organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Nitro­oxyeth­yl)picolinamide

aInstituto de Química – UFU, Uberlândia, MG, Brazil, and bDepartamento de Química – UFMG, Belo Horizonte, MG, Brazil
*Correspondence e-mail: silvana@ufu.br

(Received 15 September 2011; accepted 26 September 2011; online 30 September 2011)

In the title mol­ecule, C8H9N3O4, the amide group is involved in the formation of an intra­molecular N—H⋯N hydrogen bond. In the crystal, mol­ecules related by translation along the a axis are linked into chains via weak inter­molecular C—H⋯O inter­actions.

Related literature

For related structures, see: Eremenko et al. (1996[Eremenko, I. L., Golubnichaya, M. A., Nefedov, S. E., Baranovskyii, I. B., Ol`shnitskaya, I. A., Ellert, O. G., Novotortsev, V. M., Eremenko, L. T. & Nesterenko, D. A. (1996). Russ. J. Inorg. Chem. 41, 1924-1938.]); Fedorov et al. (2001[Fedorov, B. S., Golovina, N. I., Fadeev, M. A., Strukov, G. V., Kedrov, V. V., Shilov, G. V., Boiko, G. N. & Atovmyan, L. O. (2001). Russ. Chem. Bull. 50, 520-524.]). For further synthetic details, see: Samejima (1960[Samejima, M. (1960). Chem. Pharm. Bull. 80, 1706-1712.]); Jiao et al. (1990[Jiao, J., Huang, Q., Cao, X., Li, Q. & Zhang, D. (1990). Chin. J. Med. Chem. 1, 75-76.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3O4

  • Mr = 211.18

  • Orthorhombic, P 21 21 21

  • a = 5.5075 (2) Å

  • b = 13.6114 (5) Å

  • c = 12.6822 (4) Å

  • V = 950.72 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.49 × 0.21 × 0.19 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4037 measured reflections

  • 1265 independent reflections

  • 1039 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.07

  • 1265 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H⋯N1 0.86 2.31 2.692 (3) 107
C8—H8B⋯O1i 0.97 2.39 3.239 (3) 145
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) can be considered as a potential nitric oxide donating drug. Herewith we present its crystal structure.

The molecule of (I) adopts a folded conformation and contains a planar pyridine cycle (NC5H4) bearing a CO group attached to the α-carbon atom (Fig. 1). The dihedral angle between the pyridine ring and the O1/C6/N2 plane is 11.3 (2)°. This angle is smaller than that in the nicorandyl [22.8 (2)°] (Eremenko et al., 1996).The dihedral angle between the mean planes O1/C6/N2/C7 and C8/O2/N3/O3/O4 is 44.74 (7)°. The CO and CH2–ONO2 bonds are oriented trans to the pyridine nitrogen atom. In the nicorandyl compound these groups were found in the cis position (Eremenko et al., 1996). Another structural isomer (Fedorov et al., 2001), [N-(2-nitrooxyethyl)isonicotinamide], displays a different molecular conformation and crystallizes in the same centrosymmetric space group P21/c as nicorandil.

The crystal structure of (I) is stabilized through weak non-classical intermolecular H-bonds of the type C—H···O in [100] direction, involving the carbon atom of the nitrooxyethyl group and the oxygen atom of carbonylamide. Moreover, were observed one intramolecular interactions of the type N—H···N (Table 1). On the other hand, the compound nicorandil has only one intermolecular interaction of the type N—H···O. The results for compound (I) and its structural isomers show that the position of the ligand in pyridine ring affects the conformation of the molecule and the interactions present in the crystal packing.

Related literature top

For related structures, see: Eremenko et al. (1996); Fedorov et al. (2001). For further synthetic details, see: Samejima (1960); Jiao et al. (1990).

Experimental top

The title product was synthesized by heating ethylnicotinate with an excess 2-ethanolamine to give N-(2-hydroxyethyl)picolinamide in 92% yield (Samejima, 1960). The nitration of N-(2-hydroxyethyl)picolinamide (0.10 mmol) was held by mixing it with fuming nitric acid (1.00 mmol) at -5°C and stirred for 2 h.

The reaction mixture was poured into water and ice, and the pH was adjusted to 6.0 adding (CaCO3). The white solid obtained was filtered at reduced pressure and recrystallized in ethanol, forming the N-(2-nitrooxyethyl)picolinamide in 63% yield (Jiao et al., 1990). MP: 61.2–63.0°C. 1H-NMR (200 MHz, CDCl3): 3.85 (2H, q, J = 5.6 Hz), 4.67 (2H, t, J = 5.2 Hz),7.42–7.48 (1H, m), 7.83–7.90 (1H, m), 8.19 (1H, d, J = 7.9 Hz), 8.39 (1H, br s), 8.56 (1H, d, J = 4.4 Hz). 13C-NMR (200 MHz, CDCl3): 36.7, 71.7, 122.2, 126.4, 137.4, 148.1, 149.11, 164.7.

Refinement top

H atoms were geometrically positioned (C—H 0.93-0.97 Å, N—H 0.86 Å) and refined as riding, with Uiso(H) = 1.2 Ueq of the parent atom. In the absence of significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 871 sets of Friedel equivalents led to an inconclusive value of -0.2 (13). Therefore, the Friedel pairs were merged before the final refinement.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom labeling. Displacement ellipsoids are drawn at the 30% probability level.
N-(2-Nitrooxyethyl)pyridine-2-carboxamide top
Crystal data top
C8H9N3O4Dx = 1.475 Mg m3
Mr = 211.18Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2165 reflections
a = 5.5075 (2) Åθ = 2.9–27.5°
b = 13.6114 (5) ŵ = 0.12 mm1
c = 12.6822 (4) ÅT = 295 K
V = 950.72 (6) Å3Prism, colourless
Z = 40.49 × 0.21 × 0.19 mm
F(000) = 440
Data collection top
Nonius KappaCCD
diffractometer
1039 reflections with I > 2σ(I)
Radiation source: Enraf–NoniusRint = 0.020
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 77
CCD rotation images, thick slices scansk = 1617
4037 measured reflectionsl = 1515
1265 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0645P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1265 reflectionsΔρmax = 0.23 e Å3
137 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.124 (13)
Crystal data top
C8H9N3O4V = 950.72 (6) Å3
Mr = 211.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5075 (2) ŵ = 0.12 mm1
b = 13.6114 (5) ÅT = 295 K
c = 12.6822 (4) Å0.49 × 0.21 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
1039 reflections with I > 2σ(I)
4037 measured reflectionsRint = 0.020
1265 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
1265 reflectionsΔρmin = 0.15 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1820 (3)0.49141 (13)0.05722 (14)0.0662 (5)
O20.2098 (3)0.55263 (11)0.11459 (12)0.0528 (4)
O30.0499 (4)0.67762 (12)0.11167 (15)0.0705 (5)
O40.1235 (4)0.54631 (16)0.20249 (14)0.0797 (6)
N10.1892 (3)0.31135 (13)0.17680 (14)0.0509 (5)
N20.2136 (4)0.49676 (13)0.10379 (15)0.0532 (5)
H0.33310.46480.13080.064*
N30.0061 (4)0.59684 (13)0.14445 (15)0.0532 (5)
C10.0042 (4)0.34497 (13)0.12528 (15)0.0430 (5)
C20.1867 (5)0.21623 (15)0.20374 (19)0.0570 (6)
H20.31910.19140.24070.068*
C30.0002 (5)0.15319 (15)0.17994 (18)0.0565 (6)
H30.00660.08750.19980.068*
C40.1974 (5)0.18928 (16)0.12612 (19)0.0561 (6)
H40.32650.14840.10860.067*
C50.2003 (4)0.28722 (15)0.09855 (18)0.0516 (5)
H50.3320.31380.06260.062*
C60.0002 (4)0.45146 (14)0.09262 (15)0.0459 (5)
C70.2509 (5)0.59775 (15)0.07192 (18)0.0592 (6)
H7A0.36180.6290.12090.071*
H7B0.09730.63250.07540.071*
C80.3520 (5)0.60631 (17)0.03806 (19)0.0595 (6)
H8A0.35690.67510.05810.071*
H8B0.51710.58160.03870.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0545 (10)0.0624 (10)0.0817 (12)0.0089 (8)0.0073 (9)0.0174 (9)
O20.0556 (9)0.0472 (7)0.0555 (8)0.0094 (7)0.0037 (7)0.0021 (6)
O30.0751 (12)0.0563 (9)0.0800 (12)0.0189 (9)0.0063 (10)0.0087 (9)
O40.0799 (13)0.0921 (13)0.0672 (11)0.0228 (11)0.0137 (10)0.0037 (10)
N10.0505 (10)0.0471 (9)0.0550 (10)0.0004 (8)0.0099 (9)0.0039 (8)
N20.0585 (12)0.0429 (8)0.0581 (11)0.0035 (8)0.0129 (9)0.0069 (8)
N30.0538 (11)0.0526 (10)0.0533 (11)0.0014 (9)0.0050 (9)0.0093 (8)
C10.0447 (11)0.0457 (10)0.0385 (10)0.0022 (9)0.0016 (9)0.0010 (7)
C20.0584 (13)0.0492 (11)0.0633 (14)0.0021 (10)0.0085 (12)0.0074 (10)
C30.0685 (15)0.0433 (10)0.0577 (13)0.0026 (11)0.0050 (12)0.0021 (9)
C40.0574 (13)0.0521 (12)0.0588 (12)0.0105 (11)0.0019 (11)0.0068 (10)
C50.0455 (11)0.0559 (12)0.0534 (12)0.0002 (9)0.0029 (10)0.0011 (9)
C60.0491 (12)0.0459 (9)0.0428 (10)0.0022 (9)0.0026 (9)0.0003 (8)
C70.0773 (17)0.0433 (10)0.0570 (13)0.0099 (11)0.0131 (12)0.0011 (9)
C80.0519 (13)0.0536 (12)0.0728 (16)0.0090 (10)0.0059 (12)0.0097 (11)
Geometric parameters (Å, º) top
O1—C61.225 (3)C2—C31.374 (3)
O2—N31.385 (3)C2—H20.93
O2—C81.445 (3)C3—C41.374 (4)
O3—N31.200 (2)C3—H30.93
O4—N31.197 (3)C4—C51.378 (3)
N1—C11.330 (3)C4—H40.93
N1—C21.339 (3)C5—H50.93
N2—C61.337 (3)C7—C81.506 (3)
N2—C71.447 (3)C7—H7A0.97
N2—H0.86C7—H7B0.97
C1—C51.378 (3)C8—H8A0.97
C1—C61.508 (3)C8—H8B0.97
N3—O2—C8115.41 (16)C5—C4—H4120.6
C1—N1—C2116.73 (19)C4—C5—C1118.7 (2)
C6—N2—C7122.2 (2)C4—C5—H5120.7
C6—N2—H118.9C1—C5—H5120.7
C7—N2—H118.9O1—C6—N2123.66 (18)
O4—N3—O3129.1 (2)O1—C6—C1121.03 (18)
O4—N3—O2112.47 (19)N2—C6—C1115.30 (18)
O3—N3—O2118.4 (2)N2—C7—C8112.60 (19)
N1—C1—C5123.50 (19)N2—C7—H7A109.1
N1—C1—C6116.99 (18)C8—C7—H7A109.1
C5—C1—C6119.49 (19)N2—C7—H7B109.1
N1—C2—C3123.7 (2)C8—C7—H7B109.1
N1—C2—H2118.1H7A—C7—H7B107.8
C3—C2—H2118.1O2—C8—C7112.49 (19)
C4—C3—C2118.6 (2)O2—C8—H8A109.1
C4—C3—H3120.7C7—C8—H8A109.1
C2—C3—H3120.7O2—C8—H8B109.1
C3—C4—C5118.8 (2)C7—C8—H8B109.1
C3—C4—H4120.6H8A—C8—H8B107.8
C8—O2—N3—O4175.41 (19)C7—N2—C6—O11.7 (3)
C8—O2—N3—O35.3 (3)C7—N2—C6—C1177.33 (19)
C2—N1—C1—C50.5 (3)N1—C1—C6—O1170.5 (2)
C2—N1—C1—C6178.70 (19)C5—C1—C6—O111.2 (3)
C1—N1—C2—C30.9 (3)N1—C1—C6—N210.4 (3)
N1—C2—C3—C40.5 (4)C5—C1—C6—N2167.8 (2)
C2—C3—C4—C50.3 (3)C6—N2—C7—C894.3 (3)
C3—C4—C5—C10.6 (3)N3—O2—C8—C776.5 (2)
N1—C1—C5—C40.2 (3)N2—C7—C8—O252.7 (3)
C6—C1—C5—C4177.95 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H···N10.862.312.692 (3)107
C8—H8B···O1i0.972.393.239 (3)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H9N3O4
Mr211.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.5075 (2), 13.6114 (5), 12.6822 (4)
V3)950.72 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.49 × 0.21 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4037, 1265, 1039
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.07
No. of reflections1265
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H···N10.862.312.692 (3)107.2
C8—H8B···O1i0.972.393.239 (3)145.4
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Professor Dr Javier Ellena of the IFSC, USP, Brazil, for the X-ray data collection. This work was supported financially by FAPEMIG and CNPq.

References

First citationEremenko, I. L., Golubnichaya, M. A., Nefedov, S. E., Baranovskyii, I. B., Ol`shnitskaya, I. A., Ellert, O. G., Novotortsev, V. M., Eremenko, L. T. & Nesterenko, D. A. (1996). Russ. J. Inorg. Chem. 41, 1924–1938.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationFedorov, B. S., Golovina, N. I., Fadeev, M. A., Strukov, G. V., Kedrov, V. V., Shilov, G. V., Boiko, G. N. & Atovmyan, L. O. (2001). Russ. Chem. Bull. 50, 520–524.  Web of Science CrossRef CAS
First citationJiao, J., Huang, Q., Cao, X., Li, Q. & Zhang, D. (1990). Chin. J. Med. Chem. 1, 75–76.  CAS
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSamejima, M. (1960). Chem. Pharm. Bull. 80, 1706–1712.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds