organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Phenyl-7H-di­naphtho­[2,1-b:1′,2′-d]phosphole 7-oxide

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 27 August 2011; accepted 19 September 2011; online 30 September 2011)

In the title compound, C26H17OP, the naphthyl ring systems are bent away from each other [dihedral angle = 30.81 (8)°]. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into helical chains along the 21 screw axis.

Related literature

For applications of organo­phospho­rus compounds, see: Antczak & Montchamp (2008[Antczak, M. I. & Montchamp, J.-L. (2008). Tetrahedron Lett. 49, 5909-5913.]); Yan & Zhang (2005[Yan, Y. & Zhang, X. (2005). J. Am. Chem. Soc. 128, 7198-7202.]). For related structures, see: Tani et al. (1994[Tani, K., Yamagata, T. & Tashiro, H. (1994). Acta Cryst. C50, 769-771.]); Gowda et al. (2010[Gowda, R. R., Ramkumar, V. & Chakraborty, D. (2010). Acta Cryst. E66, o1625.]).

[Scheme 1]

Experimental

Crystal data
  • C26H17OP

  • Mr = 376.37

  • Monoclinic, P 21

  • a = 10.9637 (12) Å

  • b = 8.0627 (8) Å

  • c = 11.0352 (13) Å

  • β = 94.746 (1)°

  • V = 972.13 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.26 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.980

  • 4947 measured reflections

  • 3317 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.065

  • S = 1.03

  • 3317 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1455 Friedel pairs

  • Flack parameter: 0.00 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O1i 0.93 2.47 3.229 (4) 139
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organophosphorus compounds are important in various applications (Antczak et al., 2008), including asymmetric catalysis (Yan & Zhang, 2005). In our search for new organophosphorus compounds, we obtained the title compound (I) unintentionally.

The molecule of (I) (Fig. 1) is chiral because of the bent naphthyl rings. All bond lengths and angles are normal and comparable with those observed in the related compounds (Tani et al., 1994; Gowda et al., 2010). Weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into helical chains along screw axis 21.

Related literature top

For applications of organophosphorus compounds, see: Antczak & Montchamp (2008); Yan & Zhang (2005). For related structures, see: Tani et al. (1994); Gowda et al. (2010).

Experimental top

n-BuLi(0.2 mmol of a 1.6M hexane solution) was added dropwise to a solution of (R)-2,2'-dibromo-1,l'-binaphthyl (0.1 mmol) in dry ether(5 ml) at -30°C. After stirring for 3 h to form (R)-2,2-Dilithio-l,l'-binaphthalene, it was added to dichlorophenylphosphine(0.1 mmol) at -80°C for 0.5 h, then the mixture was stirred from -80°C to room temperature overnight. After washing with water, the resulting solution was purified by silica gel plate to afford optically pure product 7-phenyl-7H-benzo[e]naphtho[2,1-b]phosphindole. The crystal suitable for X-ray diffraction was obtained from recrystallization with acetone, during this process the product was oxidized to form the title compound.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 - 0.98 Å, with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.

Structure description top

Organophosphorus compounds are important in various applications (Antczak et al., 2008), including asymmetric catalysis (Yan & Zhang, 2005). In our search for new organophosphorus compounds, we obtained the title compound (I) unintentionally.

The molecule of (I) (Fig. 1) is chiral because of the bent naphthyl rings. All bond lengths and angles are normal and comparable with those observed in the related compounds (Tani et al., 1994; Gowda et al., 2010). Weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into helical chains along screw axis 21.

For applications of organophosphorus compounds, see: Antczak & Montchamp (2008); Yan & Zhang (2005). For related structures, see: Tani et al. (1994); Gowda et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
7-Phenyl-7H-dinaphtho[2,1-b:1',2'-d]phosphole 7-oxide top
Crystal data top
C26H17OPF(000) = 392
Mr = 376.37Dx = 1.286 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1467 reflections
a = 10.9637 (12) Åθ = 2.5–25.9°
b = 8.0627 (8) ŵ = 0.16 mm1
c = 11.0352 (13) ÅT = 298 K
β = 94.746 (1)°Block, colourless
V = 972.13 (18) Å30.26 × 0.17 × 0.13 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3317 independent reflections
Radiation source: fine-focus sealed tube2431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 813
Tmin = 0.961, Tmax = 0.980k = 99
4947 measured reflectionsl = 1113
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0113P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3317 reflectionsΔρmax = 0.25 e Å3
253 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983); 1455 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C26H17OPV = 972.13 (18) Å3
Mr = 376.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.9637 (12) ŵ = 0.16 mm1
b = 8.0627 (8) ÅT = 298 K
c = 11.0352 (13) Å0.26 × 0.17 × 0.13 mm
β = 94.746 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2431 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.980Rint = 0.027
4947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.21 e Å3
3317 reflectionsAbsolute structure: Flack (1983); 1455 Friedel pairs
253 parametersAbsolute structure parameter: 0.00 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90190 (19)0.5234 (2)0.13528 (15)0.0670 (6)
P10.81611 (7)0.41973 (10)0.20150 (6)0.0522 (2)
C10.6484 (3)0.4877 (3)0.3524 (2)0.0407 (7)
C20.6672 (3)0.4991 (3)0.2295 (2)0.0452 (7)
C30.5726 (3)0.5462 (4)0.1420 (2)0.0563 (8)
H30.58730.55170.06030.068*
C40.4601 (3)0.5835 (3)0.1773 (3)0.0599 (8)
H40.40090.62720.12100.072*
C50.4318 (3)0.5569 (3)0.2986 (3)0.0519 (8)
C60.5254 (3)0.4972 (3)0.3874 (2)0.0437 (7)
C70.4870 (3)0.4388 (4)0.5001 (2)0.0530 (7)
H70.54380.38920.55610.064*
C80.3681 (3)0.4543 (4)0.5274 (3)0.0653 (9)
H80.34480.41420.60100.078*
C90.2806 (3)0.5308 (4)0.4447 (3)0.0709 (10)
H90.20180.54960.46700.085*
C100.3107 (3)0.5773 (4)0.3326 (3)0.0670 (9)
H100.25120.62290.27750.080*
C110.7644 (2)0.4480 (3)0.4292 (2)0.0423 (7)
C120.8558 (2)0.3895 (3)0.3616 (2)0.0447 (7)
C130.9672 (3)0.3282 (4)0.4170 (3)0.0574 (8)
H131.02660.28760.36930.069*
C140.9880 (3)0.3285 (4)0.5413 (3)0.0590 (9)
H141.05800.27860.57810.071*
C150.9036 (3)0.4043 (4)0.6133 (2)0.0499 (7)
C160.7915 (3)0.4729 (3)0.5589 (2)0.0452 (7)
C170.7202 (3)0.5734 (3)0.6322 (2)0.0552 (8)
H170.65100.62680.59680.066*
C180.7516 (3)0.5927 (4)0.7538 (3)0.0667 (9)
H180.70390.65890.80020.080*
C190.8567 (3)0.5122 (4)0.8097 (3)0.0711 (10)
H190.87490.52080.89330.085*
C200.9316 (3)0.4221 (4)0.7416 (2)0.0644 (8)
H201.00120.37200.77900.077*
C210.7879 (3)0.2185 (3)0.1327 (2)0.0501 (8)
C220.6998 (3)0.1138 (4)0.1745 (2)0.0703 (10)
H220.64980.15110.23290.084*
C230.6864 (3)0.0466 (5)0.1290 (3)0.0860 (11)
H230.62800.11740.15720.103*
C240.7609 (3)0.0997 (4)0.0415 (2)0.0720 (10)
H240.75270.20750.01210.086*
C250.8467 (3)0.0030 (4)0.0029 (2)0.0640 (9)
H250.89510.03400.06270.077*
C260.8599 (3)0.1633 (4)0.0430 (2)0.0541 (8)
H260.91750.23410.01350.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0700 (14)0.0669 (14)0.0672 (13)0.0132 (12)0.0243 (11)0.0051 (11)
P10.0559 (5)0.0518 (5)0.0497 (4)0.0046 (5)0.0092 (4)0.0004 (4)
C10.0473 (19)0.0344 (15)0.0398 (16)0.0025 (13)0.0004 (13)0.0029 (12)
C20.0487 (19)0.0425 (17)0.0440 (16)0.0046 (14)0.0014 (14)0.0004 (13)
C30.064 (2)0.0561 (19)0.0476 (18)0.0035 (18)0.0030 (17)0.0003 (15)
C40.058 (2)0.056 (2)0.062 (2)0.0044 (18)0.0135 (17)0.0009 (16)
C50.049 (2)0.0460 (18)0.060 (2)0.0014 (16)0.0009 (17)0.0092 (15)
C60.0422 (18)0.0421 (17)0.0463 (16)0.0029 (14)0.0003 (14)0.0081 (13)
C70.052 (2)0.0500 (18)0.0570 (17)0.0023 (18)0.0072 (14)0.0078 (16)
C80.065 (2)0.061 (2)0.071 (2)0.007 (2)0.0170 (18)0.0120 (18)
C90.051 (2)0.071 (2)0.092 (3)0.002 (2)0.014 (2)0.026 (2)
C100.053 (2)0.061 (2)0.085 (2)0.0067 (18)0.0076 (19)0.0237 (19)
C110.0437 (17)0.0383 (17)0.0442 (15)0.0042 (14)0.0016 (13)0.0024 (13)
C120.0407 (18)0.0426 (19)0.0505 (16)0.0013 (15)0.0026 (14)0.0036 (14)
C130.047 (2)0.0593 (19)0.067 (2)0.0005 (17)0.0077 (17)0.0057 (16)
C140.044 (2)0.059 (2)0.072 (2)0.0013 (17)0.0088 (18)0.0041 (17)
C150.0506 (19)0.0494 (18)0.0488 (17)0.0048 (18)0.0022 (15)0.0006 (16)
C160.0475 (19)0.0418 (18)0.0452 (16)0.0038 (14)0.0017 (14)0.0019 (13)
C170.063 (2)0.054 (2)0.0480 (18)0.0026 (17)0.0000 (16)0.0047 (15)
C180.085 (3)0.072 (2)0.0428 (18)0.005 (2)0.0008 (17)0.0093 (16)
C190.083 (3)0.084 (3)0.0433 (19)0.012 (2)0.0124 (18)0.0026 (17)
C200.063 (2)0.072 (2)0.0548 (19)0.006 (2)0.0160 (16)0.005 (2)
C210.060 (2)0.050 (2)0.0409 (17)0.0031 (16)0.0077 (15)0.0005 (13)
C220.105 (3)0.056 (2)0.0545 (19)0.019 (2)0.0333 (19)0.0145 (16)
C230.129 (3)0.067 (3)0.065 (2)0.030 (2)0.026 (2)0.0043 (18)
C240.099 (3)0.058 (2)0.057 (2)0.000 (2)0.0018 (19)0.0132 (18)
C250.070 (2)0.072 (2)0.0487 (19)0.019 (2)0.0009 (16)0.0050 (17)
C260.053 (2)0.061 (2)0.0479 (18)0.0046 (17)0.0022 (15)0.0022 (16)
Geometric parameters (Å, º) top
O1—P11.4937 (18)C13—C141.372 (3)
P1—C121.801 (2)C13—H130.9300
P1—C21.803 (3)C14—C151.408 (3)
P1—C211.807 (3)C14—H140.9300
C1—C21.391 (3)C15—C201.431 (3)
C1—C61.435 (3)C15—C161.434 (3)
C1—C111.503 (3)C16—C171.424 (3)
C2—C31.410 (3)C17—C181.366 (3)
C3—C41.357 (4)C17—H170.9300
C3—H30.9300C18—C191.418 (4)
C4—C51.415 (3)C18—H180.9300
C4—H40.9300C19—C201.366 (4)
C5—C101.419 (4)C19—H190.9300
C5—C61.443 (3)C20—H200.9300
C6—C71.425 (3)C21—C261.389 (3)
C7—C81.368 (3)C21—C221.390 (4)
C7—H70.9300C22—C231.390 (4)
C8—C91.410 (4)C22—H220.9300
C8—H80.9300C23—C241.384 (4)
C9—C101.359 (4)C23—H230.9300
C9—H90.9300C24—C251.373 (4)
C10—H100.9300C24—H240.9300
C11—C121.381 (3)C25—C261.391 (4)
C11—C161.451 (3)C25—H250.9300
C12—C131.409 (3)C26—H260.9300
O1—P1—C12116.43 (12)C14—C13—C12119.9 (3)
O1—P1—C2120.06 (12)C14—C13—H13120.0
C12—P1—C291.62 (12)C12—C13—H13120.0
O1—P1—C21112.92 (12)C13—C14—C15120.2 (3)
C12—P1—C21108.04 (12)C13—C14—H14119.9
C2—P1—C21105.37 (13)C15—C14—H14119.9
C2—C1—C6118.6 (2)C14—C15—C20120.3 (3)
C2—C1—C11112.1 (3)C14—C15—C16120.8 (2)
C6—C1—C11129.0 (2)C20—C15—C16118.8 (3)
C1—C2—C3121.7 (3)C17—C16—C15118.2 (2)
C1—C2—P1110.7 (2)C17—C16—C11124.2 (2)
C3—C2—P1127.1 (2)C15—C16—C11117.3 (2)
C4—C3—C2119.8 (3)C18—C17—C16121.1 (3)
C4—C3—H3120.1C18—C17—H17119.4
C2—C3—H3120.1C16—C17—H17119.4
C3—C4—C5120.9 (3)C17—C18—C19120.3 (3)
C3—C4—H4119.6C17—C18—H18119.8
C5—C4—H4119.6C19—C18—H18119.8
C4—C5—C10121.1 (3)C20—C19—C18120.5 (3)
C4—C5—C6119.6 (3)C20—C19—H19119.8
C10—C5—C6119.2 (3)C18—C19—H19119.8
C7—C6—C1124.7 (3)C19—C20—C15120.6 (3)
C7—C6—C5117.3 (3)C19—C20—H20119.7
C1—C6—C5117.7 (2)C15—C20—H20119.7
C8—C7—C6121.2 (3)C26—C21—C22119.6 (3)
C8—C7—H7119.4C26—C21—P1120.0 (2)
C6—C7—H7119.4C22—C21—P1120.3 (2)
C7—C8—C9120.5 (3)C23—C22—C21120.1 (3)
C7—C8—H8119.8C23—C22—H22120.0
C9—C8—H8119.8C21—C22—H22120.0
C10—C9—C8120.4 (3)C22—C23—C24119.2 (3)
C10—C9—H9119.8C22—C23—H23120.4
C8—C9—H9119.8C24—C23—H23120.4
C9—C10—C5120.8 (3)C25—C24—C23121.6 (3)
C9—C10—H10119.6C25—C24—H24119.2
C5—C10—H10119.6C23—C24—H24119.2
C12—C11—C16118.8 (2)C24—C25—C26118.9 (3)
C12—C11—C1112.7 (2)C24—C25—H25120.5
C16—C11—C1128.4 (2)C26—C25—H25120.5
C11—C12—C13121.8 (2)C21—C26—C25120.6 (3)
C11—C12—P1110.9 (2)C21—C26—H26119.7
C13—C12—P1127.1 (2)C25—C26—H26119.7
C6—C1—C2—C310.5 (4)C2—P1—C12—C114.2 (2)
C11—C1—C2—C3175.7 (2)C21—P1—C12—C11110.9 (2)
C6—C1—C2—P1161.64 (19)O1—P1—C12—C1354.1 (3)
C11—C1—C2—P112.2 (3)C2—P1—C12—C13179.1 (3)
O1—P1—C2—C1126.99 (18)C21—P1—C12—C1374.2 (3)
C12—P1—C2—C14.9 (2)C11—C12—C13—C141.2 (4)
C21—P1—C2—C1104.28 (19)P1—C12—C13—C14173.2 (2)
O1—P1—C2—C361.4 (3)C12—C13—C14—C156.1 (4)
C12—P1—C2—C3176.5 (2)C13—C14—C15—C20172.7 (3)
C21—P1—C2—C367.3 (3)C13—C14—C15—C163.9 (4)
C1—C2—C3—C40.7 (4)C14—C15—C16—C17169.0 (3)
P1—C2—C3—C4171.5 (2)C20—C15—C16—C177.6 (4)
C2—C3—C4—C57.7 (4)C14—C15—C16—C115.3 (4)
C3—C4—C5—C10172.6 (3)C20—C15—C16—C11178.1 (3)
C3—C4—C5—C63.1 (4)C12—C11—C16—C17161.6 (3)
C2—C1—C6—C7159.9 (2)C1—C11—C16—C1714.2 (4)
C11—C1—C6—C712.7 (4)C12—C11—C16—C1512.2 (4)
C2—C1—C6—C514.5 (3)C1—C11—C16—C15172.0 (3)
C11—C1—C6—C5172.9 (2)C15—C16—C17—C185.6 (4)
C4—C5—C6—C7166.8 (3)C11—C16—C17—C18179.4 (3)
C10—C5—C6—C78.9 (4)C16—C17—C18—C190.0 (4)
C4—C5—C6—C18.0 (4)C17—C18—C19—C203.7 (5)
C10—C5—C6—C1176.2 (3)C18—C19—C20—C151.5 (5)
C1—C6—C7—C8179.1 (3)C14—C15—C20—C19172.4 (3)
C5—C6—C7—C86.4 (4)C16—C15—C20—C194.2 (5)
C6—C7—C8—C90.8 (5)O1—P1—C21—C2611.5 (3)
C7—C8—C9—C105.7 (5)C12—P1—C21—C26118.7 (2)
C8—C9—C10—C52.9 (5)C2—P1—C21—C26144.4 (2)
C4—C5—C10—C9171.3 (3)O1—P1—C21—C22172.7 (2)
C6—C5—C10—C94.4 (4)C12—P1—C21—C2257.1 (3)
C2—C1—C11—C1215.8 (3)C2—P1—C21—C2239.8 (3)
C6—C1—C11—C12157.2 (2)C26—C21—C22—C231.8 (5)
C2—C1—C11—C16160.2 (2)P1—C21—C22—C23174.0 (3)
C6—C1—C11—C1626.8 (4)C21—C22—C23—C240.5 (5)
C16—C11—C12—C1310.5 (4)C22—C23—C24—C251.0 (5)
C1—C11—C12—C13173.1 (2)C23—C24—C25—C261.1 (5)
C16—C11—C12—P1164.76 (18)C22—C21—C26—C251.6 (4)
C1—C11—C12—P111.7 (3)P1—C21—C26—C25174.1 (2)
O1—P1—C12—C11120.84 (19)C24—C25—C26—C210.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.932.473.229 (4)139
Symmetry code: (i) x+2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC26H17OP
Mr376.37
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.9637 (12), 8.0627 (8), 11.0352 (13)
β (°) 94.746 (1)
V3)972.13 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.26 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4947, 3317, 2431
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.065, 1.03
No. of reflections3317
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21
Absolute structureFlack (1983); 1455 Friedel pairs
Absolute structure parameter0.00 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.932.473.229 (4)138.8
Symmetry code: (i) x+2, y1/2, z.
 

Acknowledgements

We acknowledge financial support by the Natural Science Foundation of China (grant No. 20772055).

References

First citationAntczak, M. I. & Montchamp, J.-L. (2008). Tetrahedron Lett. 49, 5909–5913.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, R. R., Ramkumar, V. & Chakraborty, D. (2010). Acta Cryst. E66, o1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTani, K., Yamagata, T. & Tashiro, H. (1994). Acta Cryst. C50, 769–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYan, Y. & Zhang, X. (2005). J. Am. Chem. Soc. 128, 7198–7202.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds