
b = 11.974 (2) ŵ = 0.66 mm1
c = 12.183 (2) ÅT = 293 K
α = 98.87 (3)°0.18 × 0.15 × 0.08 mm
β = 102.73 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5884 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2595 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.949Rint = 0.071
12924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07219 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.06Δρmax = 0.56 e Å3
5884 reflectionsΔρmin = 0.64 e Å3
363 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.77417 (7)0.80535 (6)0.43285 (6)0.0524 (2)
O11.0049 (3)0.8552 (3)0.5191 (3)0.0646 (9)
O20.8238 (4)0.9833 (3)0.4166 (3)0.0656 (10)
N10.5323 (4)0.7980 (3)0.3806 (3)0.0528 (10)
N20.7025 (4)0.8552 (3)0.5946 (3)0.0518 (10)
N30.8122 (4)0.7399 (4)0.2610 (3)0.0575 (11)
N40.7828 (5)0.6195 (3)0.4244 (4)0.0612 (11)
C11.0521 (5)0.9651 (5)0.5285 (4)0.0559 (12)
C20.4504 (5)0.7646 (4)0.2734 (4)0.0615 (14)
H2A0.49650.74090.21650.074*
C30.3028 (5)0.7630 (5)0.2415 (5)0.0692 (16)
H3A0.25010.73910.16520.083*
C40.2351 (6)0.7973 (5)0.3248 (5)0.0683 (15)
H4A0.13470.79710.30600.082*
C50.3167 (5)0.8326 (4)0.4381 (5)0.0604 (14)
H5A0.27170.85690.49560.072*
C60.4655 (4)0.8313 (4)0.4643 (4)0.0455 (11)
C70.5631 (5)0.8696 (4)0.5814 (4)0.0467 (11)
C80.5134 (6)0.9182 (4)0.6734 (4)0.0596 (13)
H8A0.41600.92690.66330.072*
C90.6107 (6)0.9531 (5)0.7790 (5)0.0719 (15)
H9A0.57940.98630.84130.086*
C100.7533 (6)0.9394 (5)0.7935 (4)0.0730 (16)
H10A0.82000.96300.86500.088*
C110.7952 (5)0.8899 (5)0.6999 (4)0.0634 (14)
H11A0.89200.87970.70940.076*
C120.8303 (5)0.8059 (5)0.1841 (5)0.0707 (15)
H12A0.81010.87970.19590.085*
C130.8775 (6)0.7691 (6)0.0886 (5)0.0819 (18)
H13A0.89160.81760.03760.098*
C140.9030 (7)0.6600 (6)0.0704 (5)0.088 (2)
H14A0.93410.63290.00580.105*
C150.8829 (6)0.5888 (6)0.1476 (5)0.0798 (17)
H15A0.90010.51410.13540.096*
C160.8367 (5)0.6314 (5)0.2431 (4)0.0589 (13)
C170.8178 (5)0.5641 (4)0.3330 (4)0.0607 (13)
C180.8351 (7)0.4510 (5)0.3256 (6)0.0823 (17)
H18A0.85780.41280.26120.099*
C190.8190 (8)0.3959 (6)0.4123 (6)0.101 (2)
H19A0.83330.32050.40820.121*
C200.7821 (8)0.4499 (6)0.5054 (6)0.104 (2)
H20A0.76850.41240.56480.124*
C210.7657 (7)0.5624 (5)0.5081 (5)0.0921 (19)
H21A0.74140.60080.57160.110*
N50.4060 (6)0.5170 (4)0.1117 (4)0.0831 (14)
C220.4831 (6)0.4685 (4)0.0451 (4)0.0628 (14)
C230.5290 (6)0.3666 (5)0.0573 (5)0.0717 (15)
H23A0.58210.33520.00890.086*
C240.4953 (7)0.3123 (6)0.1416 (6)0.097 (2)
H24A0.52540.24340.15140.116*
C250.4184 (8)0.3597 (6)0.2100 (6)0.100 (2)
H25A0.39430.32420.26790.120*
C260.3756 (8)0.4618 (6)0.1930 (6)0.105 (2)
H26A0.32250.49390.24100.127*
Cl0.83136 (16)0.15993 (14)0.10897 (12)0.0850 (5)
O30.9051 (4)0.0736 (3)0.0794 (3)0.1224 (18)
O4A0.7113 (5)0.1554 (5)0.0196 (4)0.234 (4)0.852 (6)
O5A0.9245 (6)0.2664 (3)0.1272 (6)0.264 (5)0.852 (6)
O6A0.7863 (5)0.1514 (5)0.2073 (3)0.132 (2)0.852 (6)
O4B0.6882 (5)0.1108 (7)0.1053 (9)0.234 (4)0.148 (6)
O5B0.8299 (12)0.2336 (6)0.0324 (6)0.264 (5)0.148 (6)
O6B0.9008 (10)0.2202 (7)0.2182 (5)0.132 (2)0.148 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0525 (4)0.0465 (4)0.0593 (5)0.0092 (3)0.0215 (3)0.0030 (3)
O10.0597 (19)0.051 (2)0.082 (2)0.0115 (16)0.0223 (17)0.0052 (18)
O20.063 (2)0.060 (2)0.075 (2)0.0095 (18)0.0201 (18)0.0123 (18)
N10.058 (2)0.045 (2)0.053 (2)0.0108 (18)0.0187 (19)0.0015 (18)
N20.046 (2)0.058 (2)0.051 (2)0.0095 (18)0.0127 (17)0.0115 (19)
N30.055 (2)0.064 (3)0.056 (2)0.015 (2)0.0181 (19)0.008 (2)
N40.088 (3)0.044 (2)0.059 (2)0.014 (2)0.035 (2)0.006 (2)
C10.051 (3)0.072 (3)0.052 (3)0.023 (2)0.019 (2)0.012 (2)
C20.060 (3)0.065 (3)0.051 (3)0.007 (3)0.014 (2)0.008 (3)
C30.052 (3)0.075 (4)0.067 (3)0.007 (3)0.002 (3)0.004 (3)
C40.050 (3)0.063 (3)0.089 (4)0.011 (3)0.014 (3)0.014 (3)
C50.052 (3)0.057 (3)0.073 (3)0.012 (2)0.023 (3)0.005 (3)
C60.046 (2)0.037 (2)0.055 (3)0.0058 (19)0.018 (2)0.006 (2)
C70.052 (2)0.038 (2)0.053 (3)0.005 (2)0.022 (2)0.009 (2)
C80.071 (3)0.053 (3)0.060 (3)0.016 (2)0.028 (3)0.007 (2)
C90.101 (4)0.067 (4)0.056 (3)0.019 (3)0.039 (3)0.008 (3)
C100.089 (4)0.079 (4)0.042 (3)0.005 (3)0.011 (3)0.003 (3)
C110.058 (3)0.072 (4)0.057 (3)0.009 (3)0.006 (2)0.017 (3)
C120.068 (3)0.081 (4)0.068 (4)0.012 (3)0.023 (3)0.023 (3)
C130.090 (4)0.098 (5)0.060 (4)0.014 (4)0.024 (3)0.021 (3)
C140.090 (4)0.120 (6)0.053 (3)0.014 (4)0.030 (3)0.007 (4)
C150.089 (4)0.080 (4)0.068 (4)0.016 (3)0.031 (3)0.011 (3)
C160.059 (3)0.062 (3)0.056 (3)0.014 (2)0.021 (2)0.002 (3)
C170.067 (3)0.053 (3)0.062 (3)0.010 (3)0.022 (3)0.004 (3)
C180.112 (4)0.055 (4)0.087 (4)0.024 (3)0.041 (4)0.004 (3)
C190.148 (6)0.054 (4)0.110 (5)0.029 (4)0.048 (5)0.013 (4)
C200.174 (7)0.058 (4)0.095 (5)0.021 (4)0.062 (5)0.024 (4)
C210.148 (5)0.067 (4)0.082 (4)0.029 (4)0.063 (4)0.019 (3)
N50.129 (4)0.060 (3)0.076 (3)0.022 (3)0.055 (3)0.015 (2)
C220.076 (3)0.053 (3)0.059 (3)0.011 (3)0.017 (3)0.011 (2)
C230.087 (4)0.063 (4)0.074 (4)0.023 (3)0.031 (3)0.015 (3)
C240.123 (5)0.079 (4)0.112 (5)0.035 (4)0.055 (4)0.037 (4)
C250.152 (6)0.072 (4)0.095 (5)0.020 (4)0.062 (4)0.031 (4)
C260.161 (6)0.076 (5)0.103 (5)0.036 (4)0.071 (5)0.021 (4)
Cl0.1096 (11)0.0957 (11)0.0654 (9)0.0500 (9)0.0353 (8)0.0140 (8)
O30.126 (3)0.125 (4)0.112 (4)0.070 (3)0.023 (3)0.023 (3)
O4A0.306 (8)0.325 (10)0.080 (4)0.248 (8)0.035 (5)0.000 (5)
O5A0.403 (10)0.076 (5)0.367 (11)0.036 (6)0.322 (9)0.038 (6)
O6A0.196 (6)0.161 (6)0.080 (3)0.065 (5)0.088 (4)0.044 (3)
O4B0.306 (8)0.325 (10)0.080 (4)0.248 (8)0.035 (5)0.000 (5)
O5B0.403 (10)0.076 (5)0.367 (11)0.036 (6)0.322 (9)0.038 (6)
O6B0.196 (6)0.161 (6)0.080 (3)0.065 (5)0.088 (4)0.044 (3)
Geometric parameters (Å, º) top
Mn—O12.156 (3)C12—C131.372 (8)
Mn—O22.159 (3)C12—H12A0.9300
Mn—N42.226 (4)C13—C141.359 (9)
Mn—N12.228 (4)C13—H13A0.9300
Mn—N32.245 (4)C14—C151.387 (8)
Mn—N22.249 (4)C14—H14A0.9300
O1—C11.301 (6)C15—C161.385 (7)
O2—C1i1.233 (5)C15—H15A0.9300
N1—C21.329 (6)C16—C171.483 (7)
N1—C61.356 (5)C17—C181.381 (7)
N2—C71.339 (5)C18—C191.352 (9)
N2—C111.349 (6)C18—H18A0.9300
N3—C121.338 (6)C19—C201.359 (9)
N3—C161.348 (6)C19—H19A0.9300
N4—C211.337 (7)C20—C211.375 (8)
N4—C171.340 (6)C20—H20A0.9300
C1—O2i1.233 (5)C21—H21A0.9300
C1—C1i1.514 (9)N5—C261.330 (8)
C2—C31.365 (6)N5—C221.333 (7)
C2—H2A0.9300C22—C231.376 (7)
C3—C41.361 (7)C22—C22ii1.489 (10)
C3—H3A0.9300C23—C241.365 (8)
C4—C51.390 (7)C23—H23A0.9300
C4—H4A0.9300C24—C251.342 (9)
C5—C61.382 (6)C24—H24A0.9300
C5—H5A0.9300C25—C261.377 (9)
C6—C71.480 (6)C25—H25A0.9300
C7—C81.391 (6)C26—H26A0.9300
C8—C91.370 (7)Cl—O6A1.371 (3)
C8—H8A0.9300Cl—O6B1.378 (4)
C9—C101.365 (7)Cl—O5B1.378 (4)
C9—H9A0.9300Cl—O4A1.380 (3)
C10—C111.370 (7)Cl—O31.382 (3)
C10—H10A0.9300Cl—O4B1.383 (4)
C11—H11A0.9300Cl—O5A1.391 (3)
O1—Mn—O277.71 (13)N2—C11—H11A118.5
O1—Mn—N491.32 (15)C10—C11—H11A118.5
O2—Mn—N4161.81 (14)N3—C12—C13122.7 (6)
O1—Mn—N1163.26 (13)N3—C12—H12A118.6
O2—Mn—N192.48 (14)C13—C12—H12A118.6
N4—Mn—N1101.34 (15)C14—C13—C12118.3 (6)
O1—Mn—N394.71 (14)C14—C13—H13A120.9
O2—Mn—N392.97 (15)C12—C13—H13A120.9
N4—Mn—N373.29 (16)C13—C14—C15120.4 (6)
N1—Mn—N399.37 (14)C13—C14—H14A119.8
O1—Mn—N293.27 (13)C15—C14—H14A119.8
O2—Mn—N291.44 (14)C16—C15—C14118.6 (6)
N4—Mn—N2103.77 (15)C16—C15—H15A120.7
N1—Mn—N273.22 (14)C14—C15—H15A120.7
N3—Mn—N2171.55 (14)N3—C16—C15120.8 (5)
C1—O1—Mn111.3 (3)N3—C16—C17116.3 (4)
C1i—O2—Mn114.1 (3)C15—C16—C17122.8 (5)
C2—N1—C6118.3 (4)N4—C17—C18120.8 (5)
C2—N1—Mn124.4 (3)N4—C17—C16116.0 (4)
C6—N1—Mn117.3 (3)C18—C17—C16123.2 (5)
C7—N2—C11118.4 (4)C19—C18—C17119.8 (6)
C7—N2—Mn116.4 (3)C19—C18—H18A120.1
C11—N2—Mn124.2 (3)C17—C18—H18A120.1
C12—N3—C16119.2 (4)C18—C19—C20120.6 (6)
C12—N3—Mn123.9 (4)C18—C19—H19A119.7
C16—N3—Mn116.3 (3)C20—C19—H19A119.7
C21—N4—C17118.1 (5)C19—C20—C21117.2 (6)
C21—N4—Mn124.2 (4)C19—C20—H20A121.4
C17—N4—Mn117.5 (3)C21—C20—H20A121.4
O2i—C1—O1123.9 (4)N4—C21—C20123.6 (6)
O2i—C1—C1i117.6 (6)N4—C21—H21A118.2
O1—C1—C1i118.5 (6)C20—C21—H21A118.2
N1—C2—C3124.2 (5)C26—N5—C22116.4 (5)
N1—C2—H2A117.9N5—C22—C23123.0 (5)
C3—C2—H2A117.9N5—C22—C22ii115.8 (6)
C4—C3—C2118.0 (5)C23—C22—C22ii121.2 (6)
C4—C3—H3A121.0C24—C23—C22119.0 (5)
C2—C3—H3A121.0C24—C23—H23A120.5
C3—C4—C5119.7 (5)C22—C23—H23A120.5
C3—C4—H4A120.1C25—C24—C23119.1 (6)
C5—C4—H4A120.1C25—C24—H24A120.5
C6—C5—C4119.2 (5)C23—C24—H24A120.5
C6—C5—H5A120.4C24—C25—C26118.9 (7)
C4—C5—H5A120.4C24—C25—H25A120.5
N1—C6—C5120.7 (4)C26—C25—H25A120.5
N1—C6—C7115.7 (4)N5—C26—C25123.6 (6)
C5—C6—C7123.6 (4)N5—C26—H26A118.2
N2—C7—C8121.5 (4)C25—C26—H26A118.2
N2—C7—C6116.5 (4)O6B—Cl—O5B109.7 (4)
C8—C7—C6122.0 (4)O6A—Cl—O4A109.8 (3)
C9—C8—C7118.7 (5)O6A—Cl—O3112.2 (3)
C9—C8—H8A120.7O6B—Cl—O3109.6 (4)
C7—C8—H8A120.7O5B—Cl—O3109.6 (4)
C10—C9—C8120.4 (5)O4A—Cl—O3109.2 (3)
C10—C9—H9A119.8O6B—Cl—O4B109.6 (4)
C8—C9—H9A119.8O5B—Cl—O4B109.4 (4)
C9—C10—C11118.1 (5)O3—Cl—O4B109.0 (4)
C9—C10—H10A120.9O6A—Cl—O5A108.0 (3)
C11—C10—H10A120.9O4A—Cl—O5A108.3 (3)
N2—C11—C10122.9 (5)O3—Cl—O5A109.2 (3)
O2—Mn—O1—C16.6 (3)C3—C4—C5—C60.6 (8)
N4—Mn—O1—C1171.9 (3)C2—N1—C6—C51.4 (7)
N1—Mn—O1—C148.6 (7)Mn—N1—C6—C5177.9 (3)
N3—Mn—O1—C198.6 (3)C2—N1—C6—C7178.8 (4)
N2—Mn—O1—C184.2 (3)Mn—N1—C6—C70.4 (5)
O1—Mn—O2—C1i7.8 (3)C4—C5—C6—N11.2 (7)
N4—Mn—O2—C1i61.8 (6)C4—C5—C6—C7178.5 (4)
N1—Mn—O2—C1i158.5 (3)C11—N2—C7—C80.5 (7)
N3—Mn—O2—C1i101.9 (3)Mn—N2—C7—C8169.4 (3)
N2—Mn—O2—C1i85.3 (3)C11—N2—C7—C6179.5 (4)
O1—Mn—N1—C2145.5 (5)Mn—N2—C7—C610.6 (5)
O2—Mn—N1—C292.1 (4)N1—C6—C7—N27.3 (6)
N4—Mn—N1—C276.0 (4)C5—C6—C7—N2175.2 (4)
N3—Mn—N1—C21.4 (4)N1—C6—C7—C8172.6 (4)
N2—Mn—N1—C2177.2 (4)C5—C6—C7—C84.8 (7)
O1—Mn—N1—C633.7 (7)N2—C7—C8—C90.8 (7)
O2—Mn—N1—C687.2 (3)C6—C7—C8—C9179.1 (4)
N4—Mn—N1—C6104.7 (3)C7—C8—C9—C100.5 (8)
N3—Mn—N1—C6179.4 (3)C8—C9—C10—C110.2 (9)
N2—Mn—N1—C63.6 (3)C7—N2—C11—C100.2 (8)
O1—Mn—N2—C7162.3 (3)Mn—N2—C11—C10167.8 (4)
O2—Mn—N2—C784.5 (3)C9—C10—C11—N20.5 (8)
N4—Mn—N2—C7105.6 (3)C16—N3—C12—C132.0 (8)
N1—Mn—N2—C77.7 (3)Mn—N3—C12—C13168.8 (4)
N3—Mn—N2—C737.0 (12)N3—C12—C13—C141.7 (9)
O1—Mn—N2—C116.0 (4)C12—C13—C14—C150.6 (9)
O2—Mn—N2—C1183.7 (4)C13—C14—C15—C160.1 (9)
N4—Mn—N2—C1186.2 (4)C12—N3—C16—C151.3 (7)
N1—Mn—N2—C11175.9 (4)Mn—N3—C16—C15170.3 (4)
N3—Mn—N2—C11154.8 (9)C12—N3—C16—C17178.6 (4)
O1—Mn—N3—C1288.0 (4)Mn—N3—C16—C177.1 (5)
O2—Mn—N3—C1210.1 (4)C14—C15—C16—N30.2 (8)
N4—Mn—N3—C12177.9 (4)C14—C15—C16—C17177.4 (5)
N1—Mn—N3—C1282.9 (4)C21—N4—C17—C180.2 (8)
N2—Mn—N3—C12111.3 (10)Mn—N4—C17—C18175.6 (4)
O1—Mn—N3—C1683.1 (3)C21—N4—C17—C16179.5 (5)
O2—Mn—N3—C16161.0 (3)Mn—N4—C17—C164.2 (6)
N4—Mn—N3—C166.8 (3)N3—C16—C17—N42.0 (7)
N1—Mn—N3—C16106.0 (3)C15—C16—C17—N4175.3 (5)
N2—Mn—N3—C1677.6 (11)N3—C16—C17—C18178.2 (5)
O1—Mn—N4—C2186.3 (5)C15—C16—C17—C184.4 (8)
O2—Mn—N4—C21138.6 (5)N4—C17—C18—C191.1 (9)
N1—Mn—N4—C2182.7 (5)C16—C17—C18—C19178.7 (6)
N3—Mn—N4—C21179.2 (5)C17—C18—C19—C201.7 (11)
N2—Mn—N4—C217.4 (5)C18—C19—C20—C211.5 (11)
O1—Mn—N4—C1788.7 (4)C17—N4—C21—C200.0 (10)
O2—Mn—N4—C1736.4 (7)Mn—N4—C21—C20175.0 (5)
N1—Mn—N4—C17102.3 (4)C19—C20—C21—N40.6 (11)
N3—Mn—N4—C175.8 (3)C26—N5—C22—C230.5 (9)
N2—Mn—N4—C17177.6 (3)C26—N5—C22—C22ii179.7 (6)
Mn—O1—C1—O2i173.2 (4)N5—C22—C23—C240.4 (9)
Mn—O1—C1—C1i5.2 (7)C22ii—C22—C23—C24179.9 (6)
C6—N1—C2—C30.9 (8)C22—C23—C24—C250.1 (10)
Mn—N1—C2—C3178.4 (4)C23—C24—C25—C260.0 (11)
N1—C2—C3—C40.2 (9)C22—N5—C26—C250.4 (10)
C2—C3—C4—C50.1 (8)C24—C25—C26—N50.2 (12)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1iii0.932.613.356 (6)138
C5—H5A···O2iv0.932.443.243 (6)144
C10—H10A···O3v0.932.633.484 (6)153
C18—H18A···O5A0.932.463.360 (8)162
C23—H23A···O4A0.932.643.309 (7)129
C11—H11A···O6Bvi0.932.523.373 (10)152
C14—H14A···O5Bvii0.932.723.243 (12)117
C18—H18A···O5A0.932.463.360 (8)162
C18—H18A···O5B0.933.184.069 (10)161
C19—H19A···O6B0.932.693.225 (9)117
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn2(C2O4)(C10H8N2)4](ClO4)2·C10H8N2
Mr1177.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4959 (19), 11.974 (2), 12.183 (2)
α, β, γ (°)98.87 (3), 102.73 (3), 98.89 (3)
V3)1309.3 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.18 × 0.15 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.888, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
12924, 5884, 2595
Rint0.071
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.221, 1.06
No. of reflections5884
No. of parameters363
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.64

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.932.613.356 (6)137.8
C5—H5A···O2ii0.932.443.243 (6)144.4
C10—H10A···O3iii0.932.633.484 (6)153.4
C18—H18A···O5A0.932.463.360 (8)162.4
C23—H23A···O4A0.932.643.309 (7)129.0
C11—H11A···O6Biv0.932.523.373 (10)152.0
C14—H14A···O5Bv0.932.723.243 (12)116.8
C18—H18A···O5A0.932.463.360 (8)162.4
C18—H18A···O5B0.933.184.069 (10)161.0
C19—H19A···O6B0.932.693.225 (9)117.3
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+1, z.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationChen, X. F., Liu, L., Ma, J. G., Yi, L., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2005). J. Mol. Struct. 750, 94–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJurić, M., Perić, B., Brnicević, N., Planinić, P., Pajić, D., Zadro, K. & Giester, G. (2007). Polyhedron, 26, 659–672.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Jiang, M., Li, Y. T., Wu, Z. Y. & Peng, W. B. (2009). J. Coord. Chem. 62, 2520–2531.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds