metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­chloridozinc(II)]-μ-1,4-bis­­(pyridin-2-ylmeth­­oxy)benzene-κ2N:N′]

aDepartment of Materials and Chemistry Engineering, Heilongjiang Institute of Technology, Harbin 150050, People's Republic of China, bModern Analysis, Test and Research Center, Heilongjiang Institute of Science and Technology, Harbin 150027, People's Republic of China, and cCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 14 July 2011; accepted 3 September 2011; online 14 September 2011)

In the title compound, [ZnCl2(C18H16N2O2)]n, the ZnII ion is tetra­hedrally coordinated by two Cl atoms and by two N atoms from different 1,4-bis­(pyridin-2-ylmeth­oxy)benzene ligands. The ligand shows a non-planar configuration, in which the dihedral angles between the two terminal pyridine rings and the linking benzene ring are 7.86 (12) and 70.74 (11)°. The flexible ligand coordinates to the ZnII ions, generating an infinite chain propagating along [001].

Related literature

For the synthesis and general background to flexible pyridyl-based ligands, see: Wang et al. (2007[Wang, S.-N., Xing, H., Li, Y.-Z., Bai, J., Scheer, M., Pan, Y. & You, X.-Z. (2007). Chem. Commun. pp. 2293-2295.]); Liu et al. (2010a[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559-1568.],b[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630-632.])

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C18H16N2O2)]

  • Mr = 428.62

  • Triclinic, [P \overline 1]

  • a = 8.8797 (18) Å

  • b = 10.458 (2) Å

  • c = 10.561 (2) Å

  • α = 87.55 (3)°

  • β = 73.50 (3)°

  • γ = 72.31 (3)°

  • V = 894.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.719, Tmax = 0.760

  • 8755 measured reflections

  • 4028 independent reflections

  • 3222 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.073

  • S = 1.05

  • 4028 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The metal-organic frameworks are determined by many factors, in which the organic ligands as building blocks and the kinds of metal ions are most important. Many pyridyl-containing ligands with strong coordination ability and functional characteristics have been studied over the recent years (Wang et al., 2007). The flexible bipyridyl ligands could react with transitional metals to construct the helical-like structures. Recently, as a continuration of previous works (Liu et al., 2010a, b), we report the crystal structure of the title compound here.

In the title compound, [(ZnCl2)(C18H16N2O2)]n, each ZnII atom is four-coordinated by two Cl atoms and two N atoms from different 1,4-bis(pyridin-2-ylmethoxy)benzene ligands to form a distorted tetrahedral geometry configuration. The Zn-Cl bond lengths are 2.228 (1) and 2.253 (1) Å, and Zn-N bond lengths are 2.090 (2) and 2.080 (2) Å. The Cl(1)-Zn-Cl(2) bond angle (110.45 °) and the N(1)-Zn-N(2) bond angle (111.03 °) are nearly equal to 120 ° in order to minimize the steric hindrance (Fig. 1, Table 1).

The ligand is oriented in a divergent fashion, in which the dihedral angles between two terminal pyridine rings with the linking benzene ring are 7.86 (12) and 70.74 (11)°. In the crystal packing, the flexible ligands link the ZnII atoms to generate an infinite chain running along [001].

Related literature top

For the synthesis and general backround to flexible pyridyl-based ligands, see: Wang et al. (2007); Liu et al. (2010a,b)

Experimental top

The 1,4-bis(pyridin-2-ylmethoxy)benzene ligand was synthesized as the reference method (Liu et al., 2010a,b). The title compound was produced by reaction of ZnCl2 (0.50 mmol,0.068 g) in water (5 mL) and 1,4-bis(pyridin-2-ylmethoxy)benzene (0.5 mmol, 0.146 g) in 5 mL methanol under constant stirring, and filtered after stirring for about one hour. The filtate was maintained for about one week under the room temperature to give colorless block-like crystals suitable for X-ray analysis.

Refinement top

The anormal reflection datas (4 -5 6), (-3 2 0) and (2 -3 1) have been omitted during the refinement. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Structure description top

The metal-organic frameworks are determined by many factors, in which the organic ligands as building blocks and the kinds of metal ions are most important. Many pyridyl-containing ligands with strong coordination ability and functional characteristics have been studied over the recent years (Wang et al., 2007). The flexible bipyridyl ligands could react with transitional metals to construct the helical-like structures. Recently, as a continuration of previous works (Liu et al., 2010a, b), we report the crystal structure of the title compound here.

In the title compound, [(ZnCl2)(C18H16N2O2)]n, each ZnII atom is four-coordinated by two Cl atoms and two N atoms from different 1,4-bis(pyridin-2-ylmethoxy)benzene ligands to form a distorted tetrahedral geometry configuration. The Zn-Cl bond lengths are 2.228 (1) and 2.253 (1) Å, and Zn-N bond lengths are 2.090 (2) and 2.080 (2) Å. The Cl(1)-Zn-Cl(2) bond angle (110.45 °) and the N(1)-Zn-N(2) bond angle (111.03 °) are nearly equal to 120 ° in order to minimize the steric hindrance (Fig. 1, Table 1).

The ligand is oriented in a divergent fashion, in which the dihedral angles between two terminal pyridine rings with the linking benzene ring are 7.86 (12) and 70.74 (11)°. In the crystal packing, the flexible ligands link the ZnII atoms to generate an infinite chain running along [001].

For the synthesis and general backround to flexible pyridyl-based ligands, see: Wang et al. (2007); Liu et al. (2010a,b)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms [Symmetry code I = x, y, z-1; II = x, y, z+1].
[Figure 2] Fig. 2. A partial packing view, showing the chain structure along b axis.
catena-Poly[[dichloridozinc(II)]-µ- 1,4-bis(pyridin-2-ylmethoxy)benzene-κ2N:N'] top
Crystal data top
[ZnCl2(C18H16N2O2)]Z = 2
Mr = 428.62F(000) = 436
Triclinic, P1Dx = 1.591 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8797 (18) ÅCell parameters from 6941 reflections
b = 10.458 (2) Åθ = 3.6–27.5°
c = 10.561 (2) ŵ = 1.69 mm1
α = 87.55 (3)°T = 293 K
β = 73.50 (3)°Block, colorless
γ = 72.31 (3)°0.21 × 0.19 × 0.17 mm
V = 894.9 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4028 independent reflections
Radiation source: fine-focus sealed tube3222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1011
Tmin = 0.719, Tmax = 0.760k = 1313
8755 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.1894P]
where P = (Fo2 + 2Fc2)/3
4028 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[ZnCl2(C18H16N2O2)]γ = 72.31 (3)°
Mr = 428.62V = 894.9 (3) Å3
Triclinic, P1Z = 2
a = 8.8797 (18) ÅMo Kα radiation
b = 10.458 (2) ŵ = 1.69 mm1
c = 10.561 (2) ÅT = 293 K
α = 87.55 (3)°0.21 × 0.19 × 0.17 mm
β = 73.50 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4028 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3222 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.760Rint = 0.028
8755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
4028 reflectionsΔρmin = 0.29 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8929 (3)0.5157 (2)1.3377 (2)0.0426 (5)
H10.89330.56341.40990.051*
C20.9801 (3)0.3817 (2)1.3198 (3)0.0503 (6)
H21.03800.33941.37860.060*
C30.9800 (3)0.3111 (2)1.2128 (3)0.0508 (6)
H31.03930.22031.19760.061*
C40.8915 (3)0.3759 (2)1.1287 (2)0.0438 (6)
H40.88940.32931.05650.053*
C50.8052 (3)0.5115 (2)1.1526 (2)0.0331 (5)
C60.7058 (3)0.5875 (2)1.0652 (2)0.0369 (5)
H6A0.58950.61531.11330.044*
H6B0.73760.66741.03670.044*
C70.6566 (3)0.5573 (2)0.8599 (2)0.0377 (5)
C80.6904 (3)0.4718 (2)0.7515 (2)0.0415 (5)
H80.75900.38400.74780.050*
C90.6227 (3)0.5165 (2)0.6498 (2)0.0401 (5)
H90.64420.45830.57820.048*
C100.5228 (3)0.6472 (2)0.6532 (2)0.0353 (5)
C110.4855 (3)0.7321 (2)0.7619 (2)0.0438 (6)
H110.41570.81940.76580.053*
C120.5525 (3)0.6863 (2)0.8651 (2)0.0448 (6)
H120.52700.74320.93860.054*
C130.3676 (3)0.8196 (2)0.5444 (2)0.0373 (5)
H13A0.42430.88030.56090.045*
H13B0.26500.83510.61450.045*
C140.3322 (3)0.8458 (2)0.4139 (2)0.0325 (5)
C150.1734 (3)0.8713 (2)0.4044 (2)0.0396 (5)
H150.09000.86290.47780.047*
C160.1382 (3)0.9091 (2)0.2865 (3)0.0450 (6)
H160.03220.92500.27920.054*
C170.2624 (3)0.9227 (2)0.1811 (3)0.0460 (6)
H170.24190.95120.10130.055*
C180.4196 (3)0.8933 (2)0.1949 (2)0.0407 (5)
H180.50400.90210.12250.049*
Cl10.76914 (7)0.83611 (6)0.47450 (6)0.04153 (14)
Cl20.81884 (8)0.89409 (6)0.12085 (6)0.04904 (16)
N10.8066 (2)0.58173 (17)1.25574 (17)0.0322 (4)
N20.4562 (2)0.85272 (17)0.30782 (18)0.0329 (4)
O10.7344 (2)0.50350 (16)0.95442 (16)0.0488 (4)
O20.4678 (2)0.68394 (15)0.54293 (15)0.0416 (4)
Zn10.70586 (3)0.78909 (2)0.29601 (3)0.03361 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (14)0.0418 (12)0.0389 (13)0.0072 (11)0.0224 (11)0.0025 (10)
C20.0581 (16)0.0458 (14)0.0492 (16)0.0070 (12)0.0297 (13)0.0140 (12)
C30.0563 (16)0.0348 (12)0.0540 (17)0.0014 (12)0.0184 (13)0.0058 (11)
C40.0527 (14)0.0372 (12)0.0387 (14)0.0083 (11)0.0142 (11)0.0014 (10)
C50.0334 (11)0.0354 (11)0.0295 (11)0.0095 (9)0.0089 (9)0.0034 (9)
C60.0449 (13)0.0384 (11)0.0287 (12)0.0084 (10)0.0169 (10)0.0003 (9)
C70.0503 (13)0.0351 (11)0.0323 (12)0.0120 (11)0.0201 (11)0.0018 (9)
C80.0590 (15)0.0292 (11)0.0384 (13)0.0087 (11)0.0219 (12)0.0011 (9)
C90.0594 (15)0.0318 (11)0.0343 (13)0.0152 (11)0.0192 (11)0.0026 (9)
C100.0442 (13)0.0363 (11)0.0307 (12)0.0130 (10)0.0181 (10)0.0022 (9)
C110.0543 (15)0.0378 (12)0.0378 (13)0.0029 (11)0.0218 (12)0.0034 (10)
C120.0567 (15)0.0397 (12)0.0347 (13)0.0002 (11)0.0226 (12)0.0082 (10)
C130.0384 (12)0.0391 (11)0.0310 (12)0.0038 (10)0.0127 (10)0.0028 (9)
C140.0351 (11)0.0269 (10)0.0356 (12)0.0034 (9)0.0161 (10)0.0033 (8)
C150.0367 (12)0.0382 (12)0.0448 (14)0.0080 (10)0.0164 (10)0.0017 (10)
C160.0382 (13)0.0423 (13)0.0575 (16)0.0031 (11)0.0271 (12)0.0031 (11)
C170.0532 (15)0.0444 (13)0.0433 (14)0.0020 (12)0.0321 (13)0.0031 (11)
C180.0440 (13)0.0407 (12)0.0342 (13)0.0026 (11)0.0175 (11)0.0029 (10)
Cl10.0482 (3)0.0434 (3)0.0426 (3)0.0150 (3)0.0264 (3)0.0013 (2)
Cl20.0539 (4)0.0542 (3)0.0416 (3)0.0198 (3)0.0154 (3)0.0129 (3)
N10.0331 (9)0.0344 (9)0.0291 (9)0.0069 (8)0.0127 (8)0.0033 (7)
N20.0343 (9)0.0324 (9)0.0307 (10)0.0022 (8)0.0155 (8)0.0011 (7)
O10.0704 (12)0.0377 (8)0.0383 (10)0.0005 (8)0.0320 (9)0.0043 (7)
O20.0607 (10)0.0338 (8)0.0359 (9)0.0084 (8)0.0287 (8)0.0001 (6)
Zn10.03523 (15)0.03499 (14)0.03301 (15)0.00713 (11)0.01731 (11)0.00198 (10)
Geometric parameters (Å, º) top
C1—N11.348 (3)C11—C121.387 (3)
C1—C21.371 (3)C11—H110.9300
C1—H10.9300C12—H120.9300
C2—C31.376 (4)C13—O21.426 (3)
C2—H20.9300C13—C141.495 (3)
C3—C41.374 (3)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.387 (3)C14—N21.346 (3)
C4—H40.9300C14—C151.385 (3)
C5—N11.344 (3)C15—C161.381 (3)
C5—C61.496 (3)C15—H150.9300
C6—O11.410 (3)C16—C171.364 (4)
C6—H6A0.9700C16—H160.9300
C6—H6B0.9700C17—C181.384 (3)
C7—C121.377 (3)C17—H170.9300
C7—O11.378 (3)C18—N21.341 (3)
C7—C81.390 (3)C18—H180.9300
C8—C91.373 (3)Cl1—Zn12.2271 (7)
C8—H80.9300Cl2—Zn12.2530 (10)
C9—C101.380 (3)N1—Zn1i2.0898 (18)
C9—H90.9300N2—Zn12.0803 (18)
C10—C111.381 (3)Zn1—N1ii2.0898 (18)
C10—O21.383 (3)
N1—C1—C2123.2 (2)C7—C12—H12119.7
N1—C1—H1118.4C11—C12—H12119.7
C2—C1—H1118.4O2—C13—C14109.20 (17)
C1—C2—C3118.5 (2)O2—C13—H13A109.8
C1—C2—H2120.8C14—C13—H13A109.8
C3—C2—H2120.8O2—C13—H13B109.8
C4—C3—C2119.4 (2)C14—C13—H13B109.8
C4—C3—H3120.3H13A—C13—H13B108.3
C2—C3—H3120.3N2—C14—C15120.9 (2)
C3—C4—C5119.4 (2)N2—C14—C13118.31 (19)
C3—C4—H4120.3C15—C14—C13120.6 (2)
C5—C4—H4120.3C16—C15—C14120.4 (2)
N1—C5—C4121.7 (2)C16—C15—H15119.8
N1—C5—C6116.45 (18)C14—C15—H15119.8
C4—C5—C6121.9 (2)C17—C16—C15118.5 (2)
O1—C6—C5108.69 (18)C17—C16—H16120.8
O1—C6—H6A110.0C15—C16—H16120.8
C5—C6—H6A110.0C16—C17—C18118.8 (2)
O1—C6—H6B110.0C16—C17—H17120.6
C5—C6—H6B110.0C18—C17—H17120.6
H6A—C6—H6B108.3N2—C18—C17123.1 (2)
C12—C7—O1125.3 (2)N2—C18—H18118.4
C12—C7—C8119.3 (2)C17—C18—H18118.4
O1—C7—C8115.4 (2)C5—N1—C1117.94 (18)
C9—C8—C7120.1 (2)C5—N1—Zn1i127.03 (14)
C9—C8—H8119.9C1—N1—Zn1i114.79 (14)
C7—C8—H8119.9C18—N2—C14118.08 (19)
C8—C9—C10120.5 (2)C18—N2—Zn1115.68 (15)
C8—C9—H9119.8C14—N2—Zn1125.98 (14)
C10—C9—H9119.8C7—O1—C6117.33 (17)
C9—C10—C11119.8 (2)C10—O2—C13116.16 (17)
C9—C10—O2115.81 (19)N2—Zn1—N1ii111.05 (7)
C11—C10—O2124.4 (2)N2—Zn1—Cl1115.74 (6)
C10—C11—C12119.6 (2)N1ii—Zn1—Cl1107.18 (6)
C10—C11—H11120.2N2—Zn1—Cl2103.67 (6)
C12—C11—H11120.2N1ii—Zn1—Cl2108.57 (6)
C7—C12—C11120.6 (2)Cl1—Zn1—Cl2110.47 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[ZnCl2(C18H16N2O2)]
Mr428.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8797 (18), 10.458 (2), 10.561 (2)
α, β, γ (°)87.55 (3), 73.50 (3), 72.31 (3)
V3)894.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.719, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
8755, 4028, 3222
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.073, 1.05
No. of reflections4028
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Educational Commission of Heilongjiang Province of China (project No. 12511472), Heilongjiang Institute of Technology and Heilongjiang University for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-N., Xing, H., Li, Y.-Z., Bai, J., Scheer, M., Pan, Y. & You, X.-Z. (2007). Chem. Commun. pp. 2293–2295.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds